Occurrence and Toxicity Mechanisms of Perfluorononanoic Acid, Perfluorodecanoic Acid, and Perfluoroundecanoic Acid in Fish: A Review
Abstract
1. Introduction: Perfluorononanoic Acid (PFNA), Perfluorodecanoic Acid (PFDA), and Perfluoroundecanoic Acid (PFUnDA)
2. Objectives and Methodology of the Review
3. Environmental Presence
Location | Matrices | PFNA | PFDA | PFUnDA | Cite |
---|---|---|---|---|---|
Air Force sites across the U.S. | Surface soil | 23 ng/g | 15 ng/g | 10 ng/g | [2] |
Sediment | 59 ng/g | 59 ng/g | 14 ng/g | [2] | |
Surface water | 10,000 ng/L | 3200 ng/L | 210 ng/L | [2] | |
Groundwater | 3000 ng/L | 1800 ng/L | 86 ng/L | [2] | |
Florida | Freshwater | 0.13–0.42 ng/L | 0.17 ng/L | [53] | |
Surface water | 0.1–351.8 ng/L | 0.4–27.1 ng/L | 0.3–114.3 ng/L | [51] | |
Surface water | 0.21–2.74 ng/L | 0.24–1.42 ng/L | 0.26–0.33 ng/L | [52] | |
Sediment | 0.01–0.82 ng/g | 0.02–0.26 ng/g | 0.02–0.43 ng/g | [52] | |
Georgia and Tennessee | Surface water | 12.3–456 ng/L | 3.74–160 ng/L | [50] | |
Rhode Island and the New York Metropolitan Area | Surface water | 14 ng/L | 5.8 ng/L | 1.9 ng/L | [49] |
Sweden | Groundwater | 11 ng/L | 22 ng/L | 6.5 ng/L | [54] |
River water | 13 ng/L | 20 ng/L | 1.9 ng/L | [54] | |
Drinking water | <5 ng/L | <1.3 ng/L | <1.2 ng/L | [54] | |
Freshwater | 0.36 ng/L | 0.16 ng/L | 0.03 ng/L | [55] | |
Soil | 1.5 ng/g dw | 1.2 ng/g dw | 0.52 ng/g dw | [54] | |
Sediment | 6 ng/g dw | 1.3 ng/g dw | 4.5 ng/g dw | [54] | |
Finland | Freshwater | 2700 ng/L | [57] | ||
Norway | Seepage water | 26–36 ng/L | 4.2–5.3 ng/L | 8.6–18 ng/L | [56] |
Korea | Brackish water | 1.38–14.3 ng/L | 0.23–15.4 ng/L | 3.52 ng/L | [58] |
China | Seawater | 0.03–0.38 ng/L | 0.09–0.82 ng/L | 0.05–0.26 ng/L | [60] |
Freshwater | 0.40–1.43 ng/L | 0.13–0.66 ng/L | [61] | ||
Sediment | 0.02–0.15 ng/g dw | 0.02–0.11 ng/g dw | 0.03–0.13 ng/g dw | [60] | |
Spain | Freshwater | 0.08–0.23 ng/g | 0.20–6.7 ng/L | 0.42–8.8 ng/g | [14] |
Australia | Freshwater | 1.2 ng/L | [15] | ||
Canada | Freshwater | 2.1 ± 0.2 ng/L | 1.3 ± 0.4 ng/L | [62] | |
Freshwater | 0.39–0.56 ng/L | 0.060–0.079 ng/L | 0.018 ng/L | [13] | |
Sediment | 0.042 ng/g dw | 0.031 ng/g dw | 0.071 ng/g dw | [13] | |
Brazil | Sediment | 112 pg/g dw | 298 pg/g dw | 138 pg/g dw | [64] |
Nigeria | Soil | 1.0 ng/g | 5.0 ng/g | 0.6 ng/g | [63] |
4. Concentrations of PFNA, PFDA, and PFUnDA in Fish Tissues
5. Metabolism and Excretion
6. Exposures and Adverse Effects
6.1. Developmental Effects
6.2. Oxidative Stress
6.3. Endocrine System
6.4. Behavioral Effects
Species | Sex | Dose | Duration | Outcome of Exposure | Reference |
---|---|---|---|---|---|
Embryonic Zebrafish (Danio rerio) | N/A | 9281.6 ng/L, 92,816 ng/L, 0.928 mg/L PFNA | 5 dpf |
No delayed development, embryonic abnormalities or high mortality. Reduced body length and increased yolk sac size. Decreased swimming velocity in all treatments. | [35] |
Larval Zebrafish (Danio rerio) | N/A | 0.2, 0.5, 1, 5, 15 mg/L PFNA | 140 h | SOD increased with 1 and 5 mg/L. SOD and CAT activity decreased and MDA content increased with 15 mg/L PFNA. | [87] |
Embryonic Zebrafish (Danio rerio) | N/A | 0–500 mg/L PFNA | N/A | LC50 was 108.6 mg/L. 10 mg/L increased TBARS concentration. Exposure to 1, 5, 10, or 100 mg/L induced gstp1 and hsp70. | [88] |
Embryonic and larval Zebrafish (Danio rerio) | N/A | 0–51.4 mg/L PFDA or 0–46.4 mg/L PFNA | 120 hpf | Morphological effects/mortality were observed starting at 74.8 µM. Hypoactivity and hyperactivity were observed in the dark and light phases. | [85] |
Embryonic and larval Zebrafish (Danio rerio) | N/A | 92.8 ng/L–185.6 mg/L PFNA | 6 days | 49 µM PFNA increased peak activity and decreased swimming distance during the light period of the behavioral assay. 15 µM and 49 µM increased burst activity of larvae in the dark period. | [92] |
Adult Zebrafish (Danio rerio) | Male and female | 0.01, 0.1, 1 mg/L PFNA | 180 days | PFNA concentration increased in a dose-dependent manner in gonads. Decreased hatching rate after 3 days of exposure to 0.01 and 1.0 mg/L. Gonadosomatic index in males decreased in all treatments. Erα, erβ, Fshr, 3β-hsd, and LHβ were altered in both sexes. | [89] |
