Cooperativity between Dimerization and Binding Equilibria in the Ternary System Laponite-Indocyanine Green-Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Uv-Vis Spectroscopy
2.3. Samples Preparations
2.4. Dynamic Light Scattering
3. Results and Discussion
3.1. Z-Average Measurements
3.2. Absorption Spectra
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
LAP | Laponite |
ICG | Indocyanine green |
DLS | Dynamic Light Scattering |
References
- Jatav, S.; Joshi, Y.M. Chemical stability of Laponite in aqueous media. Appl. Clay Sci. 2014, 97, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Tomás, H.; Alves, C.S.; Rodrigues, J. Laponite®: A key nanoplatform for biomedical applications? Nanomed. Nanotechnol. Biol. Med. 2018, 14, 2407–2420. [Google Scholar] [CrossRef] [PubMed]
- Felbeck, T.; Behnke, T.; Hoffmann, K.; Grabolle, M.; Lezhnina, M.M.; Kynast, U.H.; Resch-Genger, U. Nile-Red–nanoclay hybrids: Red Emissive optical probes for use in aqueous dispersion. Langmuir 2013, 29, 11489–11497. [Google Scholar] [CrossRef] [PubMed]
- Cinelli, G.; Cuomo, F.; Ambrosone, L.; Colella, M.; Ceglie, A.; Venditti, F.; Lopez, F. Photocatalytic degradation of a model textile dye using Carbon-doped titanium dioxide and visible light. J. Water Process Eng. 2017, 20, 71–77. [Google Scholar] [CrossRef]
- Tabaraki, R.; Nateghi, A.; Yousefi, S.; Ahmady-Asbchin, S. Application of chemometric methods in modeling of competitive multidye biosorption from ternary system. J. Iran. Chem. Soc. 2017, 14, 285–296. [Google Scholar] [CrossRef]
- Azad, F.N.; Ghaedi, M.; Asfaram, A.; Jamshidi, A.; Hassani, G.; Goudarzi, A.; Azqhandi, M.A.; Ghaedi, A. Optimization of the process parameters for the adsorption of ternary dyes by Ni doped FeO (OH)-NWs–AC using response surface methodology and an artificial neural network. RSC Adv. 2016, 24, 19768–19779. [Google Scholar] [CrossRef]
- Cuomo, F.; Venditti, M.; Cinelli, G.; Ceglie, A.; Lopez, F. Olive mill wastewater (OMW) phenol compounds degradation by means of a visible light activated titanium dioxide-based photocatalyst. Z. Phys. Chem. 2016, 230, 1269–1280. [Google Scholar] [CrossRef]
- Cheong, W.; Prahl, S.A.; Welch, A.J. A review of the optical properties of biological tissues. IEEE J. Quant. Electron. 1990, 26, 2166–2185. [Google Scholar] [CrossRef] [Green Version]
- Philip, R.; Penzkofer, A.; Bäumler, W.; Szeimies, R.M.; Abels, C.A. Absorption and fluorescence spectroscopic investigation of indocyanine green. J. Photochem. Photobiol. A Chem. 1996, 96, 137–148. [Google Scholar] [CrossRef]
- Ikagawa, H.; Yoneda, M.; Iwaki, M.; Isogai, Z.; Tsujii, K.; Yamazaki, R.; Kamiya, T.; Zako, M. Chemical toxicity of indocyanine green damages retinal pigment epithelium. Investig. Ophthalmol. Vis. Sci. 2005, 46, 2531–2539. [Google Scholar] [CrossRef] [Green Version]
- Di Nezza, F.; Zeppa, L.; Costagliola, C.; Bufalo, G.; Ambrosone, L. A physicochemical study of ophthalmological vital dyes: From dimerization equilibrium in buffer solution to their liposomal dispersions. Dye Pigments 2019, 162, 680–687. [Google Scholar] [CrossRef]
- Jung, H.; Kim, H.-M.; Choy, Y.-B.; Hwang, S.-J.; Choy, J.-H. Itraconazole–Laponite: Kinetics and mechanism of drug release. Appl. Clay Sci. 2008, 1–4, 99–107. [Google Scholar] [CrossRef]
