Radon—The Element of Risk. The Impact of Radon Exposure on Human Health
Abstract
:1. Introduction
2. Chemical Properties of Radon
3. Natural Sources of Radon
Geographic Distribution of Radon
4. Radon in Buildings
5. Legal Regulations
6. Application of Radon as a Method of Treatment
7. Impact of High Doses of Radiation on Human Health
8. Radon Is an Aetiological Factor in Cancer and Noncancerous Diseases
8.1. Cancer Diseases
8.1.1. Occupational Radon Exposure
8.1.2. Indoor Radon Exposure
8.2. Noncancerous Diseases
9. Radon and Lung Cancer
10. Conclusions
Funding
Conflicts of Interest
References
- Grządziel, D.; Kozak, K.; Mazur, J.; Połednik, B.; Dudzińska, M.R.; Bilska, I. The influence of air conditioning changes on the effective dose due to radon and its short-lived decay products. Nukleonika 2016, 61, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Oakland, C.; Meliker, J.R. County-level radon and incidence of female thyroid cancer in Iowa, New Jersey, and Wisconsin, USA. Toxics 2018, 6, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Center for Biotechnology Information. PubChem Database. Radon; CID=24857. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Radon (accessed on 23 March 2020).
- Potemski, P.; Myśliwiec, M.; Pruszczyk, P. Nowotwory płuc. In Antczak; Wielka Interna Pulmonologia, part 1; Medical Tribune Polska: Warsaw, Poland, 2010. [Google Scholar]
- Keith, S.; Doyle, J.R.; Harper, C.; Warsaw Mumtaz, M.; Tarrago, O.; Wohlers, D.W.; Diamond, G.L.; Citra, M.; Barber, L.E. Toxicological profile for radon. Atlanta (GA): Agency for toxic substances and disease registry (US); 2012 May. Table 4–2; Physical, Chemical, and Radiological Properties of Radon. Available online: https://www.ncbi.nlm.nih.gov/books/NBK158787/table/T22/ (accessed on 2 December 2020).
- COUNCIL DIRECTIVE 2013/59/EURATOM of 5 December 2013. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/PDF/?uri=CELEX:32013L0059&from=PL (accessed on 2 December 2020).
- Tangen, J.A.; Jaworska, A. Treatment of acute radiation injuries. Tidsskr Nor Legeforen 2013, 133, 2164. [Google Scholar] [CrossRef] [PubMed]
- Miró, C.; Andrade, E.; Reis, M.; Madruga, M.J. Development of a couple of methods for measuring radon exhalation from building materials commonly used in the Iberian Peninsula. Radiat. Prot. Dosim. 2014, 160, 177–180. [Google Scholar] [CrossRef]
- National Atomic Energy Agency. Annual Report—Activities of the President of the National Atomic Energy Agency and Assessment of Nuclear Safety and Radiological Protection in Poland in 2018; National Atomic Energy Agency: Warsaw, Poland, 2019. [Google Scholar]
- Kumar, A.; Chauhan, R.P.; Joshi, M.; Sahoo, B.K. Modeling of indoor radon concentration from radon exhalation rates of building materials and validation through measurements. J. Environ. Radioact. 2014, 127, 50–55. [Google Scholar] [CrossRef]
- Zapotoczna-Sytek, G.; Mamont-Cieśla, K.; Rybarczyk, T. The radioactivity building products; in this products of autoclaved aerated concrete [Naturalna promieniotwórczość wyrobów budowlanych; w tym autoklawizowanego betonu komórkowego (ABK)]. Przegląd Budowlany 2012, 83, 39–42. [Google Scholar]
- UNITED NATIONS. UNSCEAR 2000 Report to the General Assembly; with Scientific Annexes—Annex B Exposures from natural radiation sources; United Nations: New York, NY, USA, 2000. [Google Scholar]
- Mazur, J.; Kozak, K. Complementary system for long term measurements of radon exhalation rate from soil. Rev. Sci. Instrum. 2014, 85, 022104. [Google Scholar] [CrossRef]
- Vaupotič, J.; Gregorič, A.; Kobal, I.; Žvab, P.; Kozak, K.; Mazur, J.; Kochowska, E.; Grządziel, D. Radon concentration in soil gas and radon exhalation rate at the Ravne Fault in NW Slovenia. Nat. Hazards Earth Syst. Sci. 2010, 10, 895–899. [Google Scholar] [CrossRef]
- Cinelli, M.; De Cort, G.; Tollefsen, T.; Cinelli, G.; De Cort, M.; Tollefsen, T.; Achatz, M.; Ajtic, J.; Ballabio, C.; Bartnet, I.; et al. European Atlas of Natural Radiation; Publication Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Przylibski, T.A. Budowa geologiczna Sudetów jako przyczyna występowania wzmożonej emisji radonu do atmosfery. In Proceedings of the Raport Nr 1967/AP Materiały konferencyjne II Ogólnopolska Konferencja “Radon w Środowisku”, Kraków, Poland, 20–21 September 2005. [Google Scholar]
