Impact of Climate Factors and Human Activities on Water Resources in the Aral Sea Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.3. Method
3. Results
3.1. Climatic Variations over the AS Basin from 1960 to 2015
3.2. Water Balance in the AS Basin
3.3. Factors Affecting to Water Level Change
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Goswami, K.B.; Bisht, P. The Role of Water Resources in Socio-Economic Development. Int. J. Res. Appl. Sci. Eng. Technol. 2017, 5, 1669–1674. [Google Scholar]
- Guo, J.; Sun, Z.; Liu, H.; Mu, D.; Chang, Y.; Gao, X.; Li, X. Water storage variations and their relation to climate factors over Central Asia and surrounding areas over 30 years. Water Supply 2018, 18, 1564–1580. [Google Scholar] [CrossRef] [Green Version]
- Aladin, N.V.; Plotnikov, I.S.; Letolle, R. Hydrobiology of the Aral Sea. In Dying and Dead Seas Climatic versus Anthropic Causes. NATO Science Series: IV: Earth and Environmental; Nihoul, J.C.J., Zavialov, P.O., Micklin, P.P., Eds.; Springer: Dordrecht, The Netherlands, 2004; Volume 36. [Google Scholar]
- Small, E.E.; Sloan, L.C.; Nychka, D. Changes in Surface Air Temperature Caused by Desiccation of the Aral Sea. J. Clim. 2001, 14, 284–299. [Google Scholar] [CrossRef]
- Gupta, R.; Kienzler, K.; Martius, C.; Mirzabaev, A.; Oweis, T.; Pauw, E.D.; Qadir, M.; Shideed, K.; Sommer, R.; Thomas, R.; et al. A Vision for Sustainable Land Management Research in Central Asia; ICARDA: Tashkent, Uzbekistan, 2009. [Google Scholar]
- Dubovyk, O.; Menz, G.; Conrad, C.; Kan, E.; Machwitz, M.; Khamzina, A. Spatio-temporal analyses of cropland degradation in the irrigated lowlands of Uzbekistan using remote-sensing and logistic regression modeling. Environ. Monit. Assess. 2013, 185, 4775–4790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernauer, T.; Siegfried, T. Climate change and international water conflict in Central Asia. J. Peace Res. 2012, 49, 227–239. [Google Scholar] [CrossRef] [Green Version]
- Abdullaev, I. Water Management Policies of Central Asian Countries: Integration or Disintegration? In Proceedings of the Paper Presented at USDS Organized Conference Celebrating 10 Years of Contemporary Issues Fellowships Conference on Water Issues in Central Asia, Tashkent, Uzbekistan, 25 September 2004. [Google Scholar]
- AQUASTAT. Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en (accessed on 28 April 2018).
- Zavialov, P.O.; Arashkevich, E.G.; Bastida, I.; Ginzburg, A.I.; Dikarev, S.N.; Jitina, L.S.; Ijiskiy, A.S.; Ishniyazov, D.P.; Kostyanoi, A.G.; Kravsova, V.I.; et al. Aral Sea at the Beginning of the XXI Century (Physics, Biology, Chemistry); Shirshov Institute of Oceanology of Russian Academy of Sciences: Moscow, Russia, 2011. (in Russian) [Google Scholar]
- Aladin, N.V.; Plotnikov, I.S.; Micklin, P.; Ballatore, T. The Aral Sea: Water level, salinity and long-term changes in biological communities of an endangered ecosystem—Past, present and future. In Proceedings of the International Society for Salt Lake Research (ISSLR) 10th International Conference and 2008 Friends of Great Salt Lake Issues Forum, Salt Lake City, UT, USA, 11–16 May 2008; pp. 177–183. [Google Scholar]
- Singh, A.; Seitz, F.; Schwatke, C. Inter-annual water storage changes in the Aral Sea from multi-mission satellite altimetry, optical remote sensing, and GRACE satellite gravimetry. Remote Sens. Environ. 2012, 123, 187–195. [Google Scholar] [CrossRef]