Zebrafish (Danio rerio) | Male and female | 0.01, 0.1, 1, 10 mg/L PFDA | 120 days | Survival decreased in a dose-dependent manner. E2/T and E2/11-KT ratios increased with 1 mg/L in males. 1 mg/L increased the expression of cyp19b, erα, and er2β. | [90] |
23 dpf Zebrafish (Danio rerio) | Male and female | 0.05, 0.1, 0.5, or 1 mg/L PFNA |
180 days (F0) 180 days (F1) | Hyperplasia of thyroid follicle cells and hypertrophy of follicular epithelium in 0.1 and 0.5 mg/L F0 fish. In F1 adults, T3 levels were elevated, TRα and TTR were induced and Ugt2A1, TRβ, and TPO were upregulated. | [91] |
Zebrafish (Danio rerio) | N/A | 0–185.6 mg/L PFNA | 96 h | PFNA was acutely toxic. Rate of gastrulation increased above 300 µmol/L. Hatching rate decreased in a dose-dependent manner. All treatments increased ROS. ucp2 and lfabp were upregulated in a dose-dependent manner and mt-nd1 and sod1 were downregulated in all treatments. | [84] |
Embryonic Zebrafish (Danio rerio) | N/A | 7711.2 ng/L–51.408 mg/L PFDA and 8461.4 ng/L–56.409 mg/L PFUnDA | 6 to 120 hpf | PFDA was the most potent teratogen with a benchmark dose of 0.223 µM. PFUnDA was the 3rd least potent compound ranked. | [36] |
Embryonic Zebrafish (Danio rerio) | N/A | 0.0464, 0.46408, 4.6408 mg/L PFNA | 5 days | ROS induced in all concentrations. MDA induced at 0.1 and 10 µg/L and NO and iNOS induced at 10 µg/L. All concentrations inhibited GSH, 1 and 10 µg/L inhibited Gpx, 0.1 and 10 µg/L inhibited SOD, and 10 µg/L inhibited CAT. | [10] |
Embryonic Zebrafish (Danio rerio) | N/A | 92,816 ng/L, 0.928 mg/L, 9.28 mg/L, 92.8 mg/L PFNA | 120 hpf | Malformation observed at 200 µM and mortality observed at 20 and 200 µM. Enriched pathways were p53, PPAR, phagosome related. Amhc, nppa, nkx2.5, end1, and tgfb2 were upregulated. | [93] |
Rainbow trout (Oncorhynchus mykiss) | N/A | 200 ppm PFDA (5 mg/kg/day) or 1000 ppm PFNA (25 mg/kg/day) | 6 months | Increased liver tumor incidence observed with 200 ppm PFDA. Tumor multiplicity and size increased with PFDA and PFNA treatments. Transcripts represented processes related to the adaptive immune response, apoptosis, cell proliferation, protein translation, and transcription. | [94] |
Zebrafish (Danio rerio) | N/A | 0.03, 0.1, 0.3 mg/L PFUnDA | 5 days | Ugt1ab upregulated and trα and trβ showed downregulated trends; however, the trend for trβ was stronger. | [41] |
Zebrafish (Danio rerio) | N/A | 0.2, 1, 2 mg/L PFDA | 6 days | ROS accumulation and increased CAT and SOD levels. Concentration-dependent behavioral changes related to average speed and mobility. | [86] |
6.5. Molecular and Cellular Targets
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sant, K.E.; Venezia, O.L.; Sinno, P.P.; Timme-Laragy, A.R. Perfluorobutanesulfonic acid disrupts pancreatic organogenesis and regulation of lipid metabolism in the zebrafish, Danio rerio. Toxicol. Sci. 2019, 167, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.H.; Long, G.C.; Porter, R.C.; Anderson, J.K. Occurrence of select perfluoroalkyl substances at US Air Force aqueous film-forming foam release sites other than fire training areas: Field validation of critical fate and transport properties. In Perfluoroalkyl Substances in the Environment; CRC Press: Boca Raton, FL, USA, 2018; pp. 353–372. [Google Scholar]
- Arp, H.P.H.; Aurich, D.; Schymanski, E.L.; Sims, K.; Hale, S.E. Avoiding the next silent spring: Our chemical past, present, and future. Environ. Sci. Technol. 2023, 57, 6355–6359. [Google Scholar] [CrossRef] [PubMed]
- Langberg, H.A.; Breedveld, G.D.; Kallenborn, R.; Ali, A.M.; Choyke, S.; McDonough, C.A.; Higgins, C.P.; Jenssen, B.M.; Jartun, M.; Allan, I. Human exposure to per-and polyfluoroalkyl substances (PFAS) via the consumption of fish leads to exceedance of safety thresholds. Environ. Int. 2024, 190, 108844. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Antia, A.; Kavelaars, M.M.; Müller, W.; Bervoets, L.; Eens, M. Understanding PFAAs exposure in a generalist seabird species breeding in the vicinity of a fluorochemical plant: Influence of maternal transfer and diet. Environ. Pollut. 2021, 271, 116355. [Google Scholar] [CrossRef]
- Program, N.T. Immunotoxicity Associated with Exposure to Perfluorooctanoic acid (PFOA) or Perfluorooctane Sulfonate (PFOS); National Toxicology Program: Raleigh, NC, USA, 2016.