- Przylibski, T.; Zebrowski, A.; Karpińska, M.; Kapała, J.; Kozak, K.; Mazur, J.; Grządziel, D.; Mamont-Cieśla, K.; Stawarz, O.; Kozłowska, B.; et al. Mean annual 222 Rn concentration in homes located in different geological regions of Poland e first approach to whole country area. J. Environ. Radioact. 2011, 102, 735–741. [Google Scholar] [CrossRef]
- Przylibski, T.A. Estimating the radon emanation coefficient from crystalline rocks into groundwater. Appl. Radiat. Isot. 2000, 53, 473–479. [Google Scholar] [CrossRef]
- Przylibski, T.A. Radon jako składnik swoisty wód leczniczych Sudetów. In Proceedings of the Raport Nr 1967/AP Materiały konferencyjne II Ogólnopolska Konferencja “Radon w Środowisku”, Kraków, Poland, 20–21 September 2005. [Google Scholar]
- Kozak, K.; Mazur, J.; Kozlowska, B.; Karpinska, M.; Przylibski, T.A.; Mamont-Cieśla, K.; Grządziel, D.; Stawarz, O.; Wysocka, M.; Dorda, J.; et al. Correction factors for determination of annual average radon concentration in dwellings of Poland resulting from seasonal variability of indoor radon. App. Radiat. Isot. 2011, 69, 1459–1465. [Google Scholar] [CrossRef] [PubMed]
- Gray, A.; Read, S.; McGale, P.; Darby, S. Lung cancer deaths from indoor radon and the cost effectiveness and potential of policies to reduce them. BMJ 2009, 338, a3110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Momin, B.; McNaughton, C.; Galanek, J.D.; Neri, A.; Gallaway, M.S.; Puckett, M. A qualitative study of Realtor knowledge, attitudes, and practices related to radon health effects: Implications for comprehensive cancer control. Cancer Causes Control 2018, 29, 1249–1255. [Google Scholar] [CrossRef] [PubMed]
- Zeeb, H.; Shannoun, F. (Eds.) WHO Handbook on Indoor Radon: A Public Health Perspective; World Health Organization: Geneva, Switzerland, 2009; ISBN 9789241547673. [Google Scholar]
- Tollefsen, T.; Cinelli, G.; Bossew, P.; Gruber, V.; De Cort, M. From the European indoor radon map towards an atlas of natural radiation. Radiat. Prot. Dosim. 2014, 162, 129–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blomberg, A.J.; Coull, B.A.; Jhun, I.; Vieira, C.L.Z.; Zanobetti, A.; Garshick, E.; Schwartz, J.; Koutrakis, P. Effect modification of ambient particle mortality by radon: A time series analysis in 108 U.S. cities. J. Air Waste Manag. Assoc. 2019, 69, 266–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozak, K.; Śmiałek, A. Radon—Jak się przed nim chronić. Murator 2009, 12, 109–113. [Google Scholar]
- Kropat, G.; Bochud, F.; Jaboyedoff, M.; Laedermann, J.; Murith, C.; Palacios, M.; Baechler, S. Major influencing factors of indoor radon concentrations in Switzerland. J. Environ. Radioact. 2014, 129, 7–22. [Google Scholar] [CrossRef]
- Nazaroff, W.W. Radon transport from soil to air. Rev. Geophys. 1992, 30, 137–160. [Google Scholar] [CrossRef]
- Yu, K.N.; Chan, T.F.; Young, E.C. The variation of radon exhalation rates from building surfaces of different ages. Health Phys. 1995, 68, 716–718. [Google Scholar] [CrossRef]
- Kendall, G.; Rees, D.; Wakeford, R.; Bunch, K.J.; Vincent, T.J.; Little, M.P. Variation with socioeconomic status of indoor radon levels in Great Britain: The less affluent have less radon. J. Environ. Radioat. 2016, 164, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Vasilyev, A.V.; Zhukovsky, M.V. Determination of mechanisms and parameters which affect radon entry into a room. J. Environ. Radioact. 2013, 124, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Pershagen, G.; Akerblom, G.; Axelson, O.; Clavensjo, B.; Damber, L.; Desai, G.; Enflo, A.; Lagarde, F.; Mellander, H.; Svartengren, M.; et al. Residential radon exposure and lung cancer in Sweden. N. Engl. J. Med. 1994, 20, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Regulation of the Council of Ministers of 2 January 2007; concerning the content of natural radioactive isotopes of potassium K-40; radium Ra-226 and thorium Th-228 in raw materials and materials used in buildings designed to accommodate people and livestock; as well as in industrial waste used in construction industry; and the procedures for controlling the content of these isotopes; Journal of Laws of 2007; no. 4; item 29. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20070040029 (accessed on 2 December 2020).
