Evapotranspiration Assessment by Remote Sensing in Brazil with Focus on Amazon Biome: Scientometric Analysis and Perspectives for Applications in Agro-Environmental Studies
Abstract
:1. Introduction
2. Material and Methods
3. Results
Year of Publication | Article | Citations/Year | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | ||
2016 | ID 1 | 5 | 19 | 31 | 33 | 60 | 42 | 38 | |||||||
2020 | ID 2 | 10 | 28 | 31 | |||||||||||
2016 | ID 3 | 3 | 22 | 16 | 27 | 38 | 44 | 46 | |||||||
2021 | ID 4 | 3 | 29 | ||||||||||||
2018 | ID 5 | 3 | 18 | 27 | 31 | 35 | |||||||||
2021 | ID 6 | 0 | 21 | ||||||||||||
2019 | ID 7 | 3 | 8 | 20 | 23 | ||||||||||
2018 | ID 8 | 0 | 9 | 20 | 15 | 27 | |||||||||
2016 | ID 9 | 10 | 7 | 18 | 19 | 17 | 12 | 23 | |||||||
2011 | ID 10 | 6 | 14 | 17 | 18 | 30 | 21 | 20 | 19 | 11 | 5 | 12 | 15 | ||
2021 | ID 11 | 4 | 12 | ||||||||||||
2014 | ID 12 | 0 | 6 | 10 | 15 | 14 | 16 | 15 | 24 | 26 | |||||
2021 | ID 13 | 3 | 12 | ||||||||||||
2020 | ID 14 | 9 | 11 | 9 | |||||||||||
2017 | ID 15 | 0 | 11 | 10 | 9 | 16 | 23 | ||||||||
2019 | ID 16 | 3 | 1 | 21 | 16 | ||||||||||
2021 | ID 17 | 0 | 13 | ||||||||||||
2009 | ID 18 | 5 | 4 | 8 | 22 | 14 | 14 | 14 | 12 | 12 | 7 | 15 | 14 | 8 | 13 |
2013 | ID 19 | 0 | 2 | 8 | 11 | 9 | 17 | 16 | 9 | 18 | 19 | ||||
2021 | ID 20 | 3 | 9 | ||||||||||||
2022 | ID 21 | 12 | |||||||||||||
2019 | ID 22 | 2 | 8 | 8 | 16 | ||||||||||
2019 | ID 23 | 0 | 6 | 11 | 15 | ||||||||||
2017 | ID 24 | 1 | 6 | 8 | 14 | 11 | 13 | ||||||||
2020 | ID 25 | 6 | 5 | 10 | |||||||||||
2019 | ID 26 | 5 | 8 | 18 | |||||||||||
4. Discussion
4.1. Scientific Production on Evapotranspiration by Remote Sensing in Brazil by Brazilian Regions and Biomes
4.2. Scientific Production on Evapotranspiration by Remote Sensing in Brazil in Scientific Institutions and Strictu Sensu Postgraduate Programs
4.3. Applications of Remote Sensing Evapotranspiration in Brazil
4.4. Main Remote Sensing Methodologies for Estimating Evapotranspiration in Brazil and the Amazonian Biome
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Authors | DOI | Year | Source |
---|---|---|---|
BASTIAANSSEN et al. | 10.1023/A:1017967021198 | 2001 | Irrigation and Drainage Systems |
FOLHES et al. | 10.1016/j.agwat.2009.04.021 | 2009 | Agricultural Water Management |
TEIXEIRA et al. | 10.1016/j.agrformet.2008.09.014 | 2009 | Agricultural and Forest Meteorology |
TEIXEIRA et al. | 10.1016/j.agrformet.2008.09.016 | 2009 | Agricultural and Forest Meteorology |
TEIXEIRA | 10.3390/rs0251287 | 2010 | Remote Sensing |
DA COSTA et al. | 10.1590/S0100-67622011000400009 | 2011 | Revista Arvore |
LOARIE et al. | 10.1038/nclimate1067 | 2011 | Nature Climate Change |
RODELL et al. | 10.1002/hyp.8369 | 2011 | Hydrological Processes |
LATHUILLIÈRE et al. | 10.1088/1748-9326/7/2/024024 | 2012 | Environmental Research Letters |
RUHOFF et al. | 10.3390/rs4030703 | 2012 | Remote Sensing |
RUHOFF et al. | 10.1080/02626667.2013.837578 | 2013 | Hydrological Sciences Journal |
TEIXEIRA et al. | 10.3390/rs5115783 | 2013 | Remote Sensing |
FERREIRA & DANTAS | 10.15809/irriga.2014v19n1p73 | 2014 | Irriga |
GIONGO & VETTORAZZI | 10.1590/1807-1929/agriambi.v18n08p833-838 | 2014 | Revista Brasileira de Engenharia Agrícola e Ambiental |
MONTEIRO et al. | 10.15090/brag.2014.005 | 2014 | Bragantia |
OLIVEIRA et al. | 10.1002/2013WR015202 | 2014 | Water Resources Research |
ANDERSON et al. | 10.1016/j.jhydrol.2015.01.005 | 2015 | Journal Of Hydrology |
DA SILVA et al. | 10.1002/eco.1580 | 2015 | Ecohydrology |
LUCAS et al. | 10.1007/s10040-015-1246-1 | 2015 | Hydrogeology Journal |
PENATTI et al. | 10.1016/j.rse.2015.08.031 | 2015 | Remote Sensing of Environment |
TEIXEIRA et al. | 10.3390/rs71114597 | 2015 | Remote Sensing |
ANDERSON et al. | 10.1016/j.rse.2015.11.034 | 2016 | Remote Sensing of Environment |
ANDRADE et al. | 10.1590/0034-737X201663060002 | 2016 | Revista Ceres |
ARANTES et al. | 10.1016/j.isprsjprs.2016.02.008 | 2016 | Isprs Journal of Photogrammetry and Remote Sensing |
FERREIRA et al. | 10.1590/1809-4430-Eng.Agric.v36n6p1176-1185/2016 | 2016 | Engenharia Agrícola |
FUZZO & ROCHA | 10.1117/1.JRS.10.046027 | 2016 | Journal of Applied Remote Sensing |
GETIRANA | 10.1175/JHM-D-15-0096.1 | 2016 | Journal of Hydrometeorology |
MELO et al. | 10.5194/hess-20-4673-2016 | 2016 | Hydrology and Earth System Sciences |
SPERA et al. | 10.1111/gcb.13298 | 2016 | Global Change Biology |
VERGOPOLAN & FISHER | 10.1080/01431161.2016.1232874 | 2016 | International Journal of Remote Sensing |
COAGUILA et al. | 10.1590/1807-1929/agriambi.v21n8p524-529 | 2017 | Revista Brasileira de Engenharia Agrícola e Ambiental |
COELHO et al. | 10.1016/j.jhydrol.2017.02.054 | 2017 | Journal of Hydrology |
DE OLIVEIRA et al. | 10.1080/01431161.2017.1339924 | 2017 | International Journal of Remote Sensing |
KHAND et al. | 10.3390/rs9070706 | 2017 | Remote Sensing |
NÓBREGA et al. | 10.1371/journal.pone.0179414 | 2017 | Plos One |
NUMATA et al. | 10.3390/rs9010046 | 2017 | Remote Sensing |
PEREIRA et al. | 10.1007/s00704-016-1800-3 | 2017 | Theoretical and Applied Climatology |
TEIXEIRA et al. | 10.1117/1.JRS.11.016030 | 2017 | Journal of Applied Remote Sensing |
