Temporal Variations in Temperature and Moisture Soil Profiles in a Mediterranean Maquis Forest in Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Processing
2.2.1. Air Temperature and Precipitation Data
2.2.2. Soil Moisture and Soil Temperature Data
2.2.3. Soil Sampling and Analysis
3. Results and Discussion
3.1. Soil Texture, Nutrient Status and Soil Hydraulic Properties
3.2. Temporal Variations of Air Temperature
3.3. Precipitation Variations and Characteristics
3.4. Temporal Variations of Soil Temperature
3.5. Temporal Variations in Soil Moisture
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berthet, L.; Andréassian, V.; Perrin, C.; Javelle, P. How crucial is it to account for the antecedent moisture conditions in flood forecasting? Comparison of event-based and continuous approaches on 178 catchments. Hydrol. Earth Syst. Sci. 2009, 13, 819–831. [Google Scholar] [CrossRef] [Green Version]
- Peel, M.C.; McMahon, T.A. Historical development of rainfall-runoff modeling. Wiley Interdiscip. Rev. Water 2020, 7, e1471. [Google Scholar] [CrossRef]
- Blöschl, G.; Bierkens, M.F.; Chambel, A.; Cudennec, C.; Destouni, G.; Fiori, A.; Kirchner, J.W.; McDonnell, J.J.; Savenije, H.H.; Sivapalan, M. Twenty-three unsolved problems in hydrology (UPH)—A community perspective. Hydrol. Sci. J. 2019, 64, 1141–1158. [Google Scholar] [CrossRef] [Green Version]
- Vergarechea, M.; del Río, M.; Gordo, J.; Martín, R.; Cubero, D.; Calama, R. Spatio-temporal variation of natural regeneration in Pinus pinea and Pinus pinaster Mediterranean forests in Spain. Eur. J. For. Res. 2019, 138, 313–326. [Google Scholar] [CrossRef]
- Bruijnzeel, L.A. Hydrological functions of tropical forests: Not seeing the soil for the trees? Agric. Ecosyst. Environ. 2004, 104, 185–228. [Google Scholar] [CrossRef]
- Chen, S.; Wen, Z.; Jiang, H.; Zhao, Q.; Zhang, X.; Chen, Y. Temperature vegetation dryness index estimation of soil moisture under different tree species. Sustainability 2015, 7, 11401–11417. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Hao, Z.; Zhang, J.; Lian, J.; Li, B.; Ye, J.; Yao, X. Tree size distributions in an old-growth temperate forest. Oikos 2009, 118, 25–36. [Google Scholar] [CrossRef]
- Levia, D.F.; Nanko, K.; Amasaki, H.; Giambelluca, T.W.; Hotta, N.; Iida, S.i.; Mudd, R.G.; Nullet, M.A.; Sakai, N.; Shinohara, Y. Throughfall partitioning by trees. Hydrol. Process. 2019, 33, 1698–1708. [Google Scholar] [CrossRef] [Green Version]
- Limousin, J.-M.; Rambal, S.; Ourcival, J.-M.; Joffre, R. Modelling rainfall interception in a Mediterranean Quercus ilex ecosystem: Lesson from a throughfall exclusion experiment. J. Hydrol. 2008, 357, 57–66. [Google Scholar] [CrossRef]
- Llorens, P.; Poch, R.; Latron, J.; Gallart, F. Rainfall interception by a Pinus sylvestris forest patch overgrown in a Mediterranean mountainous abandoned area I. Monitoring design and results down to the event scale. J. Hydrol. 1997, 199, 331–345. [Google Scholar] [CrossRef]
- Qian, Y.; Shi, C.; Zhao, T.; Lu, J.; Bi, B.; Luo, G. Canopy Interception of Different Rainfall Patterns in the Rocky Mountain Areas of Northern China: An Application of the Revised Gash Model. Forests 2022, 13, 1666. [Google Scholar] [CrossRef]
