An Integrated Approach Involving Metabolomics and Transcriptomics Reveals Arsenic-Induced Toxicity in Human Renal Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Cell Culture
2.3. Cell Viability Assays
2.4. Metabolomic Assays and Data Analysis
2.5. Transcriptome Sequencing and Data Analysis
2.6. Reverse Transcription–Quantitative PCR (RT-qPCR)
2.7. Integrated Analysis of Metabolomics and Transcriptomics
2.8. Statistical Analysis
3. Results
3.1. Cell Viability and Morphology of HEK-293 Cells After Incubation with Sodium Arsenite
3.2. Metabolomic Profiling of the HEK-293 Cells in Response to Arsenic
3.3. Transcriptomic Profiling of the HEK-293 Cells in Response to Arsenic
3.4. Joint Pathway Analysis of DMs and DEGs
3.5. Lipid Metabolism Pathway Alterations
3.6. Purine Metabolism Pathway Alterations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahaman, M.S.; Rahman, M.M.; Mise, N.; Sikder, M.T.; Ichihara, G.; Uddin, M.K.; Kurasaki, M.; Ichihara, S. Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environ. Pollut. 2021, 289, 117940. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.-Y.; Yu, S.-D.; Hong, Y.-S. Environmental source of arsenic exposure. J. Prev. Med. Public Health 2014, 47, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Nurchi, V.M.; Djordjevic, A.B.; Crisponi, G.; Alexander, J.; Bjørklund, G.; Aaseth, J. Arsenic Toxicity: Molecular Targets and Therapeutic Agents. Biomolecules 2020, 10, 235. [Google Scholar] [CrossRef]
- Kapaj, S.; Peterson, H.; Liber, K.; Bhattacharya, P. Human health effects from chronic arsenic poisoning-A review. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2006, 41, 2399–2428. [Google Scholar] [CrossRef] [PubMed]
- Bibha, K.; Akhigbe, T.M.; Hamed, M.A.; Akhigbe, R.E. Metabolic Derangement by Arsenic: A Review of the Mechanisms. Biol. Trace Elem. Res. 2024, 202, 1972–1982. [Google Scholar] [CrossRef]
- Bräuner, E.V.; Nordsborg, R.B.; Andersen, Z.J.; Tjønneland, A.; Loft, S.; Raaschou-Nielsen, O. Long-Term Exposure to Low-Level Arsenic in Drinking Water and Diabetes Incidence: A Prospective Study of the Diet, Cancer and Health Cohort. Environ. Health Perspect. 2014, 122, 1059–1065. [Google Scholar] [CrossRef]
- Karachaliou, C.; Sgourou, A.; Kakkos, S.; Kalavrouziotis, I. Arsenic exposure promotes the emergence of cardiovascular diseases. Rev. Environ. Health 2021, 37, 467–486. [Google Scholar] [CrossRef]
- Renu, K.; Madhyastha, H.; Madhyastha, R.; Maruyama, M.; Vinayagam, S.; Gopalakrishnan, A.V. Review on molecular and biochemical insights of arsenic-mediated male reproductive toxicity. Life Sci. 2018, 212, 37–58. [Google Scholar] [CrossRef]
- Vázquez Cervantes, G.I.; González Esquivel, D.F.; Ramírez Ortega, D.; Blanco Ayala, T.; Ramos Chávez, L.A.; López-López, H.E.; Salazar, A.; Flores, I.; Pineda, B.; Gómez-Manzo, S.; et al. Mechanisms Associated with Cognitive and Behavioral Impairment Induced by Arsenic Exposure. Cells 2023, 12, 2537. [Google Scholar] [CrossRef]
- Lee, J.Y.; Eom, M.; Yang, J.W.; Han, B.G.; Choi, S.O.; Kim, J.S. Acute Kidney Injury by Arsine Poisoning: The Ultrastructural Pathology of the Kidney. Ren. Fail. 2013, 35, 299–301. [Google Scholar] [CrossRef]