ZEMP et al. | 10.1002/2017GL072955 | 2017 | Geophysical Research Letters |
BOSQUILIA et al. | 10.1016/j.compag.2018.06.003 | 2018 | Computers and Electronics in Agriculture |
DE OLIVEIRA et al. | 10.3390/horticulturae4040044 | 2018 | Horticulturae |
DE OLIVEIRA et al. | 10.1007/s12665-018-7411-9 | 2018 | Environmental Earth Sciences |
FUZZO & ROCHA | 10.5935/PAeT.V11.N1.01 | 2018 | Applied Research & Agrotechnology |
MARIANO et al. | 10.1016/j.rse.2018.04.048 | 2018 | Remote Sensing of Environment |
OLIVEIRA et al. | 10.3390/rs10081181 | 2018 | Remote Sensing |
SIQUEIRA et al. | 10.5194/hess-22-4815-2018 | 2018 | Hydrology and Earth System Sciences |
BAKER & SPRACKLEN | 10.3389/ffgc.2019.00047 | 2019 | Frontiers in Forests and Global Change |
BAZAME et al. | 10.1007/s12524-019-01024-3 | 2019 | Journal of the Indian Society of Remote Sensing |
BOSQUILIA et al. | 10.1016/j.ecohyd.2018.11.001 | 2019 | Ecohydrology & Hydrobiology |
BOSQUILIA et al. | 10.1016/j.geoderma.2019.113906 | 2019 | Geoderma |
DA SILVA et al. | 10.1016/j.jag.2019.01.015 | 2019 | International Journal of Applied Earth Observation and Geoinformation |
DE OLIVEIRA et al. | 10.1002/eco.2126 | 2019 | Ecohydrology |
DE PAULA et al. | 10.1590/S1678-3921.pab2019.v54.00739 | 2019 | Pesquisa Agropecuária Brasileira |
DIAS et al. | 10.1080/01431161.2019.1597304 | 2019 | International Journal of Remote Sensing |
FILGUEIRAS et al. | 10.1590/1809-4430-Eng.Agric.v39nep23-32/2019 | 2019 | Engenharia Agrícola |
FILGUEIRAS et al. | 10.15809/irriga.2019v1n1p72-80 | 2019 | Irriga |
MANZIONE & CASTRIGNANÒ | 10.1016/j.scitotenv.2019.133763 | 2019 | Science of the Total Environment |
MOREIRA et al. | 10.1016/j.jhydrol.2019.05.021 | 2019 | Journal of Hydrology |
MOURA et al. | 10.1016/j.scitotenv.2018.09.242 | 2019 | Science of the Total Environment |
MUTTI et al. | 10.1016/j.jag.2018.10.007 | 2019 | International Journal of Applied Earth Observation and Geoinformation |
PACA et al. | 10.1186/s13717-019-0158-8 | 2019 | Ecological Processes |
SILVA et al. | 10.1007/s12665-019-8467-x | 2019 | Environmental Earth Sciences |
SILVA et al. | 10.15809/irriga.2019v1n1p48-55 | 2019 | Irriga |
SILVA et al. | 10.1016/j.envsci.2019.04.006 | 2019 | Environmental Science and Policy |
SOUZA et al. | 10.3390/w11091911 | 2019 | Water (Switzerland) |
TEIXEIRA et al. | 10.1016/j.isprsjprs.2019.07.006 | 2019 | Isprs Journal of Photogrammetry and Remote Sensing |
ALVES et al. | 10.1590/1807-1929/agriambi.v24n12p847-853 | 2020 | Revista Brasileira de Engenharia Agrícola e Ambiental |
ARAUJO et al. | 10.1080/01431161.2019.1688416 | 2020 | International Journal of Remote Sensing |
CAIONI et al. | 10.3390/rs12030525 | 2020 | Remote Sensing |
CUNHA et al. | 10.1016/j.cageo.2019.104341 | 2020 | Computers & Geosciences |
DA ROCHA et al. | 10.3390/atmos11101059 | 2020 | Atmosphere |
DE OLIVEIRA et al. | 10.1016/j.agwat.2020.106037 | 2020 | Agricultural Water Management |
DE OLIVEIRA et al. | 10.3390/agronomy10081112 | 2020 | Agronomy-Basel |
DOS SANTOS et al. | 10.1016/j.jag.2019.101982 | 2020 | International Journal of Applied Earth Observation and Geoinformation |
DOS SANTOS et al. | 10.5433/1679-0359.2020v41n2p435 | 2020 | Semina-Ciencias Agrarias |
FRANCO et al. | 10.1080/02626667.2020.1810252 | 2020 | Hydrological Sciences Journal |
FUZZO et al. | 10.1007/s12145-019-00424-w | 2020 | Earth Science Informatics |
IVO et al. | 10.1016/j.rsase.2020.100342 | 2020 | Remote Sensing Applications-Society and Environment |
JAVADIAN et al. | 10.3390/rs12071221 | 2020 | Remote Sensing |
JOSÉ et al. | 10.1080/10106049.2019.1583777 | 2020 | Geocarto International |
KAFER et al. | 10.1117/1.JRS.14.038504 | 2020 | Journal of Applied Remote Sensing |
LAIPELT et al. | 10.3390/rs12071108 | 2020 | Remote Sensing |
LIMA et al. | 10.1590/1807-1929/agriambi.v24n1p24-30 | 2020 | Revista Brasileira de Engenharia Agrícola e Ambiental |
MACHADO et al. | 10.1016/j.rsase.2020.100373 | 2020 | Remote Sensing Applications: Society and Environment |
MAGNONI et al. | 10.1007/s40899-020-00469-6 | 2020 | Sustainable Water Resources Management |
REBELLO et al. | 10.1016/j.rsase.2020.100294 | 2020 | Remote Sensing Applications-Society and Environment |
SANTOS et al. | 10.3390/rs12223725 | 2020 | Remote Sensing |
SANTOS et al. | 10.1016/j.agwat.2020.106076 | 2020 | Agricultural Water Management |
SARMIENTO et al. | 10.1590/1809-4430-ENG.AGRIC.V40N3P405-412/2020 | 2020 | Engenharia Agrícola |
STAAL et al. | 10.1088/1748-9326/ab738e | 2020 | Environmental Research Letters |
TEIXEIRA et al. | 10.1007/s00484-020-01996-9 | 2020 | International Journal of Biometeorology |
TEIXEIRA et al. | 10.1016/j.rsase.2020.100296 | 2020 | Remote Sensing Applications: Society and Environment |
TITO et al. | 10.1007/s10661-020-08421-z | 2020 | Environmental Monitoring and Assessment |
VENANCIO et al. | 10.1590/1678-992x-2019-0261 | 2020 | Scientia Agricola |
ADORNO et al. | 10.1590/1983-40632021v5165815 | 2021 | Pesquisa Agropecuaria Tropical |
ALCÂNTARA et al. | 10.1002/hyp.14070 | 2021 | Hydrological Processes |
ANGELINI et al. | 10.3390/s21217196 | 2021 | Sensors |
BAKER et al. | 10.5194/hess-25-2279-2021 | 2021 | Hydrology and Earth System Sciences |
BOSQUILIA et al. | 10.15809/irriga.2021v26n3p460-475 | 2021 | Irriga |
