Integrated Multi-Scale Hydrogeophysical Characterisation of a Coastal Phreatic Dune Aquifer: The Belvedere–San Marco Case Study (NE Italy)
Abstract
1. Introduction
2. Materials and Methods
2.1. Stratigraphic and Hydrochemical Data Collection
2.2. Geophysical Methods
2.3. Study Area
3. Results
3.1. Site-Scale Analysis
3.2. Subsurface Stratigraphy
3.3. Hydrogeophysical Characterisation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DTM | Digital Terrain Model |
| EC | Electrical Conductivity |
| ECa | Apparent Electrical Conductivity |
| ERT | Electrical Resistivity Tomography |
| FDEM | Frequency-Domain Electromagnetics |
| FVG | Friuli Venezia Giulia region |
| GPR | Ground-Penetrating Radar |
| m a.s.l. | meters above sea level |
| m b.g.l. | meters below ground level |
| m b.s.l. | meters below sea level |
| RS | Seismic Refraction (P-wave) |
| SWI | Seawater Intrusion |
| UNESCO | United Nations Educational, Scientific and Cultural Organization |
References
- Werner, A.D.; Simmons, C.T.; Gallant, J.R.; Smerdon, B.D. Seawater intrusion: Global change and groundwater response. Environ. Res. Lett. 2013, 8, 034026. [Google Scholar] [CrossRef]
- Panthi, J.; Pradhanang, S.; Nolte, A.; Boving, T. Saltwater intrusion into coastal aquifers in the contiguous United States—A systematic review of investigation approaches and monitoring networks. Sci. Total Environ. 2022, 836, 155641. [Google Scholar] [CrossRef]
- Barlow, P.M.; Reichard, E.G. Saltwater intrusion in coastal regions of North America. Hydrogeol. J. 2010, 18, 247–260. [Google Scholar] [CrossRef]
- Ferguson, G.; Gleeson, T. Vulnerability of coastal aquifers to groundwater use and climate change. Nat. Clim. Change 2012, 2, 342–345. [Google Scholar] [CrossRef]
- Da Lio, C.; Tosi, L. Land subsidence in the Friuli Venezia Giulia coastal plain, Italy: 1992-2010 results from SAR-based interferometry. Sci. Total Environ. 2018, 633, 752–764. [Google Scholar] [CrossRef]
- Pezzetta, E.; Lutman, A.; Martinuzzi, I.; Cucchi, F. Iron concentrations in selected groundwater samples from the lower Friulian plain, northeast Italy: Importance of salinity. Environ. Earth Sci. 2011, 62, 377–391. [Google Scholar] [CrossRef]
- Zavagno, E. Interazione tra Acque Marine e Acque di Falda Nella Bassa Pianura Friulana. Ph.D. Thesis, Università degli Studi di Trieste, Trieste, Italy, 2012. [Google Scholar]
- Felcher, S.; Strazzolini, P. Cesare Primo Mori. Lo Stato nello Stato; Aviani & Aviani: Udine, Italy, 2019. [Google Scholar]
- Corradin, C.; Thomas, A.T.; Camerlenghi, A.; Zini, L.; Giustiniani, M.; Busetti, M.; Foglia, L.; Bertoni, C.; Micallef, A. Characterization of an Onshore–Offshore Aquifer System in the Venetian Friulian Plain and North Adriatic Basin: A 3D Modeling Approach. Hydrogeol. J. 2025. [Google Scholar] [CrossRef]
- Vanzani, F.; Fontana, A.; Ronchi, L.; Boaga, J.; Chiarini, V.; Hajdas, I. The Dunes of Belvedere-San Marco of Aquileia: Integrating High-Resolution Digital Terrain Models and Multispectral Images with Ground-Penetrating Radar Survey to Map the Largest System of Continental Dunes of Northern Italy. Remote Sens. 2024, 16, 765. [Google Scholar] [CrossRef]
- Vandenbohede, A.; Mollema, P.N.; Greggio, N.; Antonellini, M. Seasonal dynamic of a shallow freshwater lens due to irrigation in the coastal plain of Ravenna, Italy. Hydrogeol. J. 2014, 22, 893–909. [Google Scholar] [CrossRef]
- Greggio, N.; Giambastiani, B.M.S.; Balugani, E.; Amaini, C.; Antonellini, M. High-resolution electrical resistivity tomography (ERT) to Characterize the Spatial Extension of Freshwater Lenses in a Salinized Coastal Aquifer. Water 2018, 10, 1067. [Google Scholar] [CrossRef]
- Stuyfzand, P.J. Hydrochemistry and Hydrology of the Coastal Dune Area of the Western Netherlands. Ph.D. Thesis, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 1993. [Google Scholar]
- Bakker, M. The size of the freshwater zone below an elongated island with infiltration. Water Resour. Res. 2000, 36, 109–117. [Google Scholar] [CrossRef]