- Deng, H.; Yaning, C. Influences of recent climate change and human activities on water storage variations in Central Asia. J. Hydrol. 2017, 544, 46–57. [Google Scholar] [CrossRef]
- Lioubimtseva, E. Impact of Climate Change on the Aral Sea and Its Basin; Springer: Berlin, Germany, 2014. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; Henebry, G.M. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. J. Arid Environ. 2009, 73, 963–977. [Google Scholar] [CrossRef]
- Janusz-Pawletta, B.; Gubaidullina, M. Transboundary Water Management in Central Asia. Legal Framework to Strengthen Interstate Cooperation and Increase Regional Security. Cahiers d’Asie Centrale 2015, 25. [Google Scholar]
- Micklin, P. The Aral Sea Disaster. Annu. Rev. Earth Planet. Sci. 2007, 35, 47–72. [Google Scholar] [CrossRef] [Green Version]
- Zavialov, P.O.; Kostianoy, A.G.; Emelianov, S.V.; Ni, A.A.; Ishniyazov, D.; Khan, V.M.; Kudyshkin, T.V. Hydrographic survey in the dying Aral Sea. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Hu, Z.; Li, Q.; Chen, X.; Teng, Z.; Chen, C.; Yin, G.; Zhang, Y. Climate changes in temperature and precipitation extremes in an alpine grassland of Central Asia. Theor. Appl. Climatol. 2015, 126, 519–531. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, Y.; Shen, Y.; Li, Y. Changes of precipitation extremes in arid Central Asia. Quat. Int. 2017, 436, 16–27. [Google Scholar] [CrossRef]
- Gafforov, K.S.; Bao, A.; Rakhimov, S.; Liu, T.; Abdullaev, F.; Jiang, L.; Durdiev, K.; Duulatov, E.; Rakhimova, M.; Mukanov, Y. The Assessment of Climate Change on Rainfall-Runoff Erosivity in the Chirchik–Akhangaran Basin, Uzbekistan. Sustainability 2020, 12, 3369. [Google Scholar] [CrossRef] [Green Version]
- Micklin, P. Managing water in Central Asia. Central Asian and Caucasian Prospect; Research Institute International Affairs: London, UK, 2000; p. 72. [Google Scholar]
- Sorrel, P.; Popescu, S.-M.; Klotz, S.; Suc, J.-P.; Oberhänsli, H. Climate variability in the Aral Sea basin (Central Asia) during the late Holocene based on vegetation changes. Quat. Res. 2017, 67, 357–370. [Google Scholar] [CrossRef]
- Boomer, I.; Aladin, N.; Plotnikov, I.; Whatley, R. The palaeolimnology of the Aral Sea: A review. Quat. Sci. Rev. 2000, 19, 1259–1278. [Google Scholar] [CrossRef]
- Nezlin, N.P.; Kostianoy, A.G.; Lebedev, S.A. Interannual variations of the discharge of Amu Darya and Syr Darya estimated from global atmospheric precipitation. J. Mar. Syst. 2004, 47, 67–75. [Google Scholar] [CrossRef]
- Chembarisov, E.L.; Chembarisova, E.L. Contemporary Status of Surface Water Quality of the Aral Sea Basin; Urban Pollution Research Center: London, UK, 2007. [Google Scholar]
- Glantz, M.H. Creeping Environmental Problems and Sustainable Development in the Aral Sea Basin; Cambridge University Press: Cambridge, UK, 1999; pp. 47–66. [Google Scholar]
- Murray-Rust, H.; Abdullaev, I.; Hassan, M.u.; Horinkova, V. Water Productivity in the Syr-Darya River Basin; International Water Management Institute: Colombo, Sri Lanka, 2003. [Google Scholar]