- Chang, E.T.; Adami, H.-O.; Boffetta, P.; Wedner, H.J.; Mandel, J.S. A critical review of perfluorooctanoate and perfluorooctanesulfonate exposure and immunological health conditions in humans. Crit. Rev. Toxicol. 2016, 46, 279–331. [Google Scholar] [CrossRef]
- Fenton, S.E.; Ducatman, A.; Boobis, A.; DeWitt, J.C.; Lau, C.; Ng, C.; Smith, J.S.; Roberts, S.M. Per-and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research. Environ. Toxicol. Chem. 2021, 40, 606–630. [Google Scholar] [CrossRef]
- van der Veen, I.; Fiedler, H.; de Boer, J. Assessment of the per-and polyfluoroalkyl substances analysis under the Stockholm Convention–2018/2019. Chemosphere 2023, 313, 137549. [Google Scholar] [CrossRef]
- Tang, L.; Qiu, W.; Zhang, S.; Wang, J.; Yang, X.; Xu, B.; Magnuson, J.T.; Xu, E.G.; Wu, M.; Zheng, C. Poly-and Perfluoroalkyl Substances Induce Immunotoxicity via the TLR Pathway in Zebrafish: Links to Carbon Chain Length. Environ. Sci. Technol. 2023, 57, 6139–6149. [Google Scholar] [CrossRef]
- Hagenaars, A.; Vergauwen, L.; De Coen, W.; Knapen, D. Structure–activity relationship assessment of four perfluorinated chemicals using a prolonged zebrafish early life stage test. Chemosphere 2011, 82, 764–772. [Google Scholar] [CrossRef]
- The Danish Environmental Protection Agency. Short-Chain Polyfluoroalkyl Substances (PFAS); The Danish Environmental Protection Agency: Odense, Denmark, 2015.
- Munoz, G.; Mercier, L.; Duy, S.V.; Liu, J.; Sauvé, S.; Houde, M. Bioaccumulation and trophic magnification of emerging and legacy per-and polyfluoroalkyl substances (PFAS) in a St. Lawrence River food web. Environ. Pollut. 2022, 309, 119739. [Google Scholar] [CrossRef]
- Roscales, J.L.; de Puga, B.R.S.; Vicente, A.; Muñoz-Arnanz, J.; Sánchez, A.I.; Ros, M.; Jiménez, B. Levels and trends of perfluoroalkyl acids (PFAAs) in water (2013–2020) and fish from selected riverine basins in Spain. Chemosphere 2022, 286, 131940. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.; Roach, A.; Eaglesham, G.; Bartkow, M.E.; Edge, K.; Mueller, J.F. Perfluorinated alkyl acids in water, sediment and wildlife from Sydney Harbour and surroundings. Mar. Pollut. Bull. 2011, 62, 2869–2875. [Google Scholar] [CrossRef] [PubMed]
- Boone, J.S.; Vigo, C.; Boone, T.; Byrne, C.; Ferrario, J.; Benson, R.; Donohue, J.; Simmons, J.E.; Kolpin, D.W.; Furlong, E.T. Per-and polyfluoroalkyl substances in source and treated drinking waters of the United States. Sci. Total Environ. 2019, 653, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Rankin, K.; Mabury, S.A.; Jenkins, T.M.; Washington, J.W. A North American and global survey of perfluoroalkyl substances in surface soils: Distribution patterns and mode of occurrence. Chemosphere 2016, 161, 333–341. [Google Scholar] [CrossRef]
- ATSDR. ATSDR’s Substance Priority List. Available online: https://www.atsdr.cdc.gov/programs/substance-priority-list.html (accessed on 20 January 2025).