- Sun, F.; Lü, Y.; Wang, J.; Hu, J.; Fu, B. Soil moisture dynamics of typical ecosystems in response to precipitation: A monitoring-based analysis of hydrological service in the Qilian Mountains. Catena 2015, 129, 63–75. [Google Scholar] [CrossRef]
- Brocca, L.; Morbidelli, R.; Melone, F.; Moramarco, T. Soil moisture spatial variability in experimental areas of central Italy. J. Hydrol. 2007, 333, 356–373. [Google Scholar] [CrossRef]
- Silva, B.M.; Silva, S.H.G.; Oliveira, G.C.d.; Peters, P.H.C.R.; Santos, W.J.R.d.; Curi, N. Soil moisture assessed by digital mapping techniques and its field validation. Ciência E Agrotecnol. 2014, 38, 140–148. [Google Scholar] [CrossRef] [Green Version]
- Albergel, C.; De Rosnay, P.; Gruhier, C.; Muñoz-Sabater, J.; Hasenauer, S.; Isaksen, L.; Kerr, Y.; Wagner, W. Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. Remote Sens. Environ. 2012, 118, 215–226. [Google Scholar] [CrossRef]
- Vereecken, H.; Huisman, J.; Pachepsky, Y.; Montzka, C.; Van Der Kruk, J.; Bogena, H.; Weihermüller, L.; Herbst, M.; Martinez, G.; Vanderborght, J. On the spatio-temporal dynamics of soil moisture at the field scale. J. Hydrol. 2014, 516, 76–96. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, J.; Wu, J.; Zhao, L.; Liu, M.; Lü, A.; Wu, Z. Comparison of remotely sensed and meteorological data-derived drought indices in mid-eastern China. Int. J. Remote Sens. 2012, 33, 1755–1779. [Google Scholar] [CrossRef]
- Kumar, M.; Denis, D.M.; Singh, S.K.; Szabó, S.; Suryavanshi, S. Landscape metrics for assessment of land cover change and fragmentation of a heterogeneous watershed. Remote Sens. Appl. Soc. Environ. 2018, 10, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Beltrami, H.; Ferguson, G.; Harris, R.N. Long-term tracking of climate change by underground temperatures. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Dawes, W.; Walker, G. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Sławiński, C.; Sobczuk, H. Soil–Plant–Atmosphere Continuum. In Encyclopedia of Agrophysics; Encyclopedia of Earth Sciences Series; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Søe, A.R.; Buchmann, N. Spatial and temporal variations in soil respiration in relation to stand structure and soil parameters in an unmanaged beech forest. Tree Physiol. 2005, 25, 1427–1436. [Google Scholar] [CrossRef] [PubMed]
- Davidson, E.A.; Janssens, I.A.; Luo, Y. On the variability of respiration in terrestrial ecosystems: Moving beyond Q10. Glob. Chang. Biol. 2006, 12, 154–164. [Google Scholar] [CrossRef]
- Costa, A.; Madeira, M.; Santos, J.L.; Oliveira, Â. Change and dynamics in Mediterranean evergreen oak woodlands landscapes of Southwestern Iberian Peninsula. Landsc. Urban Plan. 2011, 102, 164–176. [Google Scholar] [CrossRef]
- Oogathoo, S.; Houle, D.; Duchesne, L.; Kneeshaw, D. Evaluation of simulated soil moisture and temperature for a Canadian boreal forest. Agric. For. Meteorol. 2022, 323, 109078. [Google Scholar] [CrossRef]
- Conant, R.T.; Dalla-Betta, P.; Klopatek, C.C.; Klopatek, J.M. Controls on soil respiration in semiarid soils. Soil Biol. Biochem. 2004, 36, 945–951. [Google Scholar] [CrossRef]
- Lloyd, J.; Taylor, J. On the temperature dependence of soil respiration. Funct. Ecol. 1994, 8, 315–323. [Google Scholar] [CrossRef]