BRUNSELL et al. | 10.1007/s00704-020-03435-6 | 2021 | Theoretical and Applied Climatology |
CAVIGLIA-HARRIS et al. | 10.1016/j.worlddev.2021.105607 | 2021 | World Development |
COSTA et al. | 10.5433/1679-0359.2021v42n4p2181 | 2021 | Semina: Ciencias Agrarias |
DE ANDRADE et al. | 10.1016/j.jag.2021.102298 | 2021 | International Journal of Applied Earth Observation and Geoinformation |
DE OLIVEIRA et al. | 10.1029/2020JG005833 | 2021 | Journal of Geophysical Research-Biogeosciences |
DIAS et al. | 10.1371/journal.pone.0245834 | 2021 | Plos One |
GOMES et al. | 10.26848/rbgf.v14.3.p1805-1814 | 2021 | Revista Brasileira De Geografia Física |
JAAFAR & MOURAD | 10.3390/rs13040773 | 2021 | Remote Sensing |
LAIPELT et al. | 10.1016/j.isprsjprs.2021.05.018 | 2021 | Isprs Journal of Photogrammetry and Remote Sensing |
LOPES et al. | 10.15809/irriga.2021v26n3p476-489 | 2021 | Irriga |
MELO et al. | 10.1029/2020WR028752 | 2021 | Water Resources Research |
OLIVEIRA et al. | 10.1016/j.jhydrol.2021.126184 | 2021 | Journal of Hydrology |
RAMPAZO et al. | 10.1007/s12355-020-00919-7 | 2021 | Sugar Tech |
RODRIGUES et al. | 10.1016/j.jhydrol.2021.126473 | 2021 | Journal of Hydrology |
RODRIGUES et al. | 10.1016/j.scitotenv.2021.149059 | 2021 | Science of the Total Environment |
SAATCHI et al. | 10.1016/j.oneear.2021.06.002 | 2021 | One Earth |
SANTAROSA et al. | 10.1007/s12665-021-09382-3 | 2021 | Environmental Earth Sciences |
SILVA et al. | 10.1016/j.jsames.2021.103580 | 2021 | Journal of South American Earth Sciences |
SILVA et al. | 10.1590/1807-1929/agriambi.v25n3p149-155 | 2021 | Revista Brasileira de Engenharia Agrícola e Ambiental |
VILANOVA et al. | 10.1016/j.rsase.2021.100531 | 2021 | Remote Sensing Applications-Society and Environment |
ZHANG et al. | 10.1016/j.scitotenv.2021.147711 | 2021 | Science of the Total Environment |
ZHOU et al. | 10.1016/j.rse.2021.112585 | 2021 | Remote Sensing of Environment |
BARBOSA et al. | 10.1016/j.jhydrol.2022.127503 | 2022 | Journal of Hydrology |
BISPO et al. | 10.1016/j.agwat.2022.107763 | 2022 | Agricultural Water Management |
BIUDES et al. | 10.3390/rs14102482 | 2022 | Remote Sensing |
DA COSTA et al. | 10.1186/s13021-022-00209-7 | 2022 | Carbon Balance and Management |
DA COSTA et al. | 10.1007/s10668-021-01677-6 | 2022 | Environment, Development and Sustainability |
DE MOURA NETO et al. | 10.1016/j.jsames.2022.104084 | 2022 | Journal of South American Earth Sciences |
DE OLIVEIRA et al. | 10.1016/j.scitotenv.2022.155490 | 2022 | Science of the Total Environment |
DE SOUSA et al. | 10.3390/rs14235929 | 2022 | Remote Sensing |
DOS SANTOS et al. | 10.3390/atmos13091518 | 2022 | Atmosphere |
GONÇALVES et al. | 10.1016/j.agwat.2022.107965 | 2022 | Agricultural Water Management |
JARDIM et al. | 10.3390/rs14081911 | 2022 | Remote Sensing |
KAFER et al. | 10.1007/s00704-021-03869-6 | 2022 | Theoretical and Applied Climatology |
KAYSER et al. | 10.1016/j.agrformet.2021.108775 | 2022 | Agricultural and Forest Meteorology |
PACA et al. | 10.3390/rs14051259 | 2022 | Remote Sensing |
PINHEIRO et al. | 10.1117/1.JRS.16.044516 | 2022 | Journal of Applied Remote Sensing |
RIBEIRO et al. | 10.1061/(ASCE)HE.1943-5584.0002183 | 2022 | Journal of Hydrologic Engineering |
RODRIGUES et al. | 10.1111/gcb.16386 | 2022 | Global Change Biology |
RUHOFF et al. | 10.3390/rs14112526 | 2022 | Remote Sensing |
WAGNER et al. | 10.1016/j.agwat.2021.107390 | 2022 | Agricultural Water Management |
References
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Tucci, C.E.M. Hidrologia: Ciência e Aplicação, 4th ed.; University/UFRGS: Porto Alegre, Brazil, 2020; p. 937. [Google Scholar]
- Reth, S.; Perez-Priego, O.; Coners, H.; Nolz, R. Lysimeter. In Springer Handbooks of Atmospheric Measurements; Foken, T., Ed.; Springer Nature: Bayreuth, Germany, 2021; pp. 1569–1584. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration Information Reporting: II. Recommended Documentation. Agric. Water Manag. 2011, 98, 921–929. [Google Scholar] [CrossRef]
- Marengo, J.A.; Souza, C.M.; Thonicke, K.; Burton, C.; Halladay, K.; Betts, R.A.; Alves, L.M.; Soares, W.R. Changes in Climate and Land Use Over the Amazon Region: Current and Future Variability and Trends. Front. Earth Sci. 2018, 6, 228. [Google Scholar] [CrossRef]
- Maeda, E.E.; Ma, X.; Wagner, F.H.; Kim, H.; Oki, T.; Eamus, D.; Huete, A. Evapotranspiration Seasonality across the Amazon Basin. Earth Syst. Dyn. 2017, 8, 439–454. [Google Scholar] [CrossRef]
- Baker, J.C.A.; Spracklen, D.V. Climate Benefits of Intact Amazon Forests and the Biophysical Consequences of Disturbance. Front. For. Glob. Chang. 2019, 2, 47. [Google Scholar] [CrossRef]
- Fassoni-Andrade, A.C.; Fleischmann, A.S.; Papa, F.; de Paiva, R.C.D.; Wongchuig, S.; Melack, J.M.; Moreira, A.A.; Paris, A.; Ruhoff, A.; Barbosa, C.; et al. Amazon Hydrology From Space: Scientific Advances and Future Challenges. Rev. Geophys. 2021, 59, e2020RG000728. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, S.; Zhang, H.; Bai, Y.; Zhang, J. Monitoring Drought Using Composite Drought Indices Based on Remote Sensing. Sci. Total Environ. 2020, 711, 134585. [Google Scholar] [CrossRef]