- Kazbekov, J.; Qureshi, A.S. Agricultural Extension in Central Asia: Existing Strategies and Future Needs; International Water Management Institute: Colombo, Sri Lanka, 2011. [Google Scholar]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Swenson, S.; Wahr, J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Bontemps, S.; Defourny, P.; Radoux, J.; Van Bogaert, E.; Lamarche, C.; Achard, F.; Mayaux, P.; Boettcher, M.; Brockmann, C.; Kirches, G.; et al. Consistent Global Land Cover Maps For Climate Modelling Communities: Current Achievements Of The ESA’ Land Cover CCI. In Proceedings of the ESA Living Planet Symposium, Edinburgh, UK, 9–13 September 2013; p. 62. [Google Scholar]
- Jekeli, C. Alternative Methods to Smooth the Earth’s Gravity Field. Dep. of Geod. Sci. and Surv.; Ohio State Univ.: Columbus, OH, USA, 1981. [Google Scholar]
- Swenson, S.; Wahr, J.; Milly, P.C.D. Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE). Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Seo, K.W. Optimized smoothing of Gravity Recovery and Climate Experiment (GRACE) time-variable gravity observations. J. Geophys. Res. Solid Earth 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Wahr, J.; Molenaar, M.; Bryan, F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. Solid Earth 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Singh, A.K.; Jasrotia, A.S.; Taloor, A.K.; Kotlia, B.S.; Kumar, V.; Roy, S.; Ray, P.K.C.; Singh, K.K.; Singh, A.K.; Sharma, A.K. Estimation of quantitative measures of total water storage variation from GRACE and GLDAS-NOAH satellites using geospatial technology. Quat. Int. 2017, 444, 191–200. [Google Scholar] [CrossRef]
- Molosnova, T.I.; Subbotina, O.I.; Chanysheva, S.G. Klimaticheskye Posledstvija Khozajstvennoj Deyatelnosti v Zone Aralskogo Morya. (Climatic Effects of Economic Activity in the Aral Sea Area); Hydrometeorological Publishing House: Leningrad, Russia, 1987. [Google Scholar]
- Kim, I.S. Short-Range Variability of the Climate in the Middle Asia and Methods of Forecasting; SANIGMI: Tashkent, Uzbekistan, 1996; p. 149. [Google Scholar]
- Khan, V.M.; Vilfand, R.M.; Zavialov, P.O. Long-term variability of air temperature in the Aral sea region. J. Mar. Syst. 2004, 47, 25–33. [Google Scholar] [CrossRef]
- Abdurahimov, B.F.; Kurbanov, U.H. The response of the climate system to small temperature perturbations in the Aral Sea region. Bull. Nov. Comp. Center 2015, 15, 1–6. [Google Scholar] [CrossRef]
- Yang, L.; Sun, G.; Zhi, L.; Zhao, J. Negative soil moisture-precipitation feedback in dry and wet regions. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef]
- Zmijewski, K.; Becker, R. Estimating the Effects of Anthropogenic Modification on Water Balance in the Aral Sea Watershed Using GRACE: 2003–12. Earth Interact. 2014, 18, 1–16. [Google Scholar] [CrossRef]
- Deng, H.; Chen, Y.; Li, Q.; Lin, G. Loss of terrestrial water storage in the Tianshan mountains from 2003 to 2015. Int. J. Remote Sens. 2019, 40, 8342–8358. [Google Scholar] [CrossRef]
- Jacob, T.; Wahr, J.; Pfeffer, W.T.; Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 2012, 482, 514–518. [Google Scholar] [CrossRef]
- Jin, S.; Tian, X.; Feng, G. Recent glacier changes in the Tien Shan observed by satellite gravity measurements. Glob. Planet. Chang. 2016, 143, 81–87. [Google Scholar] [CrossRef]
- Pohl, E.; Gloaguen, R.; Andermann, C.; Knoche, M. Glacier melt buffers river runoff in the Pamir Mountains. Water Resour. Res. 2017, 53, 2467–2489. [Google Scholar] [CrossRef]
- CAWater-Info. Database of the Amudarya River Basin. Available online: http://cawater-info.net/library (accessed on 27 May 2017).