- Jung, H.; Kim, H.-M.; Choy, Y.-B.; Hwang, S.-J.; Choy, J.-H. Laponite-based nanohybrid for enhanced solubility and controlled release of itraconazole. Int. J. Pharm. 2008, 349, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Viseras, C.; Cerezo, P.; Sanchez, R.; Salcedo, I.; Aguzzi, C. Current challenges in clay minerals for drug delivery. Appl. Clay Sci. 2010, 48, 291–295. [Google Scholar] [CrossRef]
- Wang, S.; Wu, Y.; Guo, R.; Huang, Y.; Wen, S.; Shen, M.; Wang, J.; Shi, X. Laponite nanodisks as an efficient platform for doxorubicin delivery to cancer cells. Langmuir 2013, 29, 5030–5036. [Google Scholar] [CrossRef]
- Di Biasio, A.; Ambrosone, L.; Cametti, C. Numerical simulation of dielectric spectra of aqueous suspensions of non-spheroidal differently shaped biological cells. J. Phys. D Appl. Phys. 2008, 42, 025401. [Google Scholar] [CrossRef]
- Ambrosone, L.; Sartorio, R.; Vescio, A.; Vitagliano, V. Volumetric properties of aqueous solutions of ethylene glycol oligomers at 25 °C. J. Chem. Soc. Faraday Trans. 1996, 92, 1163–1166. [Google Scholar] [CrossRef]
- Jung, B.; Vullev, V.I.; Anvari, B. Revisiting indocyanine green: Effects Of serum and physiological temperature on absorption and fluorescence characteristics. IEEE J. Sel. Top. Quant. Electron. 2016, 20, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Xiang, J.; Chen, Z.; Yan, Y.; Ai, X.; Liu, Y.; Xu, G. Photoinduced electron transfer from the excited J-aggregate state of a thiacarbocyanine dye to TiO2 colloids. J. Colloids Interface Sci. 2002, 254, 195–199. [Google Scholar] [CrossRef]
- Bujdák, J.; Iyi, N.; Fujita, T. Aggregation and stability of 1,1′-diethyl-4, 4′-cyanine dye on the surface of layered silicates with different charge densities. Colloids Surf. A Physicochem. Eng. Asp. 2002, 1–3, 207–214. [Google Scholar]
- Di Nezza, F.; Guerra, G.; Costagliola, C.; Zeppa, L.; Ambrosone, L. Thermodynamic properties and photodegradation kinetics of indocyanine green in aqueous solution. Dye Pigments 2016, 134, 342–347. [Google Scholar] [CrossRef]
(M) | (%) | (M) | (M) |
---|---|---|---|
67.1 | 0 | 33.9 | 16.6 |
16.8 | 0 | 5.90 | 5.40 |
3.68 | 0 | 1.28 | 1.20 |
67.1 | 1 | 34.8 | 16.2 |
16.8 | 1 | 9.40 | 3.70 |
3.68 | 1 | 2.6 | 0.54 |
67.1 | 2 | 34.8 | 16.2 |
16.8 | 2 | 9.50 | 3.70 |
3.68 | 2 | 2.70 | 0.49 |
67.1 | 3 | 34.9 | 16.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cinelli, G.; Bufalo, G.; Lopez, F.; Ambrosone, L. Cooperativity between Dimerization and Binding Equilibria in the Ternary System Laponite-Indocyanine Green-Water. ChemEngineering 2021, 5, 6. https://doi.org/10.3390/chemengineering5010006
Cinelli G, Bufalo G, Lopez F, Ambrosone L. Cooperativity between Dimerization and Binding Equilibria in the Ternary System Laponite-Indocyanine Green-Water. ChemEngineering. 2021; 5(1):6. https://doi.org/10.3390/chemengineering5010006
Chicago/Turabian StyleCinelli, Giuseppe, Gennaro Bufalo, Francesco Lopez, and Luigi Ambrosone. 2021. "Cooperativity between Dimerization and Binding Equilibria in the Ternary System Laponite-Indocyanine Green-Water" ChemEngineering 5, no. 1: 6. https://doi.org/10.3390/chemengineering5010006
APA StyleCinelli, G., Bufalo, G., Lopez, F., & Ambrosone, L. (2021). Cooperativity between Dimerization and Binding Equilibria in the Ternary System Laponite-Indocyanine Green-Water. ChemEngineering, 5(1), 6. https://doi.org/10.3390/chemengineering5010006