- Mariano, D.A.; dos Santos, C.A.C.; Wardlow, B.D.; Anderson, M.C.; Schiltmeyer, A.V.; Tadesse, T.; Svoboda, M.D. Use of Remote Sensing Indicators to Assess Effects of Drought and Human-Induced Land Degradation on Ecosystem Health in Northeastern Brazil. Remote Sens. Environ. 2018, 213, 129–143. [Google Scholar] [CrossRef]
- Spera, S.A.; Galford, G.L.; Coe, M.T.; Macedo, M.N.; Mustard, J.F. Land-Use Change Affects Water Recycling in Brazil’s Last Agricultural Frontier. Glob. Chang. Biol. 2016, 22, 3405–3413. [Google Scholar] [CrossRef]
- Jung, H.C.; Getirana, A.; Arsenault, K.R.; Holmes, T.R.H.; McNally, A. Uncertainties in Evapotranspiration Estimates over West Africa. Remote Sens. 2019, 11, 892. [Google Scholar] [CrossRef]
- Saatchi, S.; Longo, M.; Xu, L.; Yang, Y.; Abe, H.; André, M.; Aukema, J.E.; Carvalhais, N.; Cadillo-Quiroz, H.; Cerbu, G.A.; et al. Detecting Vulnerability of Humid Tropical Forests to Multiple Stressors. One Earth 2021, 4, 988–1003. [Google Scholar] [CrossRef]
- Bhattarai, N.; Wagle, P. Recent Advances in Remote Sensing of Evapotranspiration. Remote Sens. 2021, 13, 4260. [Google Scholar] [CrossRef]
- Chen, J.M.; Liu, J. Evolution of Evapotranspiration Models Using Thermal and Shortwave Remote Sensing Data. Remote Sens. Environ. 2020, 237, 111594. [Google Scholar] [CrossRef]
- Angelini, L.P.; Biudes, M.S.; Machado, N.G.; Geli, H.M.E.; Vourlitis, G.L.; Ruhoff, A.; Nogueira, J.d.S. Surface Albedo and Temperature Models for Surface Energy Balance Fluxes and Evapotranspiration Using SEBAL and Landsat 8 over Cerrado-Pantanal, Brazil. Sensors 2021, 21, 7196. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A Remote Sensing Surface Energy Balance Algorithm for Land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Dhungel, S.; Barber, M.E. Estimating Calibration Variability in Evapotranspiration Derived from a Satellite-Based Energy Balance Model. Remote Sens. 2018, 10, 1695. [Google Scholar] [CrossRef]
- Cui, Y.; Song, L.; Fan, W. Generation of Spatio-Temporally Continuous Evapotranspiration and Its Components by Coupling a Two-Source Energy Balance Model and a Deep Neural Network over the Heihe River Basin. J. Hydrol. 2021, 597, 126176. [Google Scholar] [CrossRef]
- Bellvert, J.; Jofre-Ĉekalović, C.; Pelechá, A.; Mata, M.; Nieto, H. Feasibility of Using the Two-Source Energy Balance Model (TSEB) with Sentinel-2 and Sentinel-3 Images to Analyze the Spatio-Temporal Variability of Vine Water Status in a Vineyard. Remote Sens. 2020, 12, 2299. [Google Scholar] [CrossRef]
- Javadian, M.; Behrangi, A.; Smith, W.K.; Fisher, J.B. Global Trends in Evapotranspiration Dominated by Increases across Large Cropland Regions. Remote Sens. 2020, 12, 1221. [Google Scholar] [CrossRef]
- Zhou, D.; Xiao, J.; Frolking, S.; Liu, S.; Zhang, L.; Cui, Y.; Zhou, G. Croplands Intensify Regional and Global Warming According to Satellite Observations. Remote Sens. Environ. 2021, 264, 112585. [Google Scholar] [CrossRef]
- Anderson, M.C.; Zolin, C.A.; Sentelhas, P.C.; Hain, C.R.; Semmens, K.; Tugrul Yilmaz, M.; Gao, F.; Otkin, J.A.; Tetrault, R. The Evaporative Stress Index as an Indicator of Agricultural Drought in Brazil: An Assessment Based on Crop Yield Impacts. Remote Sens. Environ. 2016, 174, 82–99. [Google Scholar] [CrossRef]
- Moreira, A.A.; Ruhoff, A.L.; Roberti, D.R.; de Souza, V.A.; da Rocha, H.R.; de Paiva, R.C.D. Assessment of Terrestrial Water Balance Using Remote Sensing Data in South America. J. Hydrol. 2019, 575, 131–147. [Google Scholar] [CrossRef]
- Laipelt, L.; Henrique Bloedow Kayser, R.; Santos Fleischmann, A.; Ruhoff, A.; Bastiaanssen, W.; Erickson, T.A.; Melton, F. Long-Term Monitoring of Evapotranspiration Using the SEBAL Algorithm and Google Earth Engine Cloud Computing. ISPRS J. Photogramm. Remote Sens. 2021, 178, 81–96. [Google Scholar] [CrossRef]
- Comini de Andrade, B.; Laipelt, L.; Fleischmann, A.; Huntington, J.; Morton, C.; Melton, F.; Erickson, T.; Roberti, D.R.; de Arruda Souza, V.; Biudes, M.; et al. geeSEBAL-MODIS: Continental-Scale Evapotranspiration Based on the Surface Energy Balance for South America. ISPRS J. Photogramm. Remote Sens. 2024, 207, 141–163. [Google Scholar] [CrossRef]
- Staal, A.; Flores, B.M.; Aguiar, A.P.D.; Bosmans, J.H.C.; Fetzer, I.; Tuinenburg, O.A. Feedback between Drought and Deforestation in the Amazon. Environ. Res. Lett. 2020, 15, 044024. [Google Scholar] [CrossRef]
- Caioni, C.; Silvério, D.V.; Macedo, M.N.; Coe, M.T.; Brando, P.M. Droughts Amplify Differences Between the Energy Balance Components of Amazon Forests and Croplands. Remote Sens. 2020, 12, 525. [Google Scholar] [CrossRef]
- Biudes, M.S.; Geli, H.M.E.; Vourlitis, G.L.; Machado, N.G.; Pavão, V.M.; dos Santos, L.O.F.; Querino, C.A.S. Evapotranspiration Seasonality over Tropical Ecosystems in Mato Grosso, Brazil. Remote Sens. 2022, 14, 2482. [Google Scholar] [CrossRef]
- Nóbrega, R.L.B.; Guzha, A.C.; Torres, G.N.; Kovacs, K.; Lamparter, G.; Amorim, R.S.S.; Couto, E.; Gerold, G. Effects of Conversion of Native Cerrado Vegetation to Pasture on Soil Hydro-Physical Properties, Evapotranspiration and Streamflow on the Amazonian Agricultural Frontier. PLoS ONE 2017, 12, e0179414. [Google Scholar] [CrossRef]
- da Paca, V.H.M.; Espinoza-Dávalos, G.E.; Hessels, T.M.; Moreira, D.M.; Comair, G.F.; Bastiaanssen, W.G.M. The Spatial Variability of Actual Evapotranspiration across the Amazon River Basin Based on Remote Sensing Products Validated with Flux Towers. Ecol. Process. 2019, 8, 6. [Google Scholar] [CrossRef]
- Santos, A.B.; Heil Costa, M.; Chartuni Mantovani, E.; Boninsenha, I.; Castro, M. A Remote Sensing Diagnosis of Water Use and Water Stress in a Region with Intense Irrigation Growth in Brazil. Remote Sens. 2020, 12, 3725. [Google Scholar] [CrossRef]
- Silva Oliveira, B.; Caria Moraes, E.; Carrasco-Benavides, M.; Bertani, G.; Augusto Verola Mataveli, G. Improved Albedo Estimates Implemented in the METRIC Model for Modeling Energy Balance Fluxes and Evapotranspiration over Agricultural and Natural Areas in the Brazilian Cerrado. Remote Sens. 2018, 10, 1181. [Google Scholar] [CrossRef]
- de Teixeira, A.H.C.; de Miranda, F.R.; Leivas, J.F.; Pacheco, E.P.; Garçon, E.A.M. Water Productivity Assessments for Dwarf Coconut by Using Landsat 8 Images and Agrometeorological Data. ISPRS J. Photogramm. Remote Sens. 2019, 155, 150–158. [Google Scholar] [CrossRef]
- Bosquilia, R.W.D.; Neale, C.M.U.; Duarte, S.N.; Longhi, S.J.; de Ferraz, S.F.B.; Muller-Karger, F.E.; McCarthy, M.J. Evaluation of Evapotranspiration Variations as a Function of Relief and Terrain Exposure through Multivariate Statistical Analysis. Ecohydrol. Hydrobiol. 2019, 19, 307–315. [Google Scholar] [CrossRef]
- Khand, K.; Numata, I.; Kjaersgaard, J.; Vourlitis, G.L. Dry Season Evapotranspiration Dynamics over Human-Impacted Landscapes in the Southern Amazon Using the Landsat-Based METRIC Model. Remote Sens. 2017, 9, 706. [Google Scholar] [CrossRef]
- Melo, D.C.D.; Anache, J.A.A.; Borges, V.P.; Miralles, D.G.; Martens, B.; Fisher, J.B.; Nóbrega, R.L.B.; Moreno, A.; Cabral, O.M.R.; Rodrigues, T.R.; et al. Are Remote Sensing Evapotranspiration Models Reliable Across South American Ecoregions? Water Resour. Res. 2021, 57, e2020WR028752. [Google Scholar] [CrossRef]
- da Paca, V.H.M.; Espinoza-Dávalos, G.E.; da Silva, R.; Tapajós, R.; dos Santos Gaspar, A.B. Remote Sensing Products Validated by Flux Tower Data in Amazon Rain Forest. Remote Sens. 2022, 14, 1259. [Google Scholar] [CrossRef]
- Ruhoff, A.; de Andrade, B.C.; Laipelt, L.; Fleischmann, A.S.; Siqueira, V.A.; Moreira, A.A.; Barbedo, R.; Cyganski, G.L.; Fernandez, G.M.R.; Brêda, J.P.L.F.; et al. Global Evapotranspiration Datasets Assessment Using Water Balance in South America. Remote Sens. 2022, 14, 2526. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Hood, W.W.; Wilson, C.S. The Literature of Bibliometrics, Scientometrics, and Informetrics. Scientometrics 2001, 52, 291–314. [Google Scholar] [CrossRef]
- Mingers, J.; Leydesdorff, L. A Review of Theory and Practice in Scientometrics. Eur. J. Oper. Res. 2015, 246, 1–19. [Google Scholar] [CrossRef]
- Bezak, N.; Mikoš, M.; Borrelli, P.; Alewell, C.; Alvarez, P.; Anache, J.A.A.; Baartman, J.; Ballabio, C.; Biddoccu, M.; Cerdà, A.; et al. Soil Erosion Modelling: A Bibliometric Analysis. Environ. Res. 2021, 197, 111087. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.C.; Zolin, C.A.; Hain, C.R.; Semmens, K.; Tugrul Yilmaz, M.; Gao, F. Comparison of Satellite-Derived LAI and Precipitation Anomalies over Brazil with a Thermal Infrared-Based Evaporative Stress Index for 2003–2013. J. Hydrol. 2015, 526, 287–302. [Google Scholar] [CrossRef]
- Pereira, G.; Silva, M.E.S.; Moraes, E.C.; Chiquetto, J.B.; da Silva Cardozo, F. Improving Precipitation Simulation from Updated Surface Characteristics in South America. Theor Appl Clim. 2017, 129, 521–538. [Google Scholar] [CrossRef]
- Zemp, D.C.; Schleussner, C.-F.; Barbosa, H.M.J.; Rammig, A. Deforestation Effects on Amazon Forest Resilience. Geophys. Res. Lett. 2017, 44, 6182–6190. [Google Scholar] [CrossRef]
- Siqueira, V.A.; Paiva, R.C.D.; Fleischmann, A.S.; Fan, F.M.; Ruhoff, A.L.; Pontes, P.R.M.; Paris, A.; Calmant, S.; Collischonn, W. Toward Continental Hydrologic–Hydrodynamic Modeling in South America. Hydrol. Earth Syst. Sci. 2018, 22, 4815–4842. [Google Scholar] [CrossRef]
- Getirana, A. Extreme Water Deficit in Brazil Detected from Space. J. Hydrometeorol. 2016, 17, 591–599. [Google Scholar] [CrossRef]
- Bazame, H.C.; Althoff, D.; Filgueiras, R.; Calijuri, M.L.; Oliveira, J.C. de Modeling the Net Primary Productivity: A Study Case in the Brazilian Territory. J. Indian Soc. Remote Sens. 2019, 47, 1727–1735. [Google Scholar] [CrossRef]
- Dias, S.H.B.; Filgueiras, R.; Filho, E.I.F.; Arcanjo, G.S.; da Silva, G.H.; Mantovani, E.C.; Cunha, F.F. da Reference Evapotranspiration of Brazil Modeled with Machine Learning Techniques and Remote Sensing. PLoS ONE 2021, 16, e0245834. [Google Scholar] [CrossRef] [PubMed]
- Cunha, J.; Pereira, T.E.; Pereira, E.; Rufino, I.; Galvão, C.; Valente, F.; Brasileiro, F. A High-Throughput Shared Service to Estimate Evapotranspiration Using Landsat Imagery. Comput. Geosci. 2020, 134, 104341. [Google Scholar] [CrossRef]
- de Oliveira, M.L.; dos Santos, C.A.C.; de Oliveira, G.; Silva, M.T.; da Silva, B.B.; de Cunha, J.E.B.L.; Ruhoff, A.; Santos, C.A.G. Remote Sensing-Based Assessment of Land Degradation and Drought Impacts over Terrestrial Ecosystems in Northeastern Brazil. Sci. Total Environ. 2022, 835, 155490. [Google Scholar] [CrossRef]
- Rebello, V.P.A.; Getirana, A.; Rotunno Filho, O.C.; Lakshmi, V. Spatiotemporal Vegetation Response to Extreme Droughts in Eastern Brazil. Remote Sens. Appl. Soc. Environ. 2020, 18, 100294. [Google Scholar] [CrossRef]
- Rampazo, N.A.M.; Picoli, M.C.A.; De Castro Teixeira, A.H.; Cavaliero, C.K.N. Water Consumption Modeling by Coupling MODIS Images and Agrometeorological Data for Sugarcane Crops. Sugar. Tech. 2021, 23, 524–535. [Google Scholar] [CrossRef]
- de Oliveira, J.V.; da Ferreira, D.B.S.; Sahoo, P.K.; Sodré, G.R.C.; de Souza, E.B.; Queiroz, J.C.B. Differences in Precipitation and Evapotranspiration between Forested and Deforested Areas in the Amazon Rainforest Using Remote Sensing Data. Environ. Earth Sci. 2018, 77, 239. [Google Scholar] [CrossRef]
- da Silva Junior, C.A.; de Costa, G.M.; Rossi, F.S.; do Vale, J.C.E.; de Lima, R.B.; Lima, M.; de Oliveira-Junior, J.F.; Teodoro, P.E.; Santos, R.C. Remote Sensing for Updating the Boundaries between the Brazilian Cerrado-Amazonia Biomes. Environ. Sci. Policy 2019, 101, 383–392. [Google Scholar] [CrossRef]
- de Andrade, B.C.C.; de Andrade Pinto, E.J.; Ruhoff, A.; Senay, G.B. Remote Sensing-Based Actual Evapotranspiration Assessment in a Data-Scarce Area of Brazil: A Case Study of the Urucuia Aquifer System. Int. J. Appl. Earth Obs. Geoinf. 2021, 98, 102298. [Google Scholar] [CrossRef]
- Rodrigues, A.A.; Macedo, M.N.; Silvério, D.V.; Maracahipes, L.; Coe, M.T.; Brando, P.M.; Shimbo, J.Z.; Rajão, R.; Soares-Filho, B.; Bustamante, M.M.C. Cerrado Deforestation Threatens Regional Climate and Water Availability for Agriculture and Ecosystems. Glob. Chang. Biol. 2022, 28, 6807–6822. [Google Scholar] [CrossRef] [PubMed]
- Loarie, S.R.; Lobell, D.B.; Asner, G.P.; Mu, Q.; Field, C.B. Direct Impacts on Local Climate of Sugar-Cane Expansion in Brazil. Nat. Clim. Chang. 2011, 1, 105–109. [Google Scholar] [CrossRef]
- Oliveira, P.T.S.; Nearing, M.A.; Moran, M.S.; Goodrich, D.C.; Wendland, E.; Gupta, H.V. Trends in Water Balance Components across the Brazilian Cerrado. Water Resour. Res. 2014, 50, 7100–7114. [Google Scholar] [CrossRef]
- Arantes, A.E.; Ferreira, L.G.; Coe, M.T. The Seasonal Carbon and Water Balances of the Cerrado Environment of Brazil: Past, Present, and Future Influences of Land Cover and Land Use. ISPRS J. Photogramm. Remote Sens. 2016, 117, 66–78. [Google Scholar] [CrossRef]
- Käfer, P.S.; da Rocha, N.S.; Diaz, L.R.; Kaiser, E.A.; Santos, D.C.; Veeck, G.P.; Robérti, D.R.; Rolim, S.B.A.; Oliveira, G.G. de Artificial Neural Networks Model Based on Remote Sensing to Retrieve Evapotranspiration over the Brazilian Pampa. J. Appl. Remote Sens. 2020, 14, 038504. [Google Scholar] [CrossRef]
- Käfer, P.S.; da Rocha, N.S.; Veeck, G.P.; Diaz, L.R.; da Costa, S.T.L.; Kaiser, E.A.; Roberti, D.R.; Rolim, S.B.A. Assessing Uncertainties in Estimating Surface Energy Fluxes from Remote Sensing over Natural Grasslands in Brazil. Theor. Appl. Clim. 2022, 148, 751–765. [Google Scholar] [CrossRef]
- Kayser, R.H.; Ruhoff, A.; Laipelt, L.; de Kich, E.M.; Roberti, D.R.; de Souza, V.A.; Rubert, G.C.D.; Collischonn, W.; Neale, C.M.U. Assessing geeSEBAL Automated Calibration and Meteorological Reanalysis Uncertainties to Estimate Evapotranspiration in Subtropical Humid Climates. Agric. For. Meteorol. 2022, 314, 108775. [Google Scholar] [CrossRef]
- da Rocha, N.S.; Käfer, P.S.; Skokovic, D.; Veeck, G.; Diaz, L.R.; Kaiser, E.A.; Carvalho, C.M.; Cruz, R.C.; Sobrino, J.A.; Roberti, D.R.; et al. The Influence of Land Surface Temperature in Evapotranspiration Estimated by the S-SEBI Model. Atmosphere 2020, 11, 1059. [Google Scholar] [CrossRef]
- Vergopolan, N.; Fisher, J.B. The Impact of Deforestation on the Hydrological Cycle in Amazonia as Observed from Remote Sensing. Int. J. Remote Sens. 2016, 37, 5412–5430. [Google Scholar] [CrossRef]
- Penatti, N.C.; de Almeida, T.I.R.; Ferreira, L.G.; Arantes, A.E.; Coe, M.T. Satellite-Based Hydrological Dynamics of the World’s Largest Continuous Wetland. Remote Sens. Environ. 2015, 170, 1–13. [Google Scholar] [CrossRef]
- de Teixeira, A.H.C.; Padovani, C.R.; Andrade, R.G.; Leivas, J.F.; Victoria, D.D.C.; Galdino, S. Use of MODIS Images to Quantify the Radiation and Energy Balances in the Brazilian Pantanal. Remote Sens. 2015, 7, 14597–14619. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Brito, R.A.L.; Bos, M.G.; Souza, R.A.; Cavalcanti, E.B.; Bakker, M.M. Low Cost Satellite Data for Monthly Irrigation Performance Monitoring: Benchmarks from Nilo Coelho, Brazil. Irrig. Drain. Syst. 2001, 15, 53–79. [Google Scholar] [CrossRef]
- Budowski, G. Scientific Imperialism. Sci. Public Policy 1975, 2, 354–360. [Google Scholar] [CrossRef]
- Malhado, A.C.M.; de Azevedo, R.S.D.; Todd, P.A.; Santos, A.M.C.; Fabré, N.N.; Batista, V.S.; Aguiar, L.J.G.; Ladle, R.J. Geographic and Temporal Trends in Amazonian Knowledge Production. Biotropica 2014, 46, 6–13. [Google Scholar] [CrossRef]
- Plataforma Sucupira. Available online: https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/programa/quantitativos/quantitativoIes.jsf?areaAvaliacao=49&areaConhecimento=90500008 (accessed on 18 December 2023).