- Pitter, G.; Da Re, F.; Canova, C.; Barbieri, G.; Zare Jeddi, M.; Daprà, F.; Manea, F.; Zolin, R.; Bettega, A.M.; Stopazzolo, G. Serum levels of perfluoroalkyl substances (PFAS) in adolescents and young adults exposed to contaminated drinking water in the Veneto region, Italy: A cross-sectional study based on a health surveillance program. Environ. Health Perspect. 2020, 128, 027007. [Google Scholar] [CrossRef]
- Christensen, K.Y.; Raymond, M.; Blackowicz, M.; Liu, Y.; Thompson, B.A.; Anderson, H.A.; Turyk, M. Perfluoroalkyl substances and fish consumption. Environ. Res. 2017, 154, 145–151. [Google Scholar] [CrossRef]
- Li, N.; Ying, G.-G.; Hong, H.; Deng, W.-J. Perfluoroalkyl substances in the urine and hair of preschool children, airborne particles in kindergartens, and drinking water in Hong Kong. Environ. Pollut. 2021, 270, 116219. [Google Scholar] [CrossRef]
- Jin, H.; Mao, L.; Xie, J.; Zhao, M.; Bai, X.; Wen, J.; Shen, T.; Wu, P. Poly-and perfluoroalkyl substance concentrations in human breast milk and their associations with postnatal infant growth. Sci. Total Environ. 2020, 713, 136417. [Google Scholar] [CrossRef]
- Stratakis, N.; Conti, D.V.; Jin, R.; Margetaki, K.; Valvi, D.; Siskos, A.P.; Maitre, L.; Garcia, E.; Varo, N.; Zhao, Y. Prenatal exposure to perfluoroalkyl substances associated with increased susceptibility to liver injury in children. Hepatology 2020, 72, 1758–1770. [Google Scholar] [CrossRef]
- Hölzer, J.; Göen, T.; Just, P.; Reupert, R.; Rauchfuss, K.; Kraft, M.; Müller, J.; Wilhelm, M. Perfluorinated compounds in fish and blood of anglers at Lake Mohne, Sauerland area, Germany. Environ. Sci. Technol. 2011, 45, 8046–8052. [Google Scholar] [CrossRef]
- Denys, S.; Fraize-Frontier, S.; Moussa, O.; Le Bizec, B.; Veyrand, B.; Volatier, J.-L. Is the fresh water fish consumption a significant determinant of the internal exposure to perfluoroalkylated substances (PFAS)? Toxicol. Lett. 2014, 231, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.; Vestergren, R.; Herzke, D.; Melhus, M.; Evenset, A.; Hanssen, L.; Brustad, M.; Sandanger, T.M. Exposure to per-and polyfluoroalkyl substances through the consumption of fish from lakes affected by aqueous film-forming foam emissions—A combined epidemiological and exposure modeling approach. The SAMINOR 2 Clinical Study. Environ. Int. 2016, 94, 272–282. [Google Scholar] [CrossRef] [PubMed]
- OEHHA. Evidence on the Male Reproductive Toxicity of Perfluorononanoic Acid (PFNA) and Its Salts and Perfluorodecanoic Acid (PFDA) and Its Salts; OEHHA: Sacramento, CA, USA, 2021.
- Rudzanová, B.; Thon, V.c.; Vespalcová, H.; Martyniuk, C.J.; Piler, P.; Zvonař, M.; Klánová, J.; Bláha, L.; Adamovsky, O. Altered transcriptome response in pbmcs of czech adults linked to multiple pfas exposure: B cell development as a target of pfas immunotoxicity. Environ. Sci. Technol. 2023, 58, 90–98. [Google Scholar] [CrossRef]
- Ehrlich, V.; Bil, W.; Vandebriel, R.; Granum, B.; Luijten, M.; Lindeman, B.; Grandjean, P.; Kaiser, A.-M.; Hauzenberger, I.; Hartmann, C. Consideration of pathways for immunotoxicity of per-and polyfluoroalkyl substances (PFAS). Environ. Health 2023, 22, 19. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhu, L.; Wang, M.; Sun, Q. Associations between per-and polyfluoroalkyl substances exposures and blood lipid levels among adults—A meta-analysis. Environ. Health Perspect. 2023, 131, 056001. [Google Scholar] [CrossRef]
- Espartero, L.J.L.; Yamada, M.; Ford, J.; Owens, G.; Prow, T.; Juhasz, A. Health-related toxicity of emerging per-and polyfluoroalkyl substances: Comparison to legacy PFOS and PFOA. Environ. Res. 2022, 212, 113431. [Google Scholar] [CrossRef]
- Costello, E.; Rock, S.; Stratakis, N.; Eckel, S.P.; Walker, D.I.; Valvi, D.; Cserbik, D.; Jenkins, T.; Xanthakos, S.A.; Kohli, R. Exposure to per-and polyfluoroalkyl substances and markers of liver injury: A systematic review and meta-analysis. Environ. Health Perspect. 2022, 130, 046001. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, L.; Ducatman, A.; Deng, C.; von Stackelberg, K.E.; Danford, C.J.; Zhang, X. Association of per-and polyfluoroalkyl substance exposure with fatty liver disease risk in US adults. JHEP Rep. 2023, 5, 100694. [Google Scholar] [CrossRef]