- Żak, A.; Biernacka, M.; Lipinski, P.; Mamont-Ciesla, K. The results of measurements of building materials in Poland in the context of the indoor 222 Rn concentration limitation. Sci. Total Environ. 2001, 272, 105–106. [Google Scholar] [CrossRef]
- Yarmoshenko, I.V.; Onishchenko, A.D.; Malinovsky, G.P.; Vasilyev, A.V.; Nazarov, E.I.; Zhukovsky, M.V. Radon concentration in conventional and new energy efficient multi-storey apartment houses: Results of survey in four Russian cities. Sci. Rep. 2020, 10, 18136. [Google Scholar] [CrossRef]
- Neri, A.; Stewart, S.L.; Angell, W. Radon control activities for lung cancer prevention in national comprehensive cancer control program plans, 2005–2011. Prev. Chronic Dis. 2013, 10, 120337. [Google Scholar] [CrossRef] [Green Version]
- Baeza, A.; García-Panigua, J.; Guillén, J.; Montalbáan, B. Influence of architectural style on indoor radon concentration in a radon prone area: A case study. Sci. Total. Environ. 2018, 610–611, 258–266. [Google Scholar] [CrossRef]
- Bochicchio, F.; Ampollini, M.; Antignani, S.; Caccia, B.; Caprio, M.; Carpentieri, C.; Di Carlo, C.; Nuccetelli, C.; Pozzi, S.; Valentini, S.; et al. A short summary of past and recent activities on protection from radon exposure carried out by the Italian National Institute of Health. Contemp. Mat. 2020, XI-1. [Google Scholar] [CrossRef]
- Finne, I.E.; Kolstad, T.; Larsson, M.; Olsen, B.; Prendergast, J.; Rudjord, A.L. Significant reduction in indoor radon in newly built houses. J. Environ. Radioact. 2019, 196, 259–263. [Google Scholar] [CrossRef]
- The United States Environmental Protection Agency. EPA 402/K-13/002; March 2018 (revised). Available online: www.epa.gov/radon (accessed on 2 December 2020).
- Maggiore, G.; De Filippis, G.; Totaro, T.; Tamborino, B.; Idolo, A.; Castorini, I.F.; Valenzano, B.; Riccio, A.; Miani, A.; Caricato, A.P.; et al. Evaluation of radon exposure risk and lung cancer incidence/mortality in South-eastern Italy. J. Prev. Med. Hyg. 2020, 61, E31–E38. [Google Scholar]
- The Decree of the Minister of Health of 13 November 2015 on the quality of drinking water intended for consumption; Journal of Laws 2015; item 1989; Attach 7. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20150001989 (accessed on 2 December 2020).
- Pachocki, K.A.; Gorzkowski, B.; Różycki, Z. Radon 222 in drinking water from Jelenia Gora area. Roczniki Panstwowego Zakladu Higieny 2001, 52, 237–246. [Google Scholar]
- The Decree of the Minister of Health of 7th December 2017 on the quality of drinking water intended for consumption; 2017 item 2294. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20170002294 (accessed on 2 December 2020).
- Atomic Law of Poland; Journal of Laws of 29th November 2019; Item 1792. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190001792 (accessed on 2 December 2020).
- International Atomic Energy Agency. IAEA Safety Standards for Protecting People and the Environment; Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards; General Safety Requirements Part 3; International Atomic Energy Agency: Vienna, Austria, 2014. [Google Scholar]
- Regulation oft he Polish Council of Ministers of 18 January 2005 on the limit dose of ionising radiation. J. Laws 2005, 20, 168. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20050200168 (accessed on 2 December 2020).
- Coreţchi, L.; Overcenco, A. European Council and international recommendations on radon exposure risk control. Arta Med. 2020, 77, 103–106. [Google Scholar]
- Hill, W.G.; Butterfield, P.; Larsson, L.S. Rural parents’ perceptions of risks associated with their children’s exposure to radon. Public Health Nurs. 2006, 23, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Henderson, S.B.; Kosatsky, T.; Barn, P. How to ensure that national radon survey results are useful for public health practice. Can. J. Public Health 2012, 103, 231–234. [Google Scholar] [CrossRef] [PubMed]
- RADPAR. Radon Risk Communications Strategies. Published online 2011. Available online: https://webgate.ec.europa.eu/chafea_pdb/assets/files/pdb/20081217/20081217_d12_en_ps.pdf (accessed on 27 November 2020).