- Qi, J.; Zhang, X.; Cosh, M.H. Modeling soil temperature in a temperate region: A comparison between empirical and physically based methods in SWAT. Ecol. Eng. 2019, 129, 134–143. [Google Scholar] [CrossRef]
- Hu, Q.; Feng, S. How have soil temperatures been affected by the surface temperature and precipitation in the Eurasian continent? Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, N.; Ma, Z.; Huang, Y. Understanding the soil temperature variability at different depths: Effects of surface air temperature, snow cover, and the soil memory. Adv. Atmos. Sci. 2021, 38, 493–503. [Google Scholar] [CrossRef]
- Barbeta, A.; Mejía-Chang, M.; Ogaya, R.; Voltas, J.; Dawson, T.E.; Peñuelas, J. The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest. Glob. Chang. Biol. 2014, 21, 1213–1225. [Google Scholar] [CrossRef] [Green Version]
- Ogaya, R.; Penuelas, J. Contrasting foliar responses to drought in Quercus ilex and Phillyrea latifolia. Biol. Plant. 2006, 50, 373–382. [Google Scholar] [CrossRef]
- Proutsos, N.; Liakatas, A.; Alexandris, S.; Tsiros, I. Carbon fluxes above a deciduous forest in Greece. Atmósfera 2017, 30, 311–322. [Google Scholar] [CrossRef] [Green Version]
- Proutsos, N.; Tigkas, D. Growth response of endemic black pine trees to meteorological variations and drought episodes in a Mediterranean region. Atmosphere 2020, 11, 554. [Google Scholar] [CrossRef]
- Ruffault, J.; Martin-StPaul, N.K.; Rambal, S.; Mouillot, F. Differential regional responses in drought length, intensity and timing to recent climate changes in a Mediterranean forested ecosystem. Clim. Chang. 2013, 117, 103–117. [Google Scholar] [CrossRef]
- Vicente, E.; Vilagrosa, A.; Ruiz-Yanetti, S.; Manrique-Alba, À.; González-Sanchís, M.; Moutahir, H.; Chirino, E.; Del Campo, A.; Bellot, J. Water balance of Mediterranean Quercus ilex L. and Pinus halepensis Mill. Forests in semiarid climates: A review in a climate change context. Forests 2018, 9, 426. [Google Scholar] [CrossRef] [Green Version]
- Viola, F.; Daly, E.; Vico, G.; Cannarozzo, M.; Porporato, A. Transient soil-moisture dynamics and climate change in Mediterranean ecosystems. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Lempereur, M.; Limousin, J.M.; Guibal, F.; Ourcival, J.M.; Rambal, S.; Ruffault, J.; Mouillot, F. Recent climate hiatus revealed dual control by temperature and drought on the stem growth of Mediterranean Quercus ilex. Glob. Chang. Biol. 2017, 23, 42–55. [Google Scholar] [CrossRef] [Green Version]
- Terradas, J.; Savé, R. The influence of summer and winter stress and water relationships on the distribution of Quercus ilex L. In Quercus ilex L. Ecosystems: Function, Dynamics and Management; Springer: Dordrecht, The Netherlands, 1992; pp. 137–145. [Google Scholar] [CrossRef]
- Sarris, D.; Christodoulakis, D.; Körner, C. Impact of recent climatic change on growth of low elevation eastern Mediterranean forest trees. Clim. Chang. 2011, 106, 203–223. [Google Scholar] [CrossRef]
- Tsiros, I.X.; Nastos, P.; Proutsos, N.D.; Tsaousidis, A. Variability of the aridity index and related drought parameters in Greece using climatological data over the last century (1900–1997). Atmos. Res. 2020, 240, 104914. [Google Scholar] [CrossRef]