- Mokra, K. Endocrine disruptor potential of short-and long-chain perfluoroalkyl substances (PFASs)—A synthesis of current knowledge with proposal of molecular mechanism. Int. J. Mol. Sci. 2021, 22, 2148. [Google Scholar] [CrossRef]
- Jantzen, C.E.; Annunziato, K.A.; Bugel, S.M.; Cooper, K.R. PFOS, PFNA, and PFOA sub-lethal exposure to embryonic zebrafish have different toxicity profiles in terms of morphometrics, behavior and gene expression. Aquat. Toxicol. 2016, 175, 160–170. [Google Scholar] [CrossRef]
- Truong, L.; Rericha, Y.; Thunga, P.; Marvel, S.; Wallis, D.; Simonich, M.T.; Field, J.A.; Cao, D.; Reif, D.M.; Tanguay, R.L. Systematic developmental toxicity assessment of a structurally diverse library of PFAS in zebrafish. J. Hazard. Mater. 2022, 431, 128615. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Fu, L.; Cao, M.; Li, F.; Li, J.; Chen, Z.; Guo, A.; Zhong, H.; Li, W.; Liang, Y. PFAS-induced lipidomic dysregulations and their associations with developmental toxicity in zebrafish embryos. Sci. Total Environ. 2023, 861, 160691. [Google Scholar] [CrossRef] [PubMed]
- Hamed, M.; Vats, A.; Lim, I.E.; Sapkota, B.; Abdelmoneim, A. Effects of developmental exposure to individual and combined PFAS on development and behavioral stress responses in larval zebrafish. Environ. Pollut. 2024, 349, 123912. [Google Scholar] [CrossRef] [PubMed]
- Gust, K.A.; Mylroie, J.E.; Kimble, A.N.; Wilbanks, M.S.; Steward, C.S.; Chapman, K.A.; Jensen, K.M.; Kennedy, A.J.; Krupa, P.M.; Waisner, S.A. Survival, Growth, and Reproduction Responses in a Three-Generation Exposure of the Zebrafish (Danio rerio) to Perfluorooctane Sulfonate. Environ. Toxicol. Chem. 2024, 43, 115–131. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, S.; Lu, S.; Zheng, B.; Xie, P.; Chen, J.; Li, G.; Liu, C.; Wu, Q.; Cheng, H. Perfluorododecanoic acid exposure induced developmental neurotoxicity in zebrafish embryos. Environ. Pollut. 2018, 241, 1018–1026. [Google Scholar] [CrossRef]
- Kim, J.; Lee, G.; Lee, Y.-M.; Zoh, K.-D.; Choi, K. Thyroid disrupting effects of perfluoroundecanoic acid and perfluorotridecanoic acid in zebrafish (Danio rerio) and rat pituitary (GH3) cell line. Chemosphere 2021, 262, 128012. [Google Scholar] [CrossRef]
- Nayak, S.; Sahoo, G.; Das, I.I.; Mohanty, A.K.; Kumar, R.; Sahoo, L.; Sundaray, J.K. Poly-and perfluoroalkyl substances (PFAS): Do they matter to aquatic ecosystems? Toxics 2023, 11, 543. [Google Scholar] [CrossRef]
- Liu, M.; Yi, S.; Yu, H.; Zhang, T.; Dong, F.; Zhu, L. Underlying mechanisms for the sex-and chemical-specific hepatotoxicity of perfluoroalkyl phosphinic acids in common carp (Cyprinus carpio). Environ. Sci. Technol. 2023, 57, 14515–14525. [Google Scholar] [CrossRef]
- Yao, D.; Shao, J.; Jia, D.; Sun, W. Immunotoxicity of legacy and alternative per-and polyfluoroalkyl substances on zebrafish larvae. Environ. Pollut. 2024, 358, 124511. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, X.; Lu, S.; He, J.; Wu, Q.; Liu, X.; Han, Z.; Xie, P. Perfluorohexanoic acid caused disruption of the hypothalamus-pituitary-thyroid axis in zebrafish larvae. Ecotoxicol. Environ. Saf. 2022, 232, 113283. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, X.; Lu, S.; Sang, N.; Li, G.; Xie, P.; Liu, C.; Zhang, L.; Xing, Y. Exposure to PFDoA causes disruption of the hypothalamus-pituitary-thyroid axis in zebrafish larvae. Environ. Pollut. 2018, 235, 974–982. [Google Scholar] [CrossRef] [PubMed]
- Kreychman, M.; Ivantsova, E.; Lu, A.; Bisesi Jr, J.H.; Martyniuk, C.J. A comparative review of the toxicity mechanisms of perfluorohexanoic acid (PFHxA) and perfluorohexanesulphonic acid (PFHxS) in fish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2024, 279, 109874. [Google Scholar] [CrossRef] [PubMed]