- WS, W.M.S.; Norlelawati, A.T.; A., N.Z.; Aung, S.; H., A.H.; Zunariah, B. Histopathological Changes in Chronic Low Dose Organic Arsenic Exposure in Rats Kidney. IIUM Med. J. Malays. 2021, 20, 91–98. [Google Scholar]
- Liu, S.; Liu, Y.; Li, J.; Wang, M.; Chen, X.; Gan, F.; Wen, L.; Huang, K.; Liu, D. Arsenic Exposure-Induced Acute Kidney Injury by Regulating SIRT1/PINK1/Mitophagy Axis in Mice and in HK-2 Cells. J. Agric. Food Chem. 2023, 71, 15809–15820. [Google Scholar] [CrossRef]
- Sener, U.; Uygur, R.; Aktas, C.; Uygur, E.; Erboga, M.; Balkas, G.; Caglar, V.; Kumral, B.; Gurel, A.; Erdogan, H. Protective effects of thymoquinone against apoptosis and oxidative stress by arsenic in rat kidney. Ren. Fail. 2016, 38, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wang, W.; Zhu, K.; Luo, D.; Zhang, A.; Tokar, E.J. C/EBPβ-TFAM-Mediated NLRP3 Inflammasome Activation Contributes to Arsenic-Induced Rat Kidney Injury. Toxics 2023, 11, 668. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, F.; Chen, Y.; Cui, H.; Wu, H. A regulatory module comprising G3BP1-FBXL5-IRP2 axis determines sodium arsenite-induced ferroptosis. J. Hazard. Mater. 2024, 465, 133038. [Google Scholar] [CrossRef]
- Luo, Y.; Geng, N.; Sun, S.; Cheng, L.; Chen, S.; Zhang, H.; Chen, J. Integration approach of transcriptomics and metabolomics reveals the toxicity of Anthracene and its chlorinated derivatives on human hepatic cells. Sci. Total Environ. 2023, 905, 166886. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Shubin, A.V.; Demidyuk, I.V.; Komissarov, A.A.; Rafieva, L.M.; Kostrov, S.V. Cytoplasmic vacuolization in cell death and survival. Oncotarget 2016, 7, 55863–55889. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xu, Y.; Weng, Y.; Fan, X.; Bai, Y.; Zheng, X.; Lou, L.; Zhang, F. Astilbin ameliorates cisplatin-induced nephrotoxicity through reducing oxidative stress and inflammation. Food Chem. Toxicol. 2018, 114, 227–236. [Google Scholar] [CrossRef]
- Sohn, S.-H.; Lee, E.-Y.; Lee, J.-H.; Kim, Y.; Shin, M.; Hong, M.; Bae, H. Screening of herbal medicines for recovery of acetaminophen-induced nephrotoxicity. Environ. Toxicol. Pharmacol. 2009, 27, 225–230. [Google Scholar] [CrossRef]
- Wu, C.-W.; Lin, P.-J.; Tsai, J.-S.; Lin, C.-Y.; Lin, L.-Y. Arsenite-induced apoptosis can be attenuated via depletion of mTOR activity to restore autophagy. Toxicol. Res. 2018, 8, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Guan, S.; Jin, Y.; Sun, W.; Wang, Q.; Du, Y.; Zhang, R. Cell metabolomics to study the cytotoxicity of carbon black nanoparticles on A549 cells using UHPLC-Q/TOF-MS and multivariate data analysis. Sci. Total Environ. 2020, 698, 134122. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, H.; Li, Y.; Sun, S.; Gao, J.; Zhong, Y.; Sun, D.; Zhang, G. Metabolomics revealed the toxicity of cationic liposomes in HepG2 cells using UHPLC-Q-TOF/MS and multivariate data analysis. Biomed. Chromatogr. 2017, 31, e4036. [Google Scholar] [CrossRef]