- Abu Salem, H.S.; Gemail, K.S.; Junakova, N.; Ibrahim, A.; Nosair, A.M. An integrated approach for deciphering hydrogeochemical processes during seawater intrusion in coastal aquifers. Water 2022, 14, 1165. [Google Scholar] [CrossRef]
- Muzzillo, R.; Zuffianò, L.E.; Rizzo, E.; Canora, F.; Capozzoli, L.; Giampaolo, V.; De Giorgio, G.; Sdao, F.; Polemio, M. Seawater intrusion proneness and geophysical investigations in the Metaponto coastal plain (Basilicata, Italy). Water 2021, 13, 53. [Google Scholar] [CrossRef]
- Tarallo, D.; Alberico, I.; Cavuoto, G.; Di Paola, G.; Florio, G.; Guida, D.; Nappi, R.; Rizzo, E.; Romano, G.; Russo, G.; et al. Geophysical assessment of seawater intrusion: The Volturno coastal plain case study. Appl. Water Sci. 2023, 13, 234. [Google Scholar] [CrossRef]
- de Louw, P.G.B.; Eeman, S.; Siemon, B.; Voortman, B.R.; Gunnink, J.; van Baaren, E.S.; Oude Essink, G.H.P. Shallow rainwater lenses in deltaic areas with saline seepage. Hydrol. Earth Syst. Sci. 2011, 15, 3659–3678. [Google Scholar] [CrossRef]
- Ducut, J.D.; Alipio, M.; Go, P.J.; Concepcion, R., II; Vicerra, R.R.; Bandala, A.; Dadios, E. A review of electrical resistivity tomography applications in underground imaging and object detection. Displays 2022, 73, 102208. [Google Scholar] [CrossRef]
- Boaga, J. The use of FDEM in hydrogeophysics: A review. J. Appl. Geophys. 2017, 139, 36–46. [Google Scholar] [CrossRef]
- Jol, H.M. Ground Penetrating Radar: Theory and Applications; Elsevier: Amsterdam, The Netherlands, 2009; p. 524. [Google Scholar] [CrossRef]
- Neal, A. Ground-penetrating radar and its use in sedimentology: Principles, problems and progress. Earth-Sci. Rev. 2004, 66, 261–330. [Google Scholar] [CrossRef]
- Palmer, D. Refraction Seismics: The Lateral Resolution of Structure and Seismic Velocity; Geophysical Press: London, UK, 1986; ISBN 978-0-946631-13-1. [Google Scholar]
- Fontana, A.; Monegato, G.; Rossato, S.; Poli, M.E.; Furlani, S.; Stefani, C. Carta Delle Unità Geologiche Della Pianura del Friuli Venezia Giulia Alla Scala 1:150,000 e Note Illustrative; Regione Autonoma Friuli Venezia Giulia-Servizio Geologico: Trieste, Italy, 2019; p. 80. [Google Scholar]
- Marocco, R. Evoluzione tardopleistocenica-olocenica del delta del F. Tagliamento e delle lagune di Marano e Grado (Golfo di Trieste). Alp. Mediterr. Quat. 1991, 4, 223–232. [Google Scholar]
- Melis, R.; Covelli, S. Distribution and morphological abnormalities of recent foraminifera in the Marano and Grado Lagoon (North Adriatic Sea, Italy). Mediterr. Mar. Sci. 2013, 14, 432–450. [Google Scholar] [CrossRef]
- Arnaud-Fassetta, G.; Carcaud, N.; Castanet, C.; Salvador, P.-G. The site of Aquileia (northeastern Italy): Example of fluvial geoarchaeology in a Mediterranean deltaic plain / Le site d’Aquilée (Italie nord-orientale): Exemple de géoarchéologie fluviale dans une plaine deltaïque méditerranéenne. Géomorphol. Relief Process. Environ. 2003, 9, 227–245. [Google Scholar] [CrossRef][Green Version]
- Marocco, R. Sediment distribution and dispersal in northern Adriatic lagoons (Marano and Grado paralic system). G. Geol. 1995, 57, 77–89. [Google Scholar][Green Version]
- Zini, L.; Calligaris, C.; Treu, F.; Zavagno, E.; Iervolino, D.; Lippi, F. Groundwater sustainability in the Friuli Plain-La sostenibilità dell’utilizzo delle acque sotterranee nella pianura friulana. Acque Sotter. Ital. J. Groundw. 2023, 12, 77–92. [Google Scholar] [CrossRef]
- Fontana, A.; Mozzi, P.; Bondesan, A. Late Pleistocene evolution of the Venetian-Friulian plain. Rend. Lincei. Sci. Fis. Nat. 2010, 21 (Suppl. 1), 181–196. [Google Scholar] [CrossRef]
- Zini, L.; Calligaris, C.; Treu, F.; Iervolino, D.; Lippi, F. Risorse Idriche Sotterranee del Friuli Venezia Giulia: Sostenibilità Dell’Attuale Utilizzo; EUT Edizioni Università di Trieste: Trieste, Italy, 2011. [Google Scholar]
- OSMER–ARPA FVG. Climatological Data for Friuli Venezia Giulia (1991–2020). Available online: https://www.osmer.fvg.it/clima.php (accessed on 5 November 2025).