- Lioubimtseva, E. Environmental changes in arid Central Asia inferred from remote sensing data and ground observations. Arid Ecosyst 2005, 11, 67–72. [Google Scholar]
- Lioubimtseva, E.; Cole, R. Uncertainties of climate change in arid environments of Central Asia. Rev. Fish. Sci. 2006, 14, 29–50. [Google Scholar] [CrossRef]
- Glazovsky, N.F. The Aral Sea basin. In Regions at Risk: Comparisons of Threatened Environments, On-Line Ed.; Kasperson, J.X., Kasperson, R.E., Turner, B.L., II, Eds.; United Nations University Press: Tokyo, Japan; New York, NY, USA; Paris, France, 1995. [Google Scholar]
- Waltham, T.; Sholji, I. The demise of the Aral Sea—An environmental disaster. Geol. Today 2001, 17. [Google Scholar] [CrossRef]
- Liu, H.; Fang, C.; Miao, Y.; Ma, H.; Zhang, Q.; Zhou, Q. Spatio-temporal evolution of population and urbanization in the countries along the Belt and Road 1950–2050. J. Geogr. Sci. 2018, 28, 919–936. [Google Scholar] [CrossRef] [Green Version]
Year | Variables | Correlation Lake Surface Water and Variables | |
---|---|---|---|
Corr. Coef. | p-Value | ||
1960–2015 | Temperature | −0.606 * | 0.000 |
1960–2015 | Precipitation | −0.103 | 0.452 |
1960–2015 | Potential evapotranspiration | −0.470 * | 0.000 |
1960–2015 | Soil Moisture | 0.013 | 0.926 |
1960–2015 | Population | −0.995 * | 0.000 |
Year | Variables | Correlation Lake Surface Water and Variables | |
---|---|---|---|
Corr. Coef. | p-Value | ||
1995–2015 | Crop area | −0.857 * | 0.001 |
1995–2015 | Urban area | −0.971 * | 0.000 |
Year | Variables | Correlation Lake Surface Water and Variables | |
---|---|---|---|
Corr. Coef. | p-Value | ||
2002–2015 | TWS GRACE | 0.752 * | 0.003 |
2002–2015 | Ground water | 0.131 | 0.671 |
Year | Variables | Correlation GRACE TWS and Variables | |||
---|---|---|---|---|---|
Growing | Non-Growing | ||||
Corr. Coef. | p-Value | Corr. Coef. | p-Value | ||
2002–2015 | Temperature | −0.458 | 0.099 | 0.295 | 0.306 |
Precipitation | 0.420 | 0.135 | 0.403 | 0.153 | |
Potential evapotranspiration | −0.537 | 0.048 | −0.039 | 0.894 | |
Soil Moisture | −0.279 | 0.335 | −0.201 | 0.491 | |
Ground water | 0.249 | 0.391 | 0.209 | 0.473 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berdimbetov, T.T.; Ma, Z.-G.; Liang, C.; Ilyas, S. Impact of Climate Factors and Human Activities on Water Resources in the Aral Sea Basin. Hydrology 2020, 7, 30. https://doi.org/10.3390/hydrology7020030
Berdimbetov TT, Ma Z-G, Liang C, Ilyas S. Impact of Climate Factors and Human Activities on Water Resources in the Aral Sea Basin. Hydrology. 2020; 7(2):30. https://doi.org/10.3390/hydrology7020030
Chicago/Turabian StyleBerdimbetov, Timur T, Zhu-Guo Ma, Chen Liang, and Sana Ilyas. 2020. "Impact of Climate Factors and Human Activities on Water Resources in the Aral Sea Basin" Hydrology 7, no. 2: 30. https://doi.org/10.3390/hydrology7020030
APA StyleBerdimbetov, T. T., Ma, Z. -G., Liang, C., & Ilyas, S. (2020). Impact of Climate Factors and Human Activities on Water Resources in the Aral Sea Basin. Hydrology, 7(2), 30. https://doi.org/10.3390/hydrology7020030