- Robles-Osorio, M.L.; Sabath-Silva, E.; Sabath, E. Arsenic-mediated nephrotoxicity. Ren. Fail. 2015, 37, 542–547. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, H.; Shao, Y.; Wang, P.; Wei, Y.; Zhang, W.; Jiang, J.; Chen, Y.; Zhang, Z. Nephroprotective effect of astaxanthin against trivalent inorganic arsenic-induced renal injury in wistar rats. Nutr. Res. Pract. 2014, 8, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Xue, J.; Li, Y.; Zhang, W.; Ma, D.; Liu, L.; Zhang, Z. Resveratrol protects against arsenic trioxide-induced nephrotoxicity by facilitating arsenic metabolism and decreasing oxidative stress. Arch. Toxicol. 2013, 87, 1025–1035. [Google Scholar] [CrossRef]
- Wishart, D.S. Metabolomics for Investigating Physiological and Pathophysiological Processes. Physiol. Rev. 2019, 99, 1819–1875. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Mu, X.; Zhang, J.; Huang, Q.; Alamdar, A.; Tian, M.; Liu, L.; Shen, H. Serum metabolomics reveals that arsenic exposure disrupted lipid and amino acid metabolism in rats: A step forward in understanding chronic arsenic toxicity. Metallomics 2015, 7, 544–552. [Google Scholar] [CrossRef]
- Rai, P. Oxidation in the nucleotide pool, the DNA damage response and cellular senescence: Defective bricks build a defective house. Mutat. Res. 2010, 703, 71–81. [Google Scholar] [CrossRef]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Karamanos, N.K.; Theocharis, A.D.; Piperigkou, Z.; Manou, D.; Passi, A.; Skandalis, S.S.; Vynios, D.H.; Orian-Rousseau, V.; Ricard-Blum, S.; Schmelzer, C.E.H.; et al. A guide to the composition and functions of the extracellular matrix. FEBS J. 2021, 288, 6850–6912. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Saleem, K.; Pandey, J.; Charania, A.N.; Zhou, Y.; He, C. Cell Adhesion Molecules in Fibrotic Diseases. Biomedicines 2023, 11, 1995. [Google Scholar] [CrossRef]
- Ding, X.; Yan, F.; Wang, W.; Qin, J.; Luo, L. Integration of transcriptomics and metabolomics identify biomarkers of aberrant lipid metabolism in ulcerative colitis. Int. Immunopharmacol. 2024, 131, 111865. [Google Scholar] [CrossRef] [PubMed]
- Bian, X.; Liu, R.; Meng, Y.; Xing, D.; Xu, D.; Lu, Z. Lipid metabolism and cancer. J. Exp. Med. 2021, 218, e20201606. [Google Scholar] [CrossRef]
- Cooke, M.; Kazanietz, M.G. Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Sci. Signal. 2022, 15, eabo0264. [Google Scholar] [CrossRef]
- Xie, L.; Zhao, Y.; Duan, J.; Fan, S.; Shu, L.; Liu, H.; Wang, Y.; Xu, Y.; Li, Y. Integrated Proteomics and Metabolomics Reveal the Mechanism of Nephrotoxicity Induced by Triptolide. Chem. Res. Toxicol. 2020, 33, 1897–1906. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Liu, C.; Xie, L.; Wang, Y.; Xu, Y.; Li, Y. Integrated network pharmacology and targeted metabolomics to reveal the mechanism of nephrotoxicity of triptolide. Toxicol. Res. 2019, 8, 850–861. [Google Scholar] [CrossRef]
- Wu, H.-L.; Gong, Y.; Ji, P.; Xie, Y.-F.; Jiang, Y.-Z.; Liu, G.-Y. Targeting nucleotide metabolism: A promising approach to enhance cancer immunotherapy. J. Hematol. Oncol. 2022, 15, 45. [Google Scholar] [CrossRef]
- Yokozawa, T.; Zheng, P.D.; Oura, H.; Koizumi, F. Animal model of adenine-induced chronic renal failure in rats. Nephron 1986, 44, 230–234. [Google Scholar] [CrossRef]