- Acree, P.; Puckett, M.; Neri, A. Evaluating Progress in Radon Control Activities for Lung Cancer Prevention in National Comprehensive Cancer Control Program Plans, 2011–2015. J. Community Health 2017, 42, 962–967. [Google Scholar] [CrossRef]
- Bersimbaev, R.I.; Bulgakova, O. The health effects of radon and uranium on the population of Kazakhstan. Genes Environ. 2015, 37, 18. [Google Scholar] [CrossRef] [Green Version]
- Eisenbud, M.; Gessel, T. Environmental Radioactivity from Natural; Industrial and Military Sources; Academic Press: San Diego, CA, USA, 1997; p. 3. [Google Scholar]
- National Research Council. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2; The National Academies Press: Washington, DC, USA, 2006. [Google Scholar] [CrossRef]
- Przylibski, T. Radon and radiative hormesis or from enthusiasm to damnation—One hundred years of opinion changing. In Proceedings of the Raport Nr 1967/AP Materiały konferencyjne II Ogólnopolska Konferencja “Radon w Środowisku”, Kraków, Poland, 20–21 September 2005. [Google Scholar]
- Zdrojewicz, Z.; Strzelczyk, J. Radon treatment controversy. Dose-Response 2006, 4, 106–118. [Google Scholar] [CrossRef] [Green Version]
- Regulation of the Minister of Health of 13 April 2006 on the scope of the studies required to determine the medicinal properties of natural medicinal resources and medicinal properties of climate; the criteria for their evaluation and a specimen certificate confirming these proper-ties; Journal of Laws [Dz. U.] No. 80/2006, Attach. 4; item 565. 2006. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20060800565 (accessed on 2 December 2020).
- Zestawienie rodzajów i zasobów kopalin leczniczych w polskich uzdrowiskach. Available online: http://www2.mz.gov.pl/wwwmz/index?mr=m111111&ms=0&ml=pl&mi=534&mx=0&mt=&my=0&ma=010283 (accessed on 15 August 2019).
- Ponikowska, I. Wykaz standardowych procedur uzdrowiskowych zalecanych przez Krajowego Konsultanta do wykonywania w zakładach lecznictwa uzdrowiskowego; oraz proponowany do kontraktowania przez NFZ. Available online: http://www.balneologia.lo.pl/metody_balneolog.html (accessed on 15 August 2019).
- Becker, K. Health effects of high radon environments in Central Europe: Another test for the LNT hypothesis? Nonlinearity Biol. Toxicol. Med. 2003, 1, 3–35. [Google Scholar] [CrossRef] [Green Version]
- Zdrojewicz, Z.; Belowska-Bień, K. Radon and ionizing radiation in the human body. Postępy Higieny i Medycyny Doświadczalnej 2004, 58, 150–157. [Google Scholar]
- Waszczykowska, E.; Dąbkowski, J. Leczenie uzdrowiskowe wybranych chorób skóry w Lądku Zdroju. Folia Medica Lodziensisa 2002, 29, 95–101. [Google Scholar]
- Joss, A.; Kochański, J.W.; Karasek, M. Radonoterapia w chorobach naczyń obwodowych. Folia Medica Lodziensia 2002, 29, 79–93. [Google Scholar]
- Kojima, S.; Cuttler, J.M.; Shimura, N.; Koga, H.; Murata, A.; Kawashima, A. Radon therapy for autoimmune diseases pemphigus and diabetes: 2 case reports. Dose-Response 2019, 17, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Møller, A.P.; Mousseau, T.A. Strong effects of ionizing radiation from Chernobyl on mutation rates. Sci. Rep. 2015, 5, 8363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marino, F.; Nunziata, L. Long-term consequences of the Chernobyl radioactive fallout: An exploration of the aggregate data. Milbank Q. 2018, 96, 814–857. [Google Scholar] [CrossRef] [PubMed]
- Beresford, N.A.; Scott, E.M.; Copplestone, D. Field effects studies in the Chernobyl exclusion zone: Lessons to be learnt. J. Environ. Radioact. 2020, 211, 105893. [Google Scholar] [CrossRef]
- Burgio, E.; Piscitelli, P.; Migliore, L. Ionizing radiation and human health: Reviewing models of exposure and mechanisms of cellular damage. An epigenetic perspective. Int. J. Environ. Res. Public Health 2018, 15, 1971. [Google Scholar] [CrossRef] [Green Version]
- Dörr, H.; Meineke, V. Acute radiation syndrome caused by accidental radiation exposure—Therapeutic principles. BMC Med. 2011, 9, 126. [Google Scholar] [CrossRef] [Green Version]
- Grammaticos, P.; Giannoula, E.; Fountos, G.P. Acute radiation syndrome and chronic radiation syndrome. Hell. J. Nucl. Med. 2013, 16, 56–59. [Google Scholar]