- Ivantsova, E.; Lu, A.; Martyniuk, C.J. Occurrence and toxicity mechanisms of perfluorobutanoic acid (PFBA) and perfluorobutane sulfonic acid (PFBS) in fish. Chemosphere 2024, 349, 140815. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lohmann, R.; Dassuncao, C.; Hu, X.C.; Weber, A.K.; Vecitis, C.D.; Sunderland, E.M. Source attribution of poly-and perfluoroalkyl substances (PFASs) in surface waters from Rhode Island and the New York Metropolitan Area. Environ. Sci. Technol. Lett. 2016, 3, 316–321. [Google Scholar] [CrossRef]
- Konwick, B.J.; Tomy, G.T.; Ismail, N.; Peterson, J.T.; Fauver, R.J.; Higginbotham, D.; Fisk, A.T. Concentrations and patterns of perfluoroalkyl acids in Georgia, USA surface waters near and distant to a major use source. Environ. Toxicol. Chem. Int. J. 2008, 27, 2011–2018. [Google Scholar] [CrossRef]
- Camacho, C.G.; Antonison, A.; Oldnettle, A.; Costa, K.A.; Timshina, A.S.; Ditz, H.; Thompson, J.T.; Holden, M.M.; Sobczak, W.J.; Arnold, J. Statewide Surveillance and Mapping of PFAS in Florida Surface Water. ACS EST Water 2024, 4, 4343–4355. [Google Scholar] [CrossRef]
- Griffin, E.K.; Hall, L.M.; Brown, M.A.; Taylor-Manges, A.; Green, T.; Suchanec, K.; Furman, B.T.; Congdon, V.M.; Wilson, S.S.; Osborne, T.Z. PFAS surveillance in abiotic matrices within vital aquatic habitats throughout Florida. Mar. Pollut. Bull. 2023, 192, 115011. [Google Scholar] [CrossRef]
- Holden, M.M.; Timshina, A.; Mehdi, Q.; Cromwell, L.A.; Osborne, T.; Aufmuth, J.; Bowden, J.A. Have per-and polyfluoroalkyl substances (PFAS) infiltrated Florida’s freshwater springs? Sci. Total Environ. 2024, 952, 175826. [Google Scholar] [CrossRef]
- Sörengård, M.; Bergström, S.; McCleaf, P.; Wiberg, K.; Ahrens, L. Long-distance transport of per-and polyfluoroalkyl substances (PFAS) in a Swedish drinking water aquifer. Environ. Pollut. 2022, 311, 119981. [Google Scholar] [CrossRef]
- Koch, A.; Kärrman, A.; Yeung, L.W.; Jonsson, M.; Ahrens, L.; Wang, T. Point source characterization of per-and polyfluoroalkyl substances (PFASs) and extractable organofluorine (EOF) in freshwater and aquatic invertebrates. Environ. Sci. Process. Impacts 2019, 21, 1887–1898. [Google Scholar] [CrossRef]
- Kärrman, A.; Elgh-Dalgren, K.; Lafossas, C.; Møskeland, T. Environmental levels and distribution of structural isomers of perfluoroalkyl acids after aqueous fire-fighting foam (AFFF) contamination. Environ. Chem. 2011, 8, 372–380. [Google Scholar] [CrossRef]
- Reinikainen, J.; Perkola, N.; Äystö, L.; Sorvari, J. The occurrence, distribution, and risks of PFAS at AFFF-impacted sites in Finland. Sci. Total Environ. 2022, 829, 154237. [Google Scholar] [CrossRef] [PubMed]
- Naile, J.E.; Khim, J.S.; Wang, T.; Chen, C.; Luo, W.; Kwon, B.-O.; Park, J.; Koh, C.-H.; Jones, P.D.; Lu, Y. Perfluorinated compounds in water, sediment, soil and biota from estuarine and coastal areas of Korea. Environ. Pollut. 2010, 158, 1237–1244. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Z.; Li, J.; Hua, X.; Zhang, B.; Tang, C.; An, X.; Lin, T. Emerging and legacy perfluoroalkyl and polyfluoroalkyl substances (PFAS) in surface water around three international airports in China. Chemosphere 2023, 344, 140360. [Google Scholar] [CrossRef]
- Li, L.; Han, T.; Li, B.; Bai, P.; Tang, X.; Zhao, Y. Distribution Control and Environmental Fate of PFAS in the Offshore Region Adjacent to the Yangtze River Estuary—A Study Combining Multiple Phases Analysis. Environ. Sci. Technol. 2024, 58, 15779–15789. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Pan, Y.; Wang, J.; Cai, Y. Distribution of perfluorinated compounds in water, sediment, biota and floating plants in Baiyangdian Lake, China. J. Environ. Monit. 2012, 14, 636–642. [Google Scholar] [CrossRef]
- Myers, A.L.; Crozier, P.W.; Helm, P.A.; Brimacombe, C.; Furdui, V.I.; Reiner, E.J.; Burniston, D.; Marvin, C.H. Fate, distribution, and contrasting temporal trends of perfluoroalkyl substances (PFASs) in Lake Ontario, Canada. Environ. Int. 2012, 44, 92–99. [Google Scholar] [CrossRef]