- Riegersperger, M.; Covic, A.; Goldsmith, D. Allopurinol, uric acid, and oxidative stress in cardiorenal disease. Int. Urol. Nephrol. 2011, 43, 441–449. [Google Scholar] [CrossRef]
Genes | Primer Sequence (5′-3′) |
---|---|
JAG1 | F: CTTTGGAGCGACCTGTGTGGA |
R: ATCCCATTTGGCCCCATCTGG | |
PTGS2 | F: TGCTGTTCCCACCCATGTCAA |
R: ATCCTGTCCGGGTACAATCGC | |
COL4A2 | F: CATCGAATGCAATGGAGGCCG |
R: GAAGCTCTGCTCGGGAATGGT | |
COL6A2 | F: ATGACGCTGTTCTCCGACCTG |
R: AAGGTCTGGGCACACGATCTG | |
EDNRB | F: AAGGAGACAGGACGGCAGGAT |
R: ACGAACACAAGGCAGGACACA | |
STEAP1 | F: TGGGCATATCAACAGGTCCAACA |
R: GCCAACAGAGCCAGTATTGCC | |
ATF4 | F: GAGCTGGGCAGTGAAGTGGAT |
R: TGCACTGAGGGATCATGGCAA | |
GAPDH | F: CGTCAAGGCTGAGAACGGGAA |
R: TCTCCATGGTGGTGAAGACGC |
Pathway Name | p Value | −log10(p) | Impact |
---|---|---|---|
Purine metabolism | 8.9638 × 10−9 | 8.0475 | 0.37807 |
Pyrimidine metabolism | 4.8149 × 10−6 | 5.3174 | 0.40833 |
Glutathione metabolism | 5.5303 × 10−5 | 4.2572 | 0.42706 |
Alanine, aspartate and glutamate metabolism | 5.5303 × 10−5 | 4.2572 | 0.51523 |
Glycerophospholipid metabolism | 0.002264 | 2.6451 | 0.31987 |
Arginine biosynthesis | 0.012247 | 1.912 | 0.11675 |
Nicotinate and nicotinamide metabolism | 0.015833 | 1.8004 | 0.63948 |
Arginine and proline metabolism | 0.032477 | 1.4884 | 0.11163 |
Linoleic acid metabolism | 0.040641 | 1.391 | 1 |
Nitrogen metabolism | 0.058268 | 1.2346 | 0 |
Amino sugar and nucleotide sugar metabolism | 0.062703 | 1.2027 | 0.21591 |
Glycine, serine, and threonine metabolism | 0.070303 | 1.153 | 0 |
Cysteine and methionine metabolism | 0.070303 | 1.153 | 0.27873 |
D-Amino acid metabolism | 0.077996 | 1.1079 | 1 |
Ubiquinone and other terpenoid–quinone biosynthesis | 0.12071 | 0.91826 | 0 |
Pantothenate and CoA biosynthesis | 0.15301 | 0.81529 | 0.07823 |
Citrate cycle (TCA cycle) | 0.15301 | 0.81529 | 0.19528 |
Glyoxylate and dicarboxylate metabolism | 0.17192 | 0.76468 | 0.03175 |
Phenylalanine, tyrosine, and tryptophan biosynthesis | 0.24755 | 0.60633 | 0.5 |
Riboflavin metabolism | 0.24755 | 0.60633 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rong, L.; Liang, X.; Zhang, X.; Qiao, Y.; Li, G.; Xiao, Y.; Bi, H.; Wei, L. An Integrated Approach Involving Metabolomics and Transcriptomics Reveals Arsenic-Induced Toxicity in Human Renal Cells. Toxics 2025, 13, 483. https://doi.org/10.3390/toxics13060483
Rong L, Liang X, Zhang X, Qiao Y, Li G, Xiao Y, Bi H, Wei L. An Integrated Approach Involving Metabolomics and Transcriptomics Reveals Arsenic-Induced Toxicity in Human Renal Cells. Toxics. 2025; 13(6):483. https://doi.org/10.3390/toxics13060483
Chicago/Turabian StyleRong, Lin, Xinxin Liang, Xingfang Zhang, Yajun Qiao, Guoqiang Li, Yuancan Xiao, Hongtao Bi, and Lixin Wei. 2025. "An Integrated Approach Involving Metabolomics and Transcriptomics Reveals Arsenic-Induced Toxicity in Human Renal Cells" Toxics 13, no. 6: 483. https://doi.org/10.3390/toxics13060483
APA StyleRong, L., Liang, X., Zhang, X., Qiao, Y., Li, G., Xiao, Y., Bi, H., & Wei, L. (2025). An Integrated Approach Involving Metabolomics and Transcriptomics Reveals Arsenic-Induced Toxicity in Human Renal Cells. Toxics, 13(6), 483. https://doi.org/10.3390/toxics13060483