- Zaballa, I.; Eidemüller, M. Mechanistic study on lung cancer mortality after radon exposure in the Wismut Cohort supports important role of clonal expansion in lung carcinogenesis. Radiat. Environ. Biophys. 2016, 55, 299–315. [Google Scholar] [CrossRef] [Green Version]
- Krishna Moorthy, H.; Venugopal, P. Strategies for prostate cancer prevention: Review of the literature. Indian J. Urol. 2008, 24, 295–302. [Google Scholar]
- Meyskens, F.L., Jr.; Tully, P. Principles of cancer prevention. Semin. Oncol. Nurs. 2005, 21, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Klaunig, J.E.; Kamendulis, L.M. The role of oxidative stress in carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 239–267. [Google Scholar] [CrossRef] [PubMed]
- Butterworth, B.E. Consideration of both genotoxic and nongenotoxic mechanisms in predicting carcinogenic potential. Mutat. Res. 1990, 239, 117–132. [Google Scholar] [CrossRef]
- Prise, K.M.; Pinto, M.; Newman, H.C.; Michael, B.D. A review of studies of ionizing radiation-induced double-strand break clustering. Radiat. Res. 2001, 156, 572–576. [Google Scholar] [CrossRef]
- Schüz, J.; Espina, C.; Villain, P.; Herrero, R.; Leon, M.E.; Minozzi, S.; Romieu, I.; Segnan, N.; Wardle, J.; Wiseman, M.; et al. European Code against Cancer 4th Edition: 12 ways to reduce your cancer risk. Cancer Epidemiol. 2015, 39 (Suppl. 1), S1–S10. [Google Scholar] [CrossRef] [PubMed]
- Darby, S.; Hill, D.; Auvinen, A.; Barros-Dios, J.M.; Baysson, H.; Bochicchio, F.; Deo, H.; Falk, R.; Forastiere, F.; Hakama, M.; et al. Radon in homes and risk of lung cancer: Collaborative analysis of individual data from 13 European case-control studies. BMJ 2005, 330, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henshaw, D.L.; Eatough, J.P.; Richardson, R.B. Radon as a causative factor in induction of myeloid leukaemia and other cancers. Lancet 1990, 335, 1008–1012. [Google Scholar] [CrossRef]
- Bräuner, E.V.; Andersen, Z.J.; Andersen, C.E. Residential radon and brain tumour incidence in a Danish cohort. PLoS ONE 2013, 16, e74435. [Google Scholar] [CrossRef]
- Schubauer-Berigan, M.K.; Daniels, R.D.; Pinkerton, L.E. Radon exposure and mortality among white and American Indian uranium miners: An update of the Colorado Plateau cohort. Am. J. Epidemiol. 2009, 169, 718–730. [Google Scholar] [CrossRef] [Green Version]
- Salgado-Espinosa, T.; Barros-Dios, J.M.; Ruano-Ravina, A. Radon exposure and oropharyngeal cancer risk. Cancer Lett. 2015, 369, 45–49. [Google Scholar] [CrossRef]
- Khaing, N.E.E.; Abuduxike, G.; Posadzki, P.; Divakar, U.; Visvalingam, N.; Nazeha, N.; Dunleavy, G.; Christopoulos, G.I.; Soh, C.; Jarbrink, K.; et al. Review of the potential health effects of light and environmental exposures in underground workplaces. Tunn. Undergr. Space Technol. 2019, 84, 201–209. [Google Scholar]
- Darby, S.C.; Whitely, E.; Howe, G.R.; Hutchings, S.J.; Kusiak, R.A.; Lubin, J.H.; Morrison, H.I.; Tirmarche, M.; Tomasek, L.; Radford, E.P.; et al. Radon and cancers other than lung cancer in underground miners: A collaborative analysis of 11 studies. JNCI 1995, 87, 378–384. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Health Effects of Exposure to Radon: BEIR VI; The National Academies Press: Washington, DC, USA, 1999. [Google Scholar] [CrossRef]
- Řeřicha, V.; Kulich, M.; Řeřicha, R.; Shore, D.L.; Sandler, D.P. Incidence of leukemia, lymphoma, and multiple myeloma in Czech uranium miners: A case–cohort study. Environ. Health Perspect. 2006, 114, 818–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomasek, L.; Darby, S.C.; Swerdlow, A.J.; Placek, V.; Kunz, E. Radon exposure and cancers other than lung cancer among uranium miners in West Bohemia. Lancet 1993, 341, 919–923. [Google Scholar] [CrossRef]
- Morrison, H.E.; Semenenciw, R.M.; Mao, Y.; Wigle, D.T. Cancer mortality among a group of fluorspar miners exposed to radon progeny. Am. J. Epidemiol. 1988, 128, 1266. [Google Scholar] [CrossRef]
- Skowronek, J.; Zemla, B. Epidemiology of lung and larynx cancers in coal mines in Upper Silesia—Preliminary results. Health Phys. 2003, 85, 365–370. [Google Scholar] [CrossRef]
- Seo, S.; Ha, W.H.; Kang, J.K.; Lee, D.; Park, S.; Kwon, T.E.; Jin, Y.W. Health effects of exposure to radon: Implications of the radon bed mattress incident in Korea. Epidemiol. Health 2019, 41, e2019004. [Google Scholar] [CrossRef] [Green Version]
