Spatial Variability of Best Management Practices Effectiveness on Water Quality within the Yazoo River Watershed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model Description and Data Inputs
2.3. Calibration and Validation
2.4. Management Scenarios
2.4.1. Vegetative Filter Strips (VFS)
2.4.2. Cover Crops (CC)
S. No. | BMP | Description |
---|---|---|
1 | VFS | Vegetative Filter Strip (20 m applied) |
2 | CC | Cover Crop ryegrass |
3 | Cover Crop winter wheat (WWheat) | |
4 | Cover Crop winter barley (WBarley) | |
5 | Combination scenarios (VFS + CC) | VFS + CC_ryegrass |
6 | VFS + CC_WWheat | |
7 | VFS + CC_WBarley |
3. Results
3.1. Calibration and Validation
3.2. Impact Due to BMP Implementation at Field and Watershed Scales
3.2.1. Vegetative Filter Strips (VFS)
3.2.2. Cover Crops (CC)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Florescu, D.; Ionete, R.E.; Sandru, C.; Iordache, A.; Culea, M. The Influence of Pollution Monitoring Parameters in Characterizing the Surface Water Quality from Romania Southern Area *. Rom. J. Phys. 2011, 56, 1001–1010. [Google Scholar]
- Dressing, S.A. National Management Measures for the Control of Nonpoint Pollution from Agriculture—Google Books. Available online: https://www.google.com/books/edition/National_Management_Measures_for_the_Con/f4_T1Z1Q7EkC?hl=en&gbpv=1&dq=Dressing,+S.A.,+2003.+National+management+measures+for+the+control+of+nonpoint+pollution+from+agriculture.+US+Environmental+Protection+Agency,+Offic (accessed on 31 August 2022).
- O’Hare, M.T.; Baattrup-Pedersen, A.; Baumgarte, I.; Freeman, A.; Gunn, I.D.M.; Lázár, A.N.; Sinclair, R.; Wade, A.J.; Bowes, M.J. Responses of Aquatic Plants to Eutrophication in Rivers: A Revised Conceptual Model. Front. Plant Sci. 2018, 9, 1–13. [Google Scholar] [CrossRef]
- Dash, P.; Silwal, S.; Ikenga, J.O.; Pinckney, J.L.; Arslan, Z.; Lizotte, R.E. Water Quality of Four Major Lakes in Mississippi, USA: Impacts on Human and Aquatic Ecosystem Health. Water 2015, 7, 4999–5030. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Nepal, D.; Parajuli, P.B. Assessment of Best Management Practices on Hydrology and Sediment Yield at Watershed Scale in Mississippi Using SWAT. Agriculture 2022, 12, 518. [Google Scholar] [CrossRef]
- Jha, M.; Gassman, P.W.; Secchi, S.; Gu, R.; Arnold, J. Effect of Watershed Subdivision on Swat Flow, Sediment, and Nutrient Predictions. J. Am. Water Resour. Assoc. 2004, 40, 811–825. [Google Scholar] [CrossRef] [Green Version]
- Golmohammadi, G.; Prasher, S.O.; Madani, A.; Rudra, R.P.; Youssef, M.A. SWATDRAIN, a New Model to Simulate the Hydrology of Agricultural Lands, Model Development and Evaluation. Biosyst. Eng. 2016, 141, 31–47. [Google Scholar] [CrossRef]
- Yu, Z.; Man, X.; Duan, L.; Cai, T. Assessments of Impacts of Climate and Forest Change on Water Resources Using SWAT Model in a Subboreal Watershed in Northern Da Hinggan Mountains. Water 2020, 12, 1565. [Google Scholar] [CrossRef]
- Chaubey, I.; Chiang, L.; Gitau, M.W.; Mohamed, S. Effectiveness of Best Management Practices in Improving Water Quality in a Pasture-Dominated Watershed. J. Soil Water Conserv. 2010, 65, 424–437. [Google Scholar] [CrossRef] [Green Version]
- Gitau, M.W.; Gburek, W.J.; Bishop, P.L. Use of the SWAT Model to Quantify Water Quality Effects of Agricultural BMPs at the Farm-Scale Level. Trans. ASABE 2008, 51, 1925–1936. [Google Scholar] [CrossRef]
- Wang, R.; Yuan, Y.; Yen, H.; Grieneisen, M.; Arnold, J.; Wang, D.; Wang, C.; Zhang, M. A Review of Pesticide Fate and Transport Simulation at Watershed Level Using SWAT: Current Status and Research Concerns. Sci. Total Environ. 2019, 669, 512–526. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Parajuli, P.B.; Filip To, S.D. Assessing Impacts of Bioenergy Crops and Climate Change on Hydrometeorology in the Yazoo River Basin, Mississippi. Agric. For. Meteorol. 2013, 169, 61–73. [Google Scholar] [CrossRef]