- Ibor, O.R.; Andem, A.B.; Eni, G.; Arong, G.A.; Adeougn, A.O.; Arukwe, A. Contaminant levels and endocrine disruptive effects in Clarias gariepinus exposed to simulated leachate from a solid waste dumpsite in Calabar, Nigeria. Aquat. Toxicol. 2020, 219, 105375. [Google Scholar] [CrossRef]
- Miranda, D.A.; Abessa, D.M.; Moreira, L.B.; Maranho, L.A.; Oliveira, L.G.; Benskin, J.P.; Leonel, J. Spatial and temporal distribution of perfluoroalkyl substances (PFAS) detected after an aqueous film forming foam (AFFF) spill. Mar. Pollut. Bull. 2024, 204, 116561. [Google Scholar] [CrossRef]
- Labadie, P.; Chevreuil, M. Partitioning behaviour of perfluorinated alkyl contaminants between water, sediment and fish in the Orge River (nearby Paris, France). Environ. Pollut. 2011, 159, 391–397. [Google Scholar] [CrossRef]
- Fair, P.A.; Wolf, B.; White, N.D.; Arnott, S.A.; Kannan, K.; Karthikraj, R.; Vena, J.E. Perfluoroalkyl substances (PFASs) in edible fish species from Charleston Harbor and tributaries, South Carolina, United States: Exposure and risk assessment. Environ. Res. 2019, 171, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Fujii, Y.; Tuda, H.; Kato, Y.; Kimura, O.; Endo, T.; Harada, K.H.; Koizumi, A.; Haraguchi, K. Levels and profiles of long-chain perfluoroalkyl carboxylic acids in Pacific cod from 14 sites in the North Pacific Ocean. Environ. Pollut. 2019, 247, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Barbo, N.; Stoiber, T.; Naidenko, O.V.; Andrews, D.Q. Locally caught freshwater fish across the United States are likely a significant source of exposure to PFOS and other perfluorinated compounds. Environ. Res. 2023, 220, 115165. [Google Scholar] [CrossRef] [PubMed]
- Kirkeli, C.; Valdersnes, S.; Ali, A.M. Target and non-target screening of poly-and perfluoroalkyl substances (PFAS) in fish liver samples from the River Nile in Sudan: A baseline assessment. Mar. Pollut. Bull. 2025, 211, 117388. [Google Scholar] [CrossRef]
- Melake, B.A.; Bervoets, L.; Nkuba, B.; Groffen, T. Distribution of perfluoroalkyl substances (PFASs) in water, sediment, and fish tissue, and the potential human health risks due to fish consumption in Lake Hawassa, Ethiopia. Environ. Res. 2022, 204, 112033. [Google Scholar] [CrossRef]
- Land, M.; De Wit, C.A.; Bignert, A.; Cousins, I.T.; Herzke, D.; Johansson, J.H.; Martin, J.W. What is the effect of phasing out long-chain per-and polyfluoroalkyl substances on the concentrations of perfluoroalkyl acids and their precursors in the environment? A systematic review. Environ. Evid. 2018, 7, 4. [Google Scholar] [CrossRef]
- Kwiatkowski, C.F.; Andrews, D.Q.; Birnbaum, L.S.; Bruton, T.A.; DeWitt, J.C.; Knappe, D.R.; Maffini, M.V.; Miller, M.F.; Pelch, K.E.; Reade, A. Scientific basis for managing PFAS as a chemical class. Environ. Sci. Technol. Lett. 2020, 7, 532–543. [Google Scholar] [CrossRef]
- Messmer, M.F.; Salloway, J.; Shara, N.; Locwin, B.; Harvey, M.W.; Traviss, N. Risk of cancer in a community exposed to per-and poly-fluoroalkyl substances. Environ. Health Insights 2022, 16, 11786302221076707. [Google Scholar] [CrossRef]
- Koch, A.; Jonsson, M.; Yeung, L.W.; Karrman, A.; Ahrens, L.; Ekblad, A.; Wang, T. Per-and polyfluoroalkyl-contaminated freshwater impacts adjacent riparian food webs. Environ. Sci. Technol. 2020, 54, 11951–11960. [Google Scholar] [CrossRef]
- Miranda, D.A.; Benskin, J.P.; Awad, R.; Lepoint, G.; Leonel, J.; Hatje, V. Bioaccumulation of Per-and polyfluoroalkyl substances (PFASs) in a tropical estuarine food web. Sci. Total Environ. 2021, 754, 142146. [Google Scholar] [CrossRef]