- Al-Zoughool, M.; Krewski, D. Health effects of radon: A review of the literature. Int. J. Radiat. Biol. 2009, 85, 57–69. [Google Scholar] [CrossRef]
- Smith, B.J.; Zhang, L.; Field, W. Iowa radon leukaemia study: A hierarchical population risk model for spatially correlated exposure measured with error. Stat. Med. 2007, 26, 4619–4642. [Google Scholar] [CrossRef]
- Thorne, R.; Foreman, N.K.; Mott, M.G. Radon in Devon and Cornwall and paediatric malignancies. Eur. J. Cancer 1996, 32A, 282–285. [Google Scholar] [CrossRef]
- Raaschou-Nielsen, O. Indoor radon and childhood leukaemia. Radiat. Prot. Dosim. 2008, 132, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Butland, B.K.; Muirhead, C.R.; Draper, G.J. Radon and leukemia. Lancet 1990, 335, 1338–1339. [Google Scholar]
- Kohli, S.; Noorlind, B.H.; Lofman, O. Childhood leukaemia in areas with different radon levels: A spatial and temporal analysis using GIS. J. Epidemiol. Community Health 2000, 54, 822–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evrard, A.S.; Hemon, D.; Billon, S.; Laurier, D.; Jougla, E.; Tirmarche, M.; Clavel, J. Childhood leukemia incidence and exposure to indoor radon, terrestrial and cosmic gamma radiation. Health Phys. 2006, 90, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Kendall, G.M.; Smith, T.J. Doses from radon and its decay products to children. J. Radiol. Prot. 2005, 25, 241–256. [Google Scholar] [CrossRef]
- Vienneau, D.; De Hoogh, K.; Hauri, D.; Vicedo-Cabrera, A.M.; Schindler, C.; Huss, A.; Roosli, M. Effects of radon and UV exposure on skin cancer mortality in Switzerland. Environ. Health Perspect. 2017. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, B.W.; Kothencz, G.; Pollard, A.S. Geography of non-melanoma skin cancer and ecological associations with environmental risk factors in England. Br. J. Cancer 2013, 109, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Bräuner, E.V.; Loft, S.; Sørensen, M.; Jensen, A.; Andersen, C.E.; Ulbak, K.; Hertel, O.; Pedersen, C.; Tjønneland, A.; Kjær, S.K.; et al. Residential radon exposure and skin cancer incidence in a prospective Danish cohort. PLoS ONE 2015, 10, e0135642. [Google Scholar] [CrossRef] [Green Version]
- Torres-Durán, M.; Barbosa-Lorenzo, R.; Ramiset, R.; Aragones, N.; Carbailleira-Roca, C.; Fernandez-Villar, A.; Lopez-Abente, G.; Barros-Dios, J.M.; Ruano-Ravina, A. Residential radon and COPD. An ecological study in Galicia, Spain. Eur. Respir. J. 2016, 48 (Suppl. 60), PA3122. [Google Scholar] [CrossRef]
- Langlois, P.D.; Lee, M.; Lupo, P.J. Residential radon and birth defects: A population-based assessment. Birth Defects Res. A Clin. Mol. Teratol. 2016, 106, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Groves-Kirkby, C.; Denman, A.; Campbell, J.; Crockett, R.G.; Phillips, P.S.; Rogers, S. Is environmental radon gas associated with the incidence of neurodegenerative conditions? A retrospective study of multiple sclerosis in radon affected areas in England and Wales. J. Environ. Radioact. 2016, 154, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Thabayneh, K.M. Measurement of 222Rn concentration levels in drinking water and the associated health effects in the Southern part of Westbank—Palestine. Appl. Radiat. Isot. 2015, 103, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Auvinen, A.; Salonen, L.; Pekkanen, J.; Pukkala, E.; Ilus, T.; Kurttio, P. Radon and other natural radionuclides in drinking water and risk of stomach cancer: A case-cohort study in Finland. J. Cancer 2005, 114, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Kjellberg, S.; Wiseman, J.S. The relationship of radon to gastrointestinal malignancies. Am. Surg. 1995, 61, 822–825. [Google Scholar] [PubMed]
- Balásházy, I.; Hofmann, W. Quantification of local deposition patterns of inhaled radon decay products in human bronchial airway bifurcations. Health Phys. 2000, 78, 147–158. [Google Scholar] [PubMed]
- COUNCIL DIRECTIVE 2013/59/EURATOM of 5 December 2013; Introduction; p.22. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/201505_fifth_review_meeting_of_contracting_parties.pdf (accessed on 2 December 2020).