- Gaona, J.; Quintana-Seguí, P.; Escorihuela, M.J.; Boone, A.; Llasat, M.C. Interactions between precipitation, evapotranspiration and soil-moisture-based indices to characterize drought with high-resolution remote sensing and land-surface model data. Nat. Hazards Earth Syst. Sci. 2022, 22, 3461–3485. [Google Scholar] [CrossRef]
- Garcia-Estringana, P.; Latron, J.; Llorens, P.; Gallart, F. Spatial and temporal dynamics of soil moisture in a Mediterranean mountain area (Vallcebre, NE Spain). Ecohydrology 2013, 6, 741–753. [Google Scholar] [CrossRef]
- Tramblay, Y.; Koutroulis, A.; Samaniego, L.; Vicente-Serrano, S.M.; Volaire, F.; Boone, A.; Le Page, M.; Llasat, M.C.; Albergel, C.; Burak, S. Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth-Sci. Rev. 2020, 210, 103348. [Google Scholar] [CrossRef]
- Dinca, L.; Badea, O.; Guiman, G.; Braga, C.; Crisan, V.; Greavu, V.; Murariu, G.; Georgescu, L. Monitoring of soil moisture in long-term ecological research (LTER) sites of Romanian Carpathians. Ann. For. Res. 2018, 61, 171–188. [Google Scholar] [CrossRef]
- FAO-UNESCO; ISRIC. Soil Map of the World, Revised Legend; FAO: Rome, Italy, 1988; 119p. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Arnold, E. World Atlas of Desertification; UNEP: London, UK, 1992. [Google Scholar]
- Proutsos, N.D.; Tsiros, I.X.; Nastos, P.; Tsaousidis, A. A note on some uncertainties associated with Thornthwaite’s aridity index introduced by using different potential evapotranspiration methods. Atmos. Res. 2021, 260, 105727. [Google Scholar] [CrossRef]
- Thornthwaite, C. Una aproximación para una clasificación racional del clima. Geogr. Rev. 1948, 38, 85–94. [Google Scholar] [CrossRef]
- Rodrigo, A.; Avila, A. Influence of sampling size in the estimation of mean throughfall in two Mediterranean holm oak forests. J. Hydrol. 2001, 243, 216–227. [Google Scholar] [CrossRef]
- Llorens, P.; Domingo, F. Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe. J. Hydrol. 2007, 335, 37–54. [Google Scholar] [CrossRef]
- Baloutsos, G.; Bourletsikas, A.; Baltas, E. Development of a simplified model for the estimation of hydrological components in areas of maquis vegetation in Greece. WSEAS Trans. Environ. Dev. 2009, 5, 310–320. [Google Scholar]
- Baloutsos, G.; Bourletsikas, A.; Kaoukis, K. Investigation of rainfall partitioned into interception, throughfall and stemflow in a maquis stand of the southern-western Greece. For. Res. 2005, 19, 23–40, (in Greek with abstract in English). [Google Scholar]
- Bell, J.E.; Palecki, M.A.; Baker, C.B.; Collins, W.G.; Lawrimore, J.H.; Leeper, R.D.; Hall, M.E.; Kochendorfer, J.; Meyers, T.P.; Wilson, T. US Climate Reference Network soil moisture and temperature observations. J. Hydrometeorol. 2013, 14, 977–988. [Google Scholar] [CrossRef]
- Salvati, L.; Zitti, M.; Di Bartolomei, R.; Perini, L. Climate aridity under changing conditions and implications for the agricultural sector: Italy as a case study. Geogr. J. 2012, 2013, 923173. [Google Scholar] [CrossRef]
- Panagos, P.; Meusburger, K.; Ballabio, C.; Borrelli, P.; Alewell, C. Soil erodibility in Europe: A high-resolution dataset based on LUCAS. Sci. Total Environ. 2014, 479, 189–200. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Bouyoucos, G.J. A recalibration of the hydrometer method for making mechanical analysis of soils 1. Agron. J. 1951, 43, 434–438. [Google Scholar] [CrossRef] [Green Version]