- Badaruddin, S.; Werner, A.D.; Morgan, L.K. Water table salinization due to seawater intrusion. Water Resour. Res. 2015, 51, 8397–8408. [Google Scholar] [CrossRef]
- Rotzoll, K.; Oki, D.S.; El-Kadi, A.I. Changes of freshwater-lens thickness in basaltic island aquifers overlain by thick coastal sediments. Hydrogeol. J. 2010, 18, 1425–1436. [Google Scholar] [CrossRef]
- Jones, F.H.; dos Santos Scherer, C.M.; Kuchle, J. Facies architecture and stratigraphic evolution of aeolian dune and interdune deposits. Sediment. Geol. 2016, 337, 133–150. [Google Scholar] [CrossRef]
- Alcalá, F.; Paz, M.C.; Martínez-Pagán, P.; Santos, F. Integrated geophysical methods for shallow aquifers characterization and modelling. Appl. Sci. 2022, 12, 2271. [Google Scholar] [CrossRef]
- Tesfaldet, Y.T.; Puttiwongrak, A. Seasonal Groundwater Recharge Characterization Using Time-Lapse Electrical Resistivity Tomography in the Thepkasattri Watershed on Phuket Island, Thailand. Hydrology 2019, 6, 36. [Google Scholar] [CrossRef]
- Becker, M.W.; Cason, F.M.; Hagedorn, B. Locating Potential Groundwater Pathways in a Fringing Reef Using Continuous Electrical Resistivity Profiling. Hydrology 2023, 10, 206. [Google Scholar] [CrossRef]
- Hussain, M.S.; Abd-Elhamid, H.F.; Javadi, A.A.; Sherif, M.M. Management of seawater intrusion in coastal aquifers: A review. Water 2019, 11, 2467. [Google Scholar] [CrossRef]
- Tiwari, P.; Rupesh, R.; Sharma, S.P.; Ciazela, J. Dynamics of saltwater intrusion in a heterogeneous coastal environment: Experimental, DC resistivity, and numerical modeling approaches. Water 2024, 16, 1950. [Google Scholar] [CrossRef]
- Kumar, S.S.; Deb Barma, S.; Amai, M. Simulation of coastal aquifer using mSim toolbox and COMSOL multiphysics. J. Earth Syst. Sci. 2020, 129, 66. [Google Scholar] [CrossRef]
- Nhan, P.Q.; Trung, D.T.; Le, T.T.; Hung, N.K.; Hoang, P.M.; Thinh, T.D. A Simplified Approach of Pumping Rate Optimization for Production Wells to Mitigate Saltwater Intrusion: A Case Study in Vinh Hung District, Long An Province, Vietnam. Hydrology 2024, 11, 185. [Google Scholar] [CrossRef]
- Mao, D.; Wang, X.; Meng, J.; Ma, X.; Jiang, X.; Wan, L.; Yan, H.; Fan, Y. Infiltration Assessments on Top of Yungang Grottoes by Time-Lapse Electrical Resistivity Tomography. Hydrology 2022, 9, 77. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Surian, B.; Forte, E.; Zini, L. Integrated Multi-Scale Hydrogeophysical Characterisation of a Coastal Phreatic Dune Aquifer: The Belvedere–San Marco Case Study (NE Italy). Hydrology 2025, 12, 304. https://doi.org/10.3390/hydrology12110304
Surian B, Forte E, Zini L. Integrated Multi-Scale Hydrogeophysical Characterisation of a Coastal Phreatic Dune Aquifer: The Belvedere–San Marco Case Study (NE Italy). Hydrology. 2025; 12(11):304. https://doi.org/10.3390/hydrology12110304
Chicago/Turabian StyleSurian, Benedetta, Emanuele Forte, and Luca Zini. 2025. "Integrated Multi-Scale Hydrogeophysical Characterisation of a Coastal Phreatic Dune Aquifer: The Belvedere–San Marco Case Study (NE Italy)" Hydrology 12, no. 11: 304. https://doi.org/10.3390/hydrology12110304
APA StyleSurian, B., Forte, E., & Zini, L. (2025). Integrated Multi-Scale Hydrogeophysical Characterisation of a Coastal Phreatic Dune Aquifer: The Belvedere–San Marco Case Study (NE Italy). Hydrology, 12(11), 304. https://doi.org/10.3390/hydrology12110304