- Vahakangas, K.H.; Metcalf, R.A.; Welsh, J.A.; Bennett, W.P.; Harris, C.C.; Samet, J.M.; Lane, D.P. Mutations of p53 and ras genes in radon-associated lung cancer from uranium miners. Lancet 1992, 339, 576–580. [Google Scholar] [CrossRef]
- Robertson, A.; Allen, J.; Laney, R.; Curnow, A. The cellular and molecular carcinogenic effects of radon exposure: A review. Int. J. Mol. Sci. 2013, 14, 14024–14063. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, X.; Tong, J. Radon-induced alterations in p53-mediated energy metabolism of malignantly transformed human bronchial epithelial cells. J. Toxicol. Environ. Health A 2016, 79, 436–441. [Google Scholar] [CrossRef]
- Liu, X.; Sun, B.; Wang, X. Synergistic effect of radon and sodium arsenite on DNA damage in HBE cells. Environ. Toxicol. Pharmacol. 2016, 41, 127–131. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, D.; Gu, C. Down-regulation of let-7 microRNA increased K-ras expression in lung damage induced by radon. Environ. Toxicol. Pharmacol. 2015, 40, 541–548. [Google Scholar] [CrossRef]
- Torres-Durán, M.; Ruano-Ravina, A.; Parente-Lamelas, I.; Leiro Fernandez, V.; Nallib, I.A.; Provencio, M.; Abal-Arca, J.; Castro-Anon, O.; Montero-Matinez, C.; Vidal-Garcia, I.; et al. Is residential radon associated with mutations in drivers genes in never smokers lung cancer cases? The case of EGFR and ALK. Eur. Respir. J. 2016, 48 (Suppl. 60), PA2803. [Google Scholar] [CrossRef]
- Taga, M.; Mechanic, L.E.; Hagiwara, N.; Vähäkangas, K.H.; Bennett, W.P.; Alavanja, M.C.R.; Welsh, J.A.; Khan, M.A.; Lee, A.; Diasio, R.; et al. EGFR somatic mutations in lung tumors: Radon exposure and passive smoking in former- and never-smoking U.S. women. Cancer Epidemiol. Biomark. Prev. 2012, 21, 988–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mezquita, L.; Barlesi, F.; Auclin, E.; Planchard, D.; Botticella, A.; Gazzah, A.; Lavaud, A.; Aboubakar Nana, F.; Lepechoux, C.; Besse, B. Molecular alterations and estimated indoor radon in NSCLC patients from The French National Cancer Institute Registry. In Proceedings of the Radon France Study IASLC 19th World Conference on te Lung Cancer, Toronto, ON, Canada, 23–26 September 2018. [Google Scholar]
- Mezquita, L.; Benito, A.; Ruano-Raviña, A.; Zamora, J.; Olmedo, M.E.; Reguera, P.; Madariaga, A.; Villamayor, M.; Cortez, S.P.; Gorospe, L.; et al. Indoor radon in EGFR- and BRAF-mutated and ALK-rearranged non-small-celllLung cancer patients. Clin. Lung Cancer 2019, 20, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Jassem, J. Nowotwory płuca i opłucnej. In Interna Szczeklika 2019; Medycyna Praktyczna: Cracow, Poland, 2019. [Google Scholar]
- Leng, S.; Thomas, C.L.; Snider, A.M.; Picchi, M.A.; Chen, W.; Willis, D.G.; Carr, T.G.; Krzeminski, J.; Desai, D.; Shantu, A.; et al. Radon exposure, IL-6 promoter variants, and lung squamous cell carcinoma in former uranium miners. Environ. Health Perspect. 2016, 124, 445–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.Q.; Foreman, M.G.; Shumansky, K.; Zhang, X.; Akhabir, L.; Sin, D.D.; Man, S.F.; De Meo, D.L.; Litonjua, A.A.; Silverman, E.K.; et al. Associations of IL6 polymorphisms with lung function decline and COPD. Thorax 2009, 64, 698–704. [Google Scholar] [CrossRef] [Green Version]