- Farina, A.; Piergallini, R.; Doldo, A.; Salsano, E.; Abballe, F. The determination of CHN by an automated elemental analyzer. Microchem. J. 1991, 43, 181–190. [Google Scholar] [CrossRef]
- Wilding, L. Spatial variability: Its documentation, accomodation and implication to soil surveys. In Proceedings of the Soil Spatial Variability, Las Vegas, NV, USA, 30 November–1 December 1984; pp. 166–194. [Google Scholar]
- Saxton, K.E.; Rawls, W.J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef] [Green Version]
- Landon, J. Booker Tropical Manual: A Handbook for Soil Survey and Agricultural Land Evaluation in the Tropics and Subtropics; Booker Agriculture International Limited: London, UK, 1984; pp. 106–156. [Google Scholar]
- Michopoulos, P.; Bourletsikas, A.; Kaoukis, K. Fluxes, stocks and availability of nitrogen in evergreen broadleaf and fir forests: Similarities and differences. J. For. Res. 2021, 32, 2059–2066. [Google Scholar] [CrossRef]
- Dexter, A.R.; Richard, G. Water Potentials Produced by Oven-Drying of Soil Samples. Soil Sci. Soc. Am. J. 2009, 73, 1646–1651. [Google Scholar] [CrossRef]
- Beniston, M.; Stephenson, D.B.; Christensen, O.B.; Ferro, C.A.; Frei, C.; Goyette, S.; Halsnaes, K.; Holt, T.; Jylhä, K.; Koffi, B. Future extreme events in European climate: An exploration of regional climate model projections. Clim. Chang. 2007, 81, 71–95. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Beldjazia, A.; Alatou, D. Precipitation variability on the massif Forest of Mahouna (North Eastern-Algeria) from 1986 to 2010. Int. J. Manag. Sci. Bus. Res. 2016, 5, 21–28. [Google Scholar]
- Baloutsos, G.; Bourletsikas, A.; Baltas, E. Interception, throughfall and stemflow of maquis vegetation in Greece. WSEAS Trans. Environ. Dev. 2010, 1, 21. [Google Scholar]
- Avila, A.; Rodrigo, A. Trace metal fluxes in bulk deposition, throughfall and stemflow at two evergreen oak stands in NE Spain subject to different exposure to the industrial environment. Atmos. Environ. 2004, 38, 171–180. [Google Scholar] [CrossRef]
- Zimmermann, A.; Zimmermann, B. Requirements for throughfall monitoring: The roles of temporal scale and canopy complexity. Agric. For. Meteorol. 2014, 189, 125–139. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, J. Spatiotemporal characteristics of soil temperature memory in China from observation. Theor. Appl. Climatol. 2016, 126, 739–749. [Google Scholar] [CrossRef]
- Bilgili, M. Prediction of soil temperature using regression and artificial neural network models. Meteorol. Atmos. Phys. 2010, 110, 59–70. [Google Scholar] [CrossRef]
- David, T.S.; Pinto, C.A.; Nadezhdina, N.; Kurz-Besson, C.; Henriques, M.O.; Quilhó, T.; Cermak, J.; Chaves, M.M.; Pereira, J.S.; David, J.S. Root functioning, tree water use and hydraulic redistribution in Quercus suber trees: A modeling approach based on root sap flow. For. Ecol. Manag. 2013, 307, 136–146. [Google Scholar] [CrossRef] [Green Version]
- Krounbi, L.; Lazarovitch, N.; Gliński, J. Soil hydraulic properties affecting root water uptake. In Encyclopedia of Agrophysics; Springer: Dordrecht, The Netherlands; Heidelberg, Germany, 2011; pp. 748–754. [Google Scholar]
- Chang, C.; Sabaté, S.; Sperlich, D.; Poblador, S.; Sabater, F.; Gracia, C. Does soil moisture overrule temperature dependency of soil respiration in Mediterranean riparian forests. Biogeosci. Discuss. 2014, 11, 7991–8022. [Google Scholar] [CrossRef]