- Dakhlalla, A.O.; Parajuli, P.B. Evaluation of the Best Management Practices at the Watershed Scale to Attenuate Peak Streamflow under Climate Change Scenarios. Water Resour. Manag. 2016, 30, 963–982. [Google Scholar] [CrossRef]
- Ouyang, Y.; Feng, G.; Parajuli, P.; Leininger, T.; Wan, Y.; Jenkins, J.N. Assessment of Surface Water Quality in the Big Sunflower River Watershed of Mississippi Delta Using Nonparametric Analysis. Water. Air. Soil Pollut. 2018, 229, 1–3. [Google Scholar] [CrossRef]
- Venishetty, V.; Parajuli, P.B.; To, F. Assessing the Effect of Spatial Variation in Soils on Sediment Loads in Yazoo River Watershed. Hydrology 2023, 10, 62. [Google Scholar] [CrossRef]
- Parajuli, P.B.; Jayakody, P.; Sassenrath, G.F.; Ouyang, Y.; Pote, J.W. Assessing the Impacts of Crop-Rotation and Tillage on Crop Yields and Sediment Yield Using a Modeling Approach. Agric. Water Manag. 2013, 119, 32–42. [Google Scholar] [CrossRef]
- Folle, S.; Dalzell, B.; Mulla, D.; Birr, A. Evaluation of Best Management Practices (BMPs) in Impaired Watersheds Using the SWAT Model; University of Minnesota: St. Paul, MN, USA, 2007. [Google Scholar]
- Merriman, K.R.; Daggupati, P.; Srinivasan, R.; Toussant, C.; Russell, A.M.; Hayhurst, B. Assessing the Impact of Site-Specific BMPs Using a Spatially Explicit, Field-Scale SWAT Model with Edge-of-Field and Tile Hydrology and Water-Quality Data in the Eagle Creek Watershed, Ohio. Water 2018, 10, 1299. [Google Scholar] [CrossRef] [Green Version]
- Parajuli, B.P.; Ouyang, Y. Watershed-Scale Hydrological Modeling Methods and Applications. In Current Perspectives in Contaminant Hydrology and Water Resources Sustainability; InTech: Rijeka, Croatia, 2013; pp. 57–80. [Google Scholar]
- Sharpley, A.N.; Daniel, T.; Gibson, G.; Bundy, L.; Cabrera, M.; Sims, T.; Stevens, R.; Lemunyon, J.; Kleinman, P.; Parry, R. Best Management Practices to Minimize Agricultural Phosphorus Impacts on Water Quality; United States Department of Agriculture: Washington, DC, USA, 2006; Volume ARS-163. [Google Scholar]
- Parajuli, P.B.; Risal, A. Evaluation of Climate Change on Streamflow, Sediment, and Nutrient Load at Watershed Scale. Climate 2021, 9, 165. [Google Scholar] [CrossRef]
- Risal, A.; Parajuli, P.B. Evaluation of the Impact of Best Management Practices on Streamflow, Sediment and Nutrient Yield at Field and Watershed Scales. Water Resour. Manag. 2022, 36, 1093–1105. [Google Scholar] [CrossRef]
- Maghrebi, M.; Noori, R.; Mehr, A.D.; Lak, R.; Darougheh, F.; Razmgir, R.; Farnoush, H.; Taherpour, H.; Moghaddam, S.M.R.A.; Araghi, A.; et al. Spatiotemporal Changes in Iranian Rivers’ Discharge. Elem. Sci. Anthr. 2023, 11, 2. [Google Scholar] [CrossRef]
- NRCS Web Soil Survey (WSS) SSURGO Database. Available online: https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx (accessed on 10 September 2020).
- USGS Digital Elevation Models. Available online: https://apps.nationalmap.gov/downloader/#productSearch (accessed on 27 August 2020).
- USDA-NASS United States Department of Agriculture—National Agricultural Statistics Service (USDA-NASS) CropScape—NASS CDL Program. Available online: https://nassgeodata.gmu.edu/CropScape/ (accessed on 10 September 2020).
- NOAA National Oceanic and Atmospheric Administration (NOAA) Climate Data Online (CDO)|National Climatic Data Center (NCDC). Available online: https://www.ncdc.noaa.gov/cdo-web/search (accessed on 31 August 2020).
- MAFES Mississippi Agricultural and Forestry Experiment Station—Variety Trials. Available online: https://www.mafes.msstate.edu/variety-trials/ (accessed on 31 August 2020).
- ASABE. Manure Production and Characteristics Standards; ASABE: St. Joseph, MI, USA, 2006; Volume 2005. [Google Scholar]
- Wright, S. Correlation and Causation. J. Agric. Res. 1921, 7, 557–585. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Merriman, K.R.; Daggupati, P.; Srinivasan, R.; Hayhurst, B. Assessment of Site-Specific Agricultural Best Management Practices in the upper East River Watershed, Wisconsin, Using a Field-Scale SWAT Model. J. Great Lakes Res. 2019, 45, 619–641. [Google Scholar] [CrossRef]
- Ni, X.; Parajuli, P.B. Evaluating Hydrological Model Performances on Stream Flow Simulation with Agricultural Management. J. Environ. Earth Sci. 2021, 1, 17–23. [Google Scholar] [CrossRef]
- Parajuli, P.B.; Jayakody, P.; Ouyang, Y. Evaluation of Using Remote Sensing Evapotranspiration Data in SWAT. Water Resour. Manag. 2018, 32, 985–996. [Google Scholar] [CrossRef]
- Risal, A.; Parajuli, P.B. Quantification and Simulation of Nutrient Sources at Watershed Scale in Mississippi. Sci. Total Environ. 2019, 670, 633–643. [Google Scholar] [CrossRef]
- Wallace, C.W.; Flanagan, D.C.; Engel, B.A. Evaluating the Effects of Watershed Size on SWAT Calibration. Water 2018, 10, 898. [Google Scholar] [CrossRef] [Green Version]
- Risal, A.; Parajuli, P.B.; Ouyang, Y. Impact of BMPs on Water Quality: A Case Study in Big Sunflower River Watershed, Mississippi. Int. J. River Basin Manag. 2022, 20, 375–388. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Johnson, C.A.; Genuchten, M.T. van Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure. Vadose Zo. J. 2004, 3, 1340–1352. [Google Scholar] [CrossRef]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Input/Output Documentation Soil & Water Assessment Tool; Texas Water Resources Institute: College Station, TX, USA, 2012. [Google Scholar]
- Jayakody, P.; Parajuli, P.B.; Cathcart, T.P. Impacts of Climate Variability on Water Quality with Best Management Practices in Sub-Tropical Climate of USA. Hydrol. Process. 2014, 28, 5776–5790. [Google Scholar] [CrossRef]
- Knouft, J.H.; Botero-Acosta, A.; Wu, C.L.; Charry, B.; Chu, M.L.; Dell, A.I.; Hall, D.M.; Herrington, S.J. Forested Riparian Buffers as Climate Adaptation Tools for Management of Riverine Flow and Thermal Regimes: A Case Study in the Meramec River Basin. Sustainability 2021, 13, 1877. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, M. Management-Oriented Sensitivity Analysis for Pesticide Transport in Watershed-Scale Water Quality Modeling Using SWAT. Environ. Pollut. 2009, 157, 3370–3378. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Chen, M.; Guo, L. Speciation and Transformation of Phosphorus and Its Mixing Behavior in the Bay of St. Louis Estuary in the Northern Gulf of Mexico. Geochim. Cosmochim. Acta 2012, 87, 283–298. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, M. Modeling Effectiveness of Agricultural BMPs to Reduce Sediment Load and Organophosphate Pesticides in Surface Runoff. Sci. Total Environ. 2011, 409, 1949–1958. [Google Scholar] [CrossRef]
- Venishetty, V.; Parajuli, P.B. Assessment of BMPs by Estimating Hydrologic and Water Quality Outputs Using SWAT in Yazoo River Watershed. Agriculture 2022, 12, 477. [Google Scholar] [CrossRef]
- NRCS United States Department of Agriculture—Natural Resources Conservation Service (USDA-NRCS) Filter Strip|NRCS. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=nrcs142p2_044352 (accessed on 5 December 2021).
- NRCS United States Department of Agriculture—Natural Resources Conservation Service (USDA-NRCS)—Cover Crop|NRCS. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/programs/financial/eqip/?cid=nrcs144p2_027123 (accessed on 20 December 2020).
- Arabi, M.; Frankenberger, J.R.; Engel, B.A.; Arnold, J.G. Representation of Agricultural Conservation Practices with SWAT. Hydrol. Process. 2008, 22, 3042–3055. [Google Scholar] [CrossRef]
- NOAA National Oceanic and Atmospheric Administration—Storm Events Database—Search Results|National Centers for Environmental Information. Available online: https://www.ncdc.noaa.gov/stormevents/listevents.jsp?eventType=ALL&beginDate_mm=01&beginDate_dd=01&beginDate_yyyy=2014&endDate_mm=05&endDate_dd=31&endDate_yyyy=2016&county=WASHINGTON%3A151&hailfilter=0.00&tornfilter=0&windfilter=000&sort=DT&submitbutton=S (accessed on 25 March 2022).
- Dakhlalla, A.O.; Parajuli, P.B. Assessing Model Parameters Sensitivity and Uncertainty of Streamflow, Sediment, and Nutrient Transport Using SWAT. Inf. Process. Agric. 2019, 6, 61–72. [Google Scholar] [CrossRef]
- Santhi, C.; Arnold, J.G.; Williams, J.R.; Hauck, L.M.; Dugas, W.A. Application of a Watershed Model to Evaluate Management Effects on Point and Nonpoint Source Pollution. Trans. ASAE 2001, 44, 1559–1570. [Google Scholar] [CrossRef]
- Jalowska, A.M.; Yuan, Y. Evaluation of SWAT Impoundment Modeling Methods in Water and Sediment Simulations. J. Am. Water Resour. Assoc. 2019, 55, 209–227. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Chiang, L.C. Sensitivity Analysis of SWAT Nitrogen Simulations with and without In-Stream Processes. Arch. Agron. Soil Sci. 2014, 61, 969–987. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A Continental-Scale Hydrology and Water Quality Model for Europe: Calibration and Uncertainty of a High-Resolution Large-Scale SWAT Model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Mahdian, M.; Hosseinzadeh, M.; Siadatmousavi, S.M.; Chalipa, Z.; Delavar, M.; Guo, M.; Abolfathi, S.; Noori, R. Modelling Impacts of Climate Change and Anthropogenic Activities on Inflows and Sediment Loads of Wetlands: Case Study of the Anzali Wetland. Sci. Rep. 2023, 13, 5399. [Google Scholar] [CrossRef]
- USDA NRCS. Conservation Effects Assessment Project (CEAP) Assessment of the Effects of Conservation Practices on Cultivated Cropland in the Lower Mississippi River Basin; USDA: Washington, DC, USA, 2013. [Google Scholar]
- Merriman, K.R.; Russell, A.M.; Rachol, C.M.; Daggupati, P.; Srinivasan, R.; Hayhurst, B.A.; Stuntebeck, T.D. Calibration of a Field-Scale Soil and Water Assessment Tool (SWAT) Model with Field Placement of Best Management Practices in Alger Creek, Michigan. Sustainability 2018, 10, 851. [Google Scholar] [CrossRef] [Green Version]
- Cibin, R.; Chaubey, I.; Helmers, M.; Sudheer, K.P.; White, M.J.; Arnold, J.G. Technical Note: An Improved Representation of Vegetative Filter Strips in SWAT. Trans. ASABE 2018, 61, 1017–1024. [Google Scholar] [CrossRef]
- Parajuli, P.B.; Mankin, K.R.; Barnes, P.L. Applicability of Targeting Vegetative Filter Strips to Abate Fecal Bacteria and Sediment Yield Using SWAT. Agric. Water Manag. 2008, 95, 1189–1200. [Google Scholar] [CrossRef]
- Hively, W.D.; Lee, S.; Sadeghi, A.M.; Mccarty, G.W.; Lamb, B.T.; Soroka, A.; Keppler, J.; Yeo, I.-Y.; Moglen, G.E. Estimating the Effect of Winter Cover Crops on Nitrogen Leaching Using Cost-Share Enrollment Data, Satellite Remote Sensing, and Soil and Water Assessment Tool (SWAT) Modeling. J. Soil Water Conserv. 2020, 75, 362–375. [Google Scholar] [CrossRef]
- Yeo, I.-Y.; Lee, S.; Sadeghi, A.M.; Beeson, P.C.; Hively, W.D.; Mccarty, G.W.; Lang, M.W. Assessing Winter Cover Crop Nutrient Uptake Efficiency Using a Water Quality Simulation Model. Hydrol. Earth Syst. Sci. 2014, 18, 5239–5253. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Sadeghi, A.M.; Yeo, I.-Y.; Mccarty, G.W.; Hively, W.D. Assessing the Impacts of Future Climate Conditions on the Effectiveness of Winter Cover Crops in Reducing Nitrate Loads into the Chesapeake Bay Watersheds Using the SWAT Model. Trans. ASABE 2017, 60, 1939–1955. [Google Scholar] [CrossRef]
- Baker, B.H.; Kröger, R.; Prevost, J.D.; Pierce, T.; Ramirez-Avila, J.J.; Czarnecki, J.M.P.; Faust, D.; Flora, C. A Field-Scale Investigation of Nutrient and Sediment Reduction Efficiencies of a Low-Technology Best Management Practice: Low-Grade Weirs. Ecol. Eng. 2016, 91, 240–248. [Google Scholar] [CrossRef]
- Saleh, A.; Osei, E.; Jaynes, D.B.; Arnold, J.G. Economic and Environmental Impacts of LSNT and Cover Crops for Nitrate-Nitrogen Reduction in Walnut Creek Watershed, Iowa, Using FEM and Enhanced SWAT Models. Trans. ASABE 2007, 50, 1251–1259. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, S.; Parajuli, P.B. Best Management Practices Affect Water Quality in Coastal Watersheds. Sustainability 2023, 15, 4045. [Google Scholar] [CrossRef]
Sediment | TN | TP | |||||
---|---|---|---|---|---|---|---|
Process | Station | R2 | NSE | R2 | NSE | R2 | NSE |
Calibration | Big Sunflower at Merigold | 0.15 | 0.15 | 0.12 | 0.11 | 0.30 | 0.05 |
Validation | 0.27 | 0.11 | 0.33 | 0.12 | 0.82 | 0.26 |
YRW | BMP | Percent Decrease | |||
Streamflow | Sediment | TN | TP | ||
VFS + Ryegrass | 5.40 | 7.97 | 40.58 | 34.81 | |
VFS + WBarley | 5.01 | 7.97 | 40.68 | 34.77 | |
VFS + WWheat | 3.30 | 8.13 | 41.21 | 34.56 |
MW | BMP | Percent Decrease | |||
Streamflow | Sediment | TN | TP | ||
VFS 20 m | 0.00 | 14.91 | 65.33 | 65.61 | |
CC_Ryegrass | 19.01 | 25.97 | 6.01 | 32.45 | |
CC_WBarley | 17.77 | 24.36 | 6.55 | 32.28 | |
CC_WWheat | 15.05 | 20.76 | 12.01 | 29.14 | |
VFS + CC_Ryegrass | 19.01 | 33.31 | 52.83 | 63.83 | |
VFS + CC_WBarley | 17.77 | 32.30 | 53.03 | 63.03 | |
VFS + CC_WWheat | 15.05 | 30.47 | 53.83 | 63.11 |
SRW | BMP | Percent Decrease | |||
Streamflow | Sediment | TN | TP | ||
VFS 20 m | 0.00 | 0.00 | 33.47 | 33.52 | |
CC_Ryegrass | 2.67 | 3.68 | 16.11 | 20.16 | |
CC_WBarley | 2.52 | 3.45 | 13.18 | 16.44 | |
CC_WWheat | 2.01 | 2.74 | 15.95 | 15.71 | |
VFS + Ryegrass | 2.68 | 3.68 | 35.88 | 35.71 | |
VFS + WBarley | 2.52 | 3.46 | 35.70 | 35.25 | |
VFS + WWheat | 2.01 | 2.74 | 36.64 | 35.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venishetty, V.; Parajuli, P.B.; Nepal, D. Spatial Variability of Best Management Practices Effectiveness on Water Quality within the Yazoo River Watershed. Hydrology 2023, 10, 92. https://doi.org/10.3390/hydrology10040092
Venishetty V, Parajuli PB, Nepal D. Spatial Variability of Best Management Practices Effectiveness on Water Quality within the Yazoo River Watershed. Hydrology. 2023; 10(4):92. https://doi.org/10.3390/hydrology10040092
Chicago/Turabian StyleVenishetty, Vivek, Prem B. Parajuli, and Dipesh Nepal. 2023. "Spatial Variability of Best Management Practices Effectiveness on Water Quality within the Yazoo River Watershed" Hydrology 10, no. 4: 92. https://doi.org/10.3390/hydrology10040092
APA StyleVenishetty, V., Parajuli, P. B., & Nepal, D. (2023). Spatial Variability of Best Management Practices Effectiveness on Water Quality within the Yazoo River Watershed. Hydrology, 10(4), 92. https://doi.org/10.3390/hydrology10040092