- Corrales, L.; Rosell, R.; Cardona, A.F.; Martín, C.; Zatarain-Barrón, Z.L.; Arrieta, O. Lung cancer in never smokers: The role of different risk factors other than tobacco smoking. Crit. Rev. Oncol. Hematol. 2020, 148, 102895. [Google Scholar] [CrossRef]
- Lantz, P.M.; Mendez, D.; Philbert, M.A. Radon, smoking, and lung cancer: The need to refocus radon control policy. Am. J. Public Health 2013, 103, 443–447. [Google Scholar] [CrossRef]
- Torres-Durán, M.; Ruano-Ravina, A.; Parente-Lamelas, I.; Leiro-Fernández, V.; Abal-Arca, J.; Montero-Martínez, C.; Pena-Álvarez, C.; Castro-Añón, O.; Golpe-Gómez, A.; Martínez, C.; et al. Residential radon and lung cancer characteristics in never smokers. Int. J. Radiat. Biol. 2015, 91, 605–610. [Google Scholar] [CrossRef]
- Lubin, J.H.; Boice, J.D.; Edling, C.J.; Hornung, R.W.; Howe, G.R.; Kunz, E.; Kusiak, R.A.; Morrison, H.I.; Radford, E.P.; Samet, J.M.; et al. Lung cancer in radon-exposed miners and estimation of risk from indoor exposure. JNCI 1995, 87, 817–827. [Google Scholar] [CrossRef]
- Lino, A.R.; Abrahão, C.M.; Amarante, M.P.; de Sousa Cruz, M.R. The role of the implementation of policies for the prevention of exposure to Radon in Brazil—A strategy for controlling the risk of developing lung cancer. Ecancermedicalscience 2015, 9, 572. [Google Scholar] [CrossRef] [Green Version]
- Zieliński, J.M.; Kodell, R.L.; Krewski, D. Interaction between two carcinogens in the two-stage clonal expansion model of carcinogenesis. J. Epidemiol. Biostat. 2001, 6, 219–228. [Google Scholar] [CrossRef]
- Monchaux, G.; Morlier, J.P.; Morin, M.; Chameaud, J.; Lafuma, J.; Masse, R. Carcinogenic and cocarcinogenic effects of radon and radon daughters in rats. Environ. Health Perspect. 1994, 102, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Park, E.J.; Lee, H.; Kim, H.C.; Sheen, S.S.; Koh, S.B.; Park, K.S.; Cho, N.H.; Lee, C.M.; Kang, D.R. Residential radon exposure and cigarette smoking in association with lung cancer: A matched case-control study in Korea. Int. J. Environ. Res. Public Health 2020, 17, 2946. [Google Scholar] [CrossRef] [PubMed]
- Vogeltanz-Holma, N.; Schwartz, G.G. Radon and lung cancer: What does the public really know? J. Environ. Radioact. 2018, 192, 26–31. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzywa-Celińska, A.; Krusiński, A.; Mazur, J.; Szewczyk, K.; Kozak, K. Radon—The Element of Risk. The Impact of Radon Exposure on Human Health. Toxics 2020, 8, 120. https://doi.org/10.3390/toxics8040120
Grzywa-Celińska A, Krusiński A, Mazur J, Szewczyk K, Kozak K. Radon—The Element of Risk. The Impact of Radon Exposure on Human Health. Toxics. 2020; 8(4):120. https://doi.org/10.3390/toxics8040120
Chicago/Turabian StyleGrzywa-Celińska, Anna, Adam Krusiński, Jadwiga Mazur, Katarzyna Szewczyk, and Krzysztof Kozak. 2020. "Radon—The Element of Risk. The Impact of Radon Exposure on Human Health" Toxics 8, no. 4: 120. https://doi.org/10.3390/toxics8040120
APA StyleGrzywa-Celińska, A., Krusiński, A., Mazur, J., Szewczyk, K., & Kozak, K. (2020). Radon—The Element of Risk. The Impact of Radon Exposure on Human Health. Toxics, 8(4), 120. https://doi.org/10.3390/toxics8040120