- Song, Y.; Song, C.; Shi, F.; Wang, M.; Ren, J.; Wang, X.; Jiang, L. Linking plant community composition with the soil C pool, N availability and enzyme activity in boreal peatlands of Northeast China. Appl. Soil Ecol. 2019, 140, 144–154. [Google Scholar] [CrossRef]
- Vasbieva, M. Effect of long-term application of organic and mineral fertilizers on the organic carbon content and nitrogen regime of soddy-podzolic soil. Eurasian Soil Sci. 2019, 52, 1422–1428. [Google Scholar] [CrossRef]
- Jia, Y.-H.; Shao, M.-A.; Jia, X.-X. Spatial pattern of soil moisture and its temporal stability within profiles on a loessial slope in northwestern China. J. Hydrol. 2013, 495, 150–161. [Google Scholar] [CrossRef]
- Venkatesh, B.; Nandagiri, L.; Purandara, B. Analysis of Temporal Stability of Observed Soil Moisture under plantation forest in Western Ghats of India. Aquat. Procedia 2015, 4, 601–608. [Google Scholar] [CrossRef]
Soil layer | Clay | Silt | Sand | pH (CaCl2) | C (g/kg) | N (g/kg) | C/N |
---|---|---|---|---|---|---|---|
L | 494.3 (2.84) | 11.2 (8.46) | 44.3 (11.18) | ||||
FH | 6.09 | 259.7 | 13.6 | 19.1 | |||
(1.82) | (7.13) | (8.19) | (1.39) | ||||
0–10 cm | 23.63 | 56.07 | 20.30 | 5.60 | 49.5 | 3.0 | 16.3 |
(6.24) | (2.41) | (8.91) | (1.15) | (13.98) | (13.39) | (2.21) | |
10–20 cm | 24.20 | 54.23 | 21.57 | 5.43 | 27.3 | 1.9 | 14.4 |
(14.48) | (0.56) | (14.85) | (7.81) | (16.74) | (13.73) | (3.61) | |
20–40 cm | 25.97 | 52.83 | 21.20 | 5.26 | 14.4 | 1.2 | 12.5 |
(15.81) | (1.52) | (21.56) | (2.52) | (17.19) | (14.37) | (3.34) | |
40–80 cm | 29.27 | 50.67 | 20.07 | 5.71 | 8.6 | 0.8 | 10.4 |
(15.18) | (4.90) | (21.64) | (10.56) | (14.48) | (11.00) | (5.45) |
Month | Tav | PR | PRef | ||||||
---|---|---|---|---|---|---|---|---|---|
Values (°C) | SD (mm) | CV (%) | Volume (mm) | SD (mm) | CV (%) | Volume (mm) | SD (mm) | CV (%) | |
January | 6.9 | 1.2 | 17.2 | 210.9 | 73.9 | 35.0 | 152.8 | 54.8 | 35.9 |
February | 8.7 | 1.5 | 16.9 | 196.9 | 121.9 | 61.9 | 139.8 | 100.5 | 71.9 |
March | 10.4 | 0.7 | 7.0 | 147.7 | 60.5 | 41.0 | 106.5 | 49.2 | 46.2 |
April | 14.4 | 2.0 | 13.6 | 61.8 | 63.5 | 102.8 | 38.9 | 41.5 | 106.8 |
May | 18.0 | 1.6 | 8.8 | 75.8 | 68.6 | 90.5 | 56.1 | 57.6 | 102.7 |
June | 21.8 | 0.8 | 3.7 | 49.5 | 36.7 | 74.1 | 34.1 | 28.1 | 82.5 |
July | 24.8 | 1.1 | 4.3 | 7.1 | 7.6 | 107.0 | 3.5 | 3.9 | 110.5 |
August | 25.7 | 0.7 | 2.6 | 6.0 | 13.0 | 216.7 | 4.7 | 10.5 | 222.9 |
September | 21.0 | 1.0 | 4.7 | 86.2 | 87.5 | 101.5 | 60.8 | 65.9 | 108.3 |
October | 16.8 | 0.8 | 4.6 | 96.6 | 75.7 | 87.8 | 69.8 | 62.8 | 90.0 |
November | 12.5 | 1.0 | 8.0 | 220.5 | 84.4 | 38.2 | 176.0 | 76.2 | 43.3 |
December | 8.1 | 1.1 | 13.0 | 141.3 | 172.9 | 122.4 | 106.9 | 138.9 | 129.9 |
Month | ST (°C) | SD (°C) | CV (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
5 cm | 20 cm | 40 cm | 70 cm | 5 cm | 20 cm | 40 cm | 70 cm | 5 cm | 20 cm | 40 cm | 70 cm | |
January | 7.4 | 7.9 | 8.6 | 10.0 | 2.08 | 1.73 | 1.33 | 0.96 | 28.26 | 21.84 | 15.43 | 9.61 |
February | 8.2 | 8.6 | 8.9 | 10.0 | 1.80 | 1.39 | 1.11 | 0.83 | 21.96 | 16.26 | 12.49 | 8.31 |
March | 9.5 | 9.7 | 9.8 | 10.5 | 1.18 | 0.98 | 0.75 | 0.89 | 12.33 | 10.12 | 7.66 | 8.52 |