- Goodrow, S.M.; Ruppel, B.; Lippincott, R.L.; Post, G.B.; Procopio, N.A. Investigation of levels of perfluoroalkyl substances in surface water, sediment and fish tissue in New Jersey, USA. Sci. Total Environ. 2020, 729, 138839. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Yu, X.; Zhao, W.; Barceló, D.; Lyu, S.; Sui, Q. Occurrence, behaviors, and fate of per-and polyfluoroalkyl substances (PFASs) in typical municipal solid waste disposal sites. Water Res. 2024, 252, 121215. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Yang, X.; Song, X.; Miao, Y.; Yu, Y.; Xiang, W.; Huang, M.; Wu, W.; Liang, K.; Zhao, S. Bioaccumulation mechanisms of perfluoroalkyl substances (PFASs) in aquatic environments: Theoretical and experimental insights. J. Hazard. Mater. 2024, 480, 136283. [Google Scholar] [CrossRef] [PubMed]
- Lv, G.; Sun, X. The molecular-level understanding of the uptake of PFOS and its alternatives (6: 2 Cl-PFESA and OBS) into phospholipid bilayers. J. Hazard. Mater. 2021, 417, 125991. [Google Scholar] [CrossRef]
- Podder, A.; Sadmani, A.A.; Reinhart, D.; Chang, N.-B.; Goel, R. Per and poly-fluoroalkyl substances (PFAS) as a contaminant of emerging concern in surface water: A transboundary review of their occurrences and toxicity effects. J. Hazard. Mater. 2021, 419, 126361. [Google Scholar] [CrossRef]
- Zhang, X.; Lohmann, R.; Sunderland, E.M. Poly-and perfluoroalkyl substances in seawater and plankton from the northwestern Atlantic margin. Environ. Sci. Technol. 2019, 53, 12348–12356. [Google Scholar] [CrossRef]
- Zhao, L.; Teng, M.; Zhao, X.; Li, Y.; Sun, J.; Zhao, W.; Ruan, Y.; Leung, K.M.; Wu, F. Insight into the binding model of per-and polyfluoroalkyl substances to proteins and membranes. Environ. Int. 2023, 175, 107951. [Google Scholar] [CrossRef]
- Brennan, N.M.; Evans, A.T.; Fritz, M.K.; Peak, S.A.; von Holst, H.E. Trends in the regulation of per-and polyfluoroalkyl substances (PFAS): A scoping review. Int. J. Environ. Res. Public Health 2021, 18, 10900. [Google Scholar] [CrossRef]
- Liu, H.; Sheng, N.; Zhang, W.; Dai, J. Toxic effects of perfluorononanoic acid on the development of Zebrafish (Danio rerio) embryos. J. Environ. Sci. 2015, 32, 26–34. [Google Scholar] [CrossRef]
- Rericha, Y.; Cao, D.; Truong, L.; Simonich, M.; Field, J.A.; Tanguay, R.L. Behavior effects of structurally diverse per-and polyfluoroalkyl substances in zebrafish. Chem. Res. Toxicol. 2021, 34, 1409–1416. [Google Scholar] [CrossRef]
- Xiao, J.; Yang, D.; Hu, B.; Zha, W.; Li, W.; Wang, Y.; Liu, F.; Liao, X.; Li, H.; Tao, Q.; et al. Perfluorodecanoic acid induces the increase of innate cells in zebrafish embryos by upregulating oxidative stress levels. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2025, 287, 110037. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Liu, S.; Ren, Z.; Jiao, X.; Qin, S. Induction of oxidative stress and related transcriptional effects of perfluorononanoic acid using an in vivo assessment. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2014, 160, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Rainieri, S.; Conlledo, N.; Langerholc, T.; Madorran, E.; Sala, M.; Barranco, A. Toxic effects of perfluorinated compounds at human cellular level and on a model vertebrate. Food Chem. Toxicol. 2017, 104, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Sheng, N.; Wang, M.; Zhang, H.; Dai, J. Zebrafish reproductive toxicity induced by chronic perfluorononanoate exposure. Aquat. Toxicol. 2016, 175, 269–276. [Google Scholar] [CrossRef]
- Jo, A.; Ji, K.; Choi, K. Endocrine disruption effects of long-term exposure to perfluorodecanoic acid (PFDA) and perfluorotridecanoic acid (PFTrDA) in zebrafish (Danio rerio) and related mechanisms. Chemosphere 2014, 108, 360–366. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Fang, X.; Zhang, H.; Dai, J. The thyroid-disrupting effects of long-term perfluorononanoate exposure on zebrafish (Danio rerio). Ecotoxicology 2011, 20, 47–55. [Google Scholar] [CrossRef]
- Menger, F.; Pohl, J.; Ahrens, L.; Carlsson, G.; Örn, S. Behavioural effects and bioconcentration of per-and polyfluoroalkyl substances (PFASs) in zebrafish (Danio rerio) embryos. Chemosphere 2020, 245, 125573. [Google Scholar] [CrossRef]
- Gong, H.; Du, J.; Xu, J.; Yang, Y.; Lu, H.; Xiao, H. Perfluorononanoate and Perfluorobutane Sulