Kinetics of Simultaneous Ammonium and Phosphate Recovery by Natural Zeolite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Simultaneous Exchange Experiments and P-Regeneration
2.3. Analytical Methods and Calculations
2.4. Scanning Electron Microscope (SEM)
3. Results
3.1. Kinetics of Desorbed Cations
3.2. Simultaneous Exchange Experiments (N & P)
3.2.1. Effect of Initial Ammonium Concentration on N- and P-Removal
3.2.2. Effect of Initial Phosphate Concentration at pH 8 on N- and P-Removal
3.2.3. Effect of Initial pH Value on N- and P-Removal
3.2.4. Effect of Initial pH at Higher Phosphate Concentration on N- and P-Removal
- Calcium is the preferred exchange ion in ammonium sorption;
- P removal is a precipitation reaction combined with ammonium sorption;
- High initial phosphate concentrations lead to high P-loadings;
- Speed of phosphate precipitation is controlled by pH;
- Ammonium sorption reduces at pH > 9.
3.2.5. Observations Regarding the Zeolite Surface
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Fertilizer Trends and Outlook to 2022; Food & Agriculture Organization of United Nations: Rome, Italy, 2019; ISBN 978-92-5-131894-2.
- Withers, P.J.A.; Haygarth, P.M. Agriculture, phosphorus and eutrophication: A European perspective. Soil Use Manag. 2007, 23, 1–4. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint Pollution of Surface Waters with Phosphorus and Nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Technical Proposals for the Safe use of Processed Manure above the Threshold Established for Nitrate Vulnerable Zones by the Nitrates Directive (91/676/EEC): EUR 30363 EN; Publications Office of the European Union: Luxembourg, 2020.
- Driessen, W.; Remy, M.; Hendrickx, T.; Haarhuis, R. Recovery of Phosphorus by Ormation of Struvite with the PHOSPAQ™ Process. European Biosolids and Organic Resources Conference. 2013. Available online: https://www.aquaenviro.co.uk/wp-content/uploads/2015/06/Driessen-W.-Pacques.pdf (accessed on 18 March 2020).
- Lodder, R.; Meulenkamp, R. Fosfaatterugwinning in Communale Afvalwaterzuiveringsinstallaties; STOWA: Amersfoort, The Netherlands, 2011; ISBN 9789057735394. [Google Scholar]
- Ueno, Y.; Fujii, M. Phosphorus in Environmental Technologies: Full Scale Struvite Recovery in Japan; IWA Pub: London, UK, 2004; ISBN 1843390019. [Google Scholar]
- Ellersdorfer, M. The ion-exchanger-loop-stripping process: Ammonium recovery from sludge liquor using NaCl-treated clinoptilolite and simultaneous air stripping. Water Sci. Technol. 2018, 77, 695–705. [Google Scholar] [CrossRef] [PubMed]
- Lubensky, J. Verfahrensentwicklung des Ionentauscher-Loop-Strippings zur Gewinnung Eines Entstickungsmittels aus Abwässern—Vom Labormaßstab zur Pilotanlage. Dissertation; Montanuniversität Leoben: Leoben, Austria, 2018. [Google Scholar]
- Sherman, J.D. Ion Exchange Separations with Molecular Sieve Zeolites. In Zeolites: Science and Technology; Ribeiro, F.R., Rodrigues, A.E., Rollmann, L.D., Naccache, C., Eds.; Springer: Dordrecht, The Netherlands, 1984; pp. 583–623. ISBN 978-94-009-6130-2. [Google Scholar]
- Kallo, D. Applications of Natural Zeolites in Water and Wastewater Treatment. Rev. Mineral. Geochem. 2001, 45, 519–550. [Google Scholar] [CrossRef]
- Wang, S.; Peng, Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 2010, 156, 11–24. [Google Scholar] [CrossRef]
- Guaya, D.; Valderrama, C.; Farran, A.; Armijos, C.; Cortina, J.L. Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminum oxide modified natural zeolite. Chem. Eng. J. 2015, 271, 204–213. [Google Scholar] [CrossRef] [Green Version]
- Mitrogiannis, D.; Psychoyou, M.; Baziotis, I.; Inglezakis, V.J.; Koukouzas, N.; Tsoukalas, N.; Palles, D.; Kamitsos, E.; Oikonomou, G.; Markou, G. Removal of phosphate from aqueous solutions by adsorption onto Ca(OH) 2 treated natural clinoptilolite. Chem. Eng. J. 2017, 320, 510–522. [Google Scholar] [CrossRef]
- Mitrogiannis, D.; Psychoyou, M.; Koukouzas, N.; Tsoukalas, N.; Palles, D.; Kamitsos, E.; Pantazidis, A.; Oikonomou, G.; Baziotis, I. Phosphate recovery from real fresh urine by Ca(OH)2 treated natural zeolite. Chem. Eng. J. 2018, 347, 618–630. [Google Scholar] [CrossRef]
- Jiang, C.; Jia, L.; He, Y.; Zhang, B.; Kirumba, G.; Xie, J. Adsorptive removal of phosphorus from aqueous solution using sponge iron and zeolite. J. Colloid Interface Sci. 2013, 402, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Guaya, D.; Valderrama, C.; Farran, A.; Cortina, J.L. Modification of a natural zeolite with Fe(III) for simultaneous phosphate and ammonium removal from aqueous solutions. J. Chem. Technol. Biotechnol. 2016, 91, 1737–1746. [Google Scholar] [CrossRef]
- Loganathan, P.; Vigneswaran, S.; Kandasamy, J.; Bolan, N.S. Removal and Recovery of Phosphate from Water Using Sorption. Crit. Rev. Environ. Sci. Technol. 2014, 44, 847–907. [Google Scholar] [CrossRef]
- You, X.; Valderrama, C.; Cortina, J.L. Simultaneous recovery of ammonium and phosphate from simulated treated wastewater effluents by activated calcium and magnesium zeolites. J. Chem. Technol. Biotechnol. 2017, 92, 2400–2409. [Google Scholar] [CrossRef] [Green Version]
- Hermassi, M.; Valderrama, C.; Gibert, O.; Moreno, N.; Font, O.; Querol, X.; Batis, N.H.; Cortina, J.L. Integration of Powdered Ca-Activated Zeolites in a Hybrid Sorption–Membrane Ultrafiltration Process for Phosphate Recovery. Ind. Eng. Chem. Res. 2016, 55, 6204–6212. [Google Scholar] [CrossRef]
- Hermassi, M.; Dosta, J.; Valderrama, C.; Licon, E.; Moreno, N.; Querol, X.; Batis, N.H.; Cortina, J.L. Simultaneous ammonium and phosphate recovery and stabilization from urban sewage sludge anaerobic digestates using reactive sorbents. Sci. Total Environ. 2018, 630, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Pesonen, J.; Myllymäki, P.; Tuomikoski, S.; Vervecken, G.; Hu, T.; Prokkola, H.; Tynjälä, P.; Lassi, U. Use of Calcined Dolomite as Chemical Precipitant in the Simultaneous Removal of Ammonium and Phosphate from Synthetic Wastewater and from Agricultural Sludge. ChemEngineering 2019, 3, 40. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Wan, C.; Lee, D.-J.; Lei, Z.; Liu, X. Ammonium assists orthophosphate removal from high-strength wastewaters by natural zeolite. Sep. Purif. Technol. 2014, 133, 351–356. [Google Scholar] [CrossRef] [Green Version]
- Macha, I.; Boonyang, U.; Cazalbou, S.; Ben-Nissan, B.; Charvillat, C.; Oktar, F.; Grossin, D. Comparative study of Coral Conversion, Part 2: Microstructural evolution of calcium phosphate. J. Aust. Ceram. Soc. 2015, 51, 149–159. [Google Scholar]
- Loehr, R.C.; Prakasam, T.B.S.; Srinath, E.G.; Yoo, Y.D. Development and Demonstration of Nutrient Removal from Animal Wastes; EPA Report R2-73-095; U.S. Government Printing Office: Washington, DC, USA, 1973.
- Lubensky, J.; Ellersdorfer, M.; Stocker, K. Ammonium recovery from model solutions and sludge liquor with a combined ion exchange and air stripping process. J. Water Process Eng. 2019, 32, 100909. [Google Scholar] [CrossRef]
Initial Parameters | Zeolite Loading | ||||||
---|---|---|---|---|---|---|---|
Figure | Experiment | Ammonium | Phosphate | pH | qN,eq | qP,eq | qP(120′) |
(g NH4+ L−1) | (mg PO43− L−1) | (-) | (mg NH4+ g−1) | (mg PO43− g−1) | (mg PO43− g−1) | ||
1 | a1 | 514 | - | 5.47 | 10.49 | - | - |
2 | b | 544 | 122 | 8.00 | 12.53 | 4.78 | 0.95 |
c | 257 | 126 | 8.02 | 8.32 | 3.84 | 0.77 | |
3 | c | 257 | 126 | 8.02 | 8.32 | 3.84 | 0.77 |
d | 267 | 245 | 8.00 | 8.76 | 6.78 | 1.60 | |
a2 | 259 | - | 8.03 | 8.30 | - | - | |
4 | c | 257 | 126 | 8.02 | 8.32 | 3.84 | 0.77 |
e | 250 | 125 | 9.00 | 5.34 | 4.43 | 2.14 | |
5 | d | 267 | 245 | 8.00 | 8.76 | 6.78 | 1.60 |
f | 263 | 246 | 9.00 | 6.01 | 4.09 | 2.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pesendorfer, S.; Ellersdorfer, M. Kinetics of Simultaneous Ammonium and Phosphate Recovery by Natural Zeolite. ChemEngineering 2021, 5, 68. https://doi.org/10.3390/chemengineering5040068
Pesendorfer S, Ellersdorfer M. Kinetics of Simultaneous Ammonium and Phosphate Recovery by Natural Zeolite. ChemEngineering. 2021; 5(4):68. https://doi.org/10.3390/chemengineering5040068
Chicago/Turabian StylePesendorfer, Sandro, and Markus Ellersdorfer. 2021. "Kinetics of Simultaneous Ammonium and Phosphate Recovery by Natural Zeolite" ChemEngineering 5, no. 4: 68. https://doi.org/10.3390/chemengineering5040068
APA StylePesendorfer, S., & Ellersdorfer, M. (2021). Kinetics of Simultaneous Ammonium and Phosphate Recovery by Natural Zeolite. ChemEngineering, 5(4), 68. https://doi.org/10.3390/chemengineering5040068