April | 12.6 | 12.4 | 12.1 | 12.1 | 1.68 | 1.42 | 1.06 | 1.05 | 13.32 | 11.40 | 8.73 | 8.66 |
May | 16.0 | 15.5 | 14.9 | 14.6 | 1.49 | 1.23 | 1.07 | 0.90 | 9.33 | 7.91 | 7.16 | 6.15 |
June | 19.0 | 18.4 | 17.5 | 16.9 | 1.70 | 1.42 | 1.14 | 1.06 | 8.97 | 7.68 | 6.52 | 6.27 |
July | 21.8 | 20.9 | 19.8 | 19.1 | 1.26 | 1.00 | 0.72 | 0.70 | 5.78 | 4.77 | 3.64 | 3.68 |
August | 22.9 | 21.9 | 20.8 | 20.4 | 1.01 | 0.66 | 0.41 | 0.31 | 4.41 | 3.01 | 1.96 | 1.54 |
September | 19.6 | 19.5 | 19.2 | 19.5 | 1.71 | 1.32 | 0.94 | 0.75 | 8.71 | 6.77 | 4.88 | 3.83 |
October | 16.0 | 16.3 | 16.5 | 17.2 | 1.65 | 1.28 | 0.94 | 0.77 | 10.35 | 7.85 | 5.68 | 4.45 |
November | 12.3 | 13.0 | 13.7 | 14.7 | 1.97 | 1.56 | 1.20 | 0.98 | 16.03 | 12.00 | 8.75 | 6.69 |
December | 8.5 | 9.3 | 10.3 | 11.7 | 2.08 | 1.62 | 1.29 | 1.21 | 24.42 | 17.56 | 12.52 | 10.30 |
Month | SM (cm3/cm3) | SD (cm3/cm3) | CV (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
5 cm | 20 cm | 40 cm | 70 cm | 5 cm | 20 cm | 40 cm | 70 cm | 5 cm | 20 cm | 40 cm | 70 cm | |
January | 0.257 | 0.221 | 0.251 | 0.271 | 0.032 | 0.017 | 0.018 | 0.017 | 12.2 | 7.9 | 7.5 | 6.2 |
February | 0.268 | 0.224 | 0.253 | 0.275 | 0.030 | 0.017 | 0.016 | 0.018 | 11.2 | 7.7 | 6.3 | 6.4 |
March | 0.254 | 0.224 | 0.250 | 0.271 | 0.037 | 0.015 | 0.015 | 0.017 | 14.5 | 6.6 | 6.2 | 6.3 |
April | 0.215 | 0.211 | 0.233 | 0.254 | 0.048 | 0.020 | 0.019 | 0.019 | 22.4 | 9.7 | 8.4 | 7.3 |
May | 0.186 | 0.196 | 0.214 | 0.234 | 0.051 | 0.022 | 0.026 | 0.021 | 27.5 | 11.1 | 11.1 | 8.8 |
June | 0.168 | 0.179 | 0.198 | 0.211 | 0.047 | 0.029 | 0.031 | 0.026 | 28.3 | 16.4 | 15.8 | 12.4 |
July | 0.102 | 0.153 | 0.162 | 0.174 | 0.033 | 0.022 | 0.019 | 0.018 | 32.6 | 14.8 | 11.7 | 10.4 |
August | 0.065 | 0.136 | 0.139 | 0.156 | 0.018 | 0.015 | 0.012 | 0.013 | 29.0 | 11.3 | 8.7 | 8.3 |
September | 0.115 | 0.152 | 0.159 | 0.165 | 0.077 | 0.029 | 0.044 | 0.030 | 66.5 | 19.1 | 28.1 | 18.1 |
October | 0.152 | 0.166 | 0.177 | 0.172 | 0.080 | 0.032 | 0.051 | 0.037 | 52.8 | 19.5 | 28.8 | 21.5 |
November | 0.209 | 0.193 | 0.213 | 0.212 | 0.066 | 0.035 | 0.058 | 0.054 | 31.7 | 18.2 | 27.3 | 25.4 |
December | 0.229 | 0.212 | 0.243 | 0.260 | 0.025 | 0.017 | 0.017 | 0.016 | 10.9 | 8.1 | 6.9 | 6.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourletsikas, A.; Proutsos, N.; Michopoulos, P.; Argyrokastritis, I. Temporal Variations in Temperature and Moisture Soil Profiles in a Mediterranean Maquis Forest in Greece. Hydrology 2023, 10, 93. https://doi.org/10.3390/hydrology10040093
Bourletsikas A, Proutsos N, Michopoulos P, Argyrokastritis I. Temporal Variations in Temperature and Moisture Soil Profiles in a Mediterranean Maquis Forest in Greece. Hydrology. 2023; 10(4):93. https://doi.org/10.3390/hydrology10040093
Chicago/Turabian StyleBourletsikas, Athanassios, Nikolaos Proutsos, Panagiotis Michopoulos, and Ioannis Argyrokastritis. 2023. "Temporal Variations in Temperature and Moisture Soil Profiles in a Mediterranean Maquis Forest in Greece" Hydrology 10, no. 4: 93. https://doi.org/10.3390/hydrology10040093
APA StyleBourletsikas, A., Proutsos, N., Michopoulos, P., & Argyrokastritis, I. (2023). Temporal Variations in Temperature and Moisture Soil Profiles in a Mediterranean Maquis Forest in Greece. Hydrology, 10(4), 93. https://doi.org/10.3390/hydrology10040093