- Côco, D.; Amaral, L. Políticas públicas para redução de assimetrias e a pós-graduação na Região da Amazônia Legal/Brasil. Res. Soc. Dev. 2021, 10, e26101421598. [Google Scholar] [CrossRef]
- McManus, C.; Baeta Neves, A.A. Funding Research in Brazil. Scientometrics 2021, 126, 801–823. [Google Scholar] [CrossRef]
- Schwartzman, S. Pesquisa e Pós-Graduação no Brasil: Duas faces da mesma moeda? Estud. Av. 2022, 36, 227–254. [Google Scholar] [CrossRef]
- da Silva, H.J.F.; Gonçalves, W.A.; Bezerra, B.G. Comparative Analyzes and Use of Evapotranspiration Obtained through Remote Sensing to Identify Deforested Areas in the Amazon. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 163–174. [Google Scholar] [CrossRef]
- de Oliveira, G.; Chen, J.M.; Mataveli, G.A.V.; Chaves, M.E.D.; Rao, J.; Sternberg, M.; dos Santos, T.V.; dos Santos, C.A.C. Evapotranspiration and Precipitation over Pasture and Soybean Areas in the Xingu River Basin, an Expanding Amazonian Agricultural Frontier. Agronomy 2020, 10, 1112. [Google Scholar] [CrossRef]
- Numata, I.; Khand, K.; Kjaersgaard, J.; Cochrane, M.A.; Silva, S.S. Evaluation of Landsat-Based METRIC Modeling to Provide High-Spatial Resolution Evapotranspiration Estimates for Amazonian Forests. Remote Sens. 2017, 9, 46. [Google Scholar] [CrossRef]
- de Oliveira, V.A.; de Mello, C.R.; Beskow, S.; Viola, M.R.; Srinivasan, R. Modeling the Effects of Climate Change on Hydrology and Sediment Load in a Headwater Basin in the Brazilian Cerrado Biome. Ecol. Eng. 2019, 133, 20–31. [Google Scholar] [CrossRef]
- Overbeck, G.E.; Vélez-Martin, E.; Scarano, F.R.; Lewinsohn, T.M.; Fonseca, C.R.; Meyer, S.T.; Müller, S.C.; Ceotto, P.; Dadalt, L.; Durigan, G.; et al. Conservation in Brazil Needs to Include Non-Forest Ecosystems. Divers. Distrib. 2015, 21, 1455–1460. [Google Scholar] [CrossRef]
- MapBiomas MBI-Infograficos-7.1-Cerrado-BR. Available online: https://mapbiomas-br-site.s3.amazonaws.com/Infograficos/Cole%C3%A7%C3%A3o%207.1/MBI-Infograficos-7.1-cerrado-BR.jpg (accessed on 18 December 2023).
- Hunke, P.; Mueller, E.N.; Schröder, B.; Zeilhofer, P. The Brazilian Cerrado: Assessment of Water and Soil Degradation in Catchments under Intensive Agricultural Use. Ecohydrology 2015, 8, 1154–1180. [Google Scholar] [CrossRef]
- Santos, J.E.O.; da Cunha, F.F.; Filgueiras, R.; da Silva, G.H.; de Castro Teixeira, A.H.; dos Santos Silva, F.C.; Sediyama, G.C. Performance of SAFER Evapotranspiration Using Missing Meteorological Data. Agric. Water Manag. 2020, 233, 106076. [Google Scholar] [CrossRef]
- da Silva, D.C.; Lopes, P.M.O.; da Silva, M.V.; de Moura, G.B.A.; Nascimento, C.R.; Brito, J.I.B.; de França e Silva, Ê.F.; Rolim, M.M.; de Lima, R.P. Principal Component Analysis and Biophysical Parameters in the Assessment of Soil Salinity in the Irrigated Perimeter of Bahia, Brazil. J. S. Am. Earth Sci. 2021, 112, 103580. [Google Scholar] [CrossRef]
- Pinheiro, J.R.; Biudes, M.S.; Machado, N.G.; Junior, A.L.P.; Santos, L.O.F. dos Effect of Urbanization on Energy Balance and Evapotranspiration in an Amazon–Cerrado Transition Region in Brazil. JARS 2022, 16, 044516. [Google Scholar] [CrossRef]
- de Teixeira, A.H.C. Determining Regional Actual Evapotranspiration of Irrigated Crops and Natural Vegetation in the São Francisco River Basin (Brazil) Using Remote Sensing and Penman-Monteith Equation. Remote Sens. 2010, 2, 1287–1319. [Google Scholar] [CrossRef]
- Meneses, P.; Almeida, T. Introdução Ao Processemento de Imagens de Sensoriamento Remoto; Universidade de Brasília: Brasília, Brazil, 2012. [Google Scholar]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Gao, B. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Lima, J.G.A.; Sánchez, J.M.; Piqueras, J.G.; Espínola Sobrinho, J.; Viana, P.C.; da Alves, A.S. Evapotranspiration of Sorghum from the Energy Balance by METRIC and STSEB. Rev. Bras. Eng. Agríc. Ambient. 2019, 24, 24–30. [Google Scholar] [CrossRef]
- dos Santos, C.A.; Mariano, D.A.; Francisco das Chagas, A.; Dantas, F.R.D.C.; de Oliveira, G.; Silva, M.T.; da Silva, L.L.; da Silva, B.B.; Bezerra, B.G.; Safa, B.; et al. Spatio-Temporal Patterns of Energy Exchange and Evapotranspiration during an Intense Drought for Drylands in Brazil. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 101982. [Google Scholar] [CrossRef]
- Baker, J.C.A.; Garcia-Carreras, L.; Gloor, M.; Marsham, J.H.; Buermann, W.; da Rocha, H.R.; Nobre, A.D.; de Araujo, A.C.; Spracklen, D.V. Evapotranspiration in the Amazon: Spatial Patterns, Seasonality, and Recent Trends in Observations, Reanalysis, and Climate Models. Hydrol. Earth Syst. Sci. 2021, 25, 2279–2300. [Google Scholar] [CrossRef]
- Rodell, M.; McWilliams, E.B.; Famiglietti, J.S.; Beaudoing, H.K.; Nigro, J. Estimating Evapotranspiration Using an Observation Based Terrestrial Water Budget. Hydrol. Process. 2011, 25, 4082–4092. [Google Scholar] [CrossRef]
ID No. | CN * | DOI | Source | Authors | Year | Citations |
---|---|---|---|---|---|---|
1 | 38.0 | 10.1111/gcb.13298 | GLOB. CHANG. BIOL. | SPERA S., et al. | 2016 | 228 |
2 | 34.5 | 10.1088/1748-9326/ab738e | ENVIRON. RES. LETT. | STAAL A., et al. | 2020 | 69 |
3 | 32.7 | 10.1016/j.rse.2015.11.034 | REMOTE SENS. ENVIRON. | ANDERSON M., et al. | 2016 | 196 |
4 | 32.0 | 10.1016/j.isprsjprs.2021.05.018 | ISPRS J. PHOTOGRAMM. REMOTE SENS. | LAIPELT L., et al. | 2021 | 32 |
5 | 28.5 | 10.1016/j.rse.2018.04.048 | REMOTE SENS. ENVIRON. | MARIANO D., et al. | 2018 | 114 |
6 | 21.0 | 10.1016/j.rse.2021.112585 | REMOTE SENS. ENVIRON. | ZHOU D., et al. | 2021 | 21 |
7 | 18.0 | 10.1186/s13717-019-0158-8 | ECOL. PROCESSES. | PACA V., et al. | 2019 | 54 |
8 | 17.8 | 10.5194/hess-22-4815-2018 | HYDROL. EARTH SYST. SC. | SIQUEIRA V., et al. | 2018 | 71 |
9 | 17.7 | 10.1175/JHM-D-15-0096.1 | J. HYDROMETEOROL. | GETIRANA A. | 2016 | 106 |
10 | 17.1 | 10.1038/nclimate1067 | NAT. CLIM. CHANGE. | LOARIE S., et al. | 2011 | 188 |
11 | 16.0 | 10.5194/hess-25-2279-2021 | HYDROL. EARTH SYST. SC. | BAKER J., et al. | 2021 | 16 |
12 | 15.8 | 10.1002/2013WR015202 | WATER RESOUR. RES. | OLIVEIRA P., et al. | 2014 | 126 |
13 | 15.0 | 10.1016/j.oneear.2021.06.002 | ONE EARTH | SAATCHI S., et al. | 2021 | 15 |
14 | 14.5 | 10.1016/j.jag.2019.101982 | INT. J. APPL. EARTH OBS. GEOINFORM. | DOS SANTOS C., et al. | 2020 | 29 |
15 | 13.8 | 10.1002/2017GL072955 | GEOPHYS. RES. LETT. | ZEMP D., et al. | 2017 | 69 |
16 | 13.7 | 10.1016/j.jhydrol.2019.05.021 | J. HYDROL. | MOREIRA A., et al. | 2019 | 41 |
17 | 13.0 | 10.3390/rs13040 773 | REMOTE SENS. | JAAFAR H., et al. | 2021 | 13 |
18 | 12.5 | 10.1016/j.agrformet.2008.09.016 | AGRIC. FOR. METEROL. | TEIXEIRA A., et al. | 2009 | 162 |
19 | 12.1 | 10.1080/02626667.2013.837578 | HYDROL. SCI. J. | RUHOFF A., et al. | 2013 | 109 |
20 | 12.0 | 10.1016/j.jhydrol.2021.126184 | J. HYDROL. | OLIVEIRA A., et al. | 2021 | 12 |
21 | 12.0 | 10.3390/rs14081911 | REMOTE SENS. | JARDIM A., et al. | 2022 | 12 |
22 | 11.3 | 10.1016/j.scitotenv.2018.09.242 | SCI. TOTAL ENVIRON. | MOURA M., et al. | 2019 | 34 |
23 | 10.7 | 10.3389/ffgc.2019.00047 | FRONT. FOR GLOB. CHANG. | BAKER J., et al. | 2019 | 32 |
24 | 10.6 | 10.1371/journal.pone.0179414 | PLOS ONE | NÓBREGA R., et al. | 2017 | 53 |
25 | 10.5 | 10.3390/rs12071221 | REMOTE SENS. | JAVADIAN M., et al. | 2020 | 21 |
26 | 10.3 | 10.1016/j.envsci.2019.04.006 | ENVIRON. SCI. POLICY | SILVA JUNIOR C., et al. | 2019 | 31 |
BIOME | AFFILIATION | BIOME | AFFILIATION |
---|---|---|---|
Mata Atlântica | University of São Paulo | Cerrado | University of São Paulo |
State University Paulista “Júlio de Mesquita Filho” | Federal University of Viçosa | ||
University of Nebraska | Federal University of Mato Grosso | ||
Federal University of Rio Grande do Sul | State University Paulista “Júlio de Mesquita Filho” | ||
Federal Technological University of Paraná | University of Nebraska | ||
Federal University of Sergipe | Federal University of Goiás | ||
University Florida | Federal Institute of Mato Grosso | ||
National Institute for Space Research | Federal Rural University of Amazonas | ||
Federal University of Paraíba | Embrapa Cerrados | ||
University of Campinas | Institute of Technological Research | ||
Federal University of Campina Grande | Federal University of Lavras | ||
Federal University of Pernambuco | University of Brasília | ||
Caatinga | State University Paulista “Júlio de Mesquita Filho” | National Institute for Space Research | |
Federal University of Ceará | University of Maryland | ||
Federal University of Campina Grande | Federal University of Amazonas | ||
Embrapa Coastal Tablelands | State University of Campinas | ||
Federal Rural University of Pernambuco | University California Irvine | ||
Federal University of Viçosa | Amazon | National Institute for Space Research | |
Federal University of Sergipe | University Exeter | ||
Federal Rural University of Semi-Árido | Federal University of Mato Grosso | ||
Federal Institute of Ceará | South Dakota State University | ||
Federal University of Rio Grande Do Norte | University of Leeds | ||
Federal University of Alagoas | Federal Rural University of Rio de Janeiro | ||
National Institute of The Semi-Árido | Federal University of Campina Grande | ||
Pampa | Federal University of Santa Maria | Federal University of Rondônia | |
Federal University of Rio Grande do Sul | Oklahoma State University | ||
University of Kansas | |||
Pantanal | Federal University of Mato Grosso | University Toronto |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castagna, D.; Barbosa, L.S.; Martim, C.C.; Paulista, R.S.D.; Machado, N.G.; Biudes, M.S.; de Souza, A.P. Evapotranspiration Assessment by Remote Sensing in Brazil with Focus on Amazon Biome: Scientometric Analysis and Perspectives for Applications in Agro-Environmental Studies. Hydrology 2024, 11, 39. https://doi.org/10.3390/hydrology11030039
Castagna D, Barbosa LS, Martim CC, Paulista RSD, Machado NG, Biudes MS, de Souza AP. Evapotranspiration Assessment by Remote Sensing in Brazil with Focus on Amazon Biome: Scientometric Analysis and Perspectives for Applications in Agro-Environmental Studies. Hydrology. 2024; 11(3):39. https://doi.org/10.3390/hydrology11030039
Chicago/Turabian StyleCastagna, Daniela, Luzinete Scaunichi Barbosa, Charles Campoe Martim, Rhavel Salviano Dias Paulista, Nadja Gomes Machado, Marcelo Sacardi Biudes, and Adilson Pacheco de Souza. 2024. "Evapotranspiration Assessment by Remote Sensing in Brazil with Focus on Amazon Biome: Scientometric Analysis and Perspectives for Applications in Agro-Environmental Studies" Hydrology 11, no. 3: 39. https://doi.org/10.3390/hydrology11030039
APA StyleCastagna, D., Barbosa, L. S., Martim, C. C., Paulista, R. S. D., Machado, N. G., Biudes, M. S., & de Souza, A. P. (2024). Evapotranspiration Assessment by Remote Sensing in Brazil with Focus on Amazon Biome: Scientometric Analysis and Perspectives for Applications in Agro-Environmental Studies. Hydrology, 11(3), 39. https://doi.org/10.3390/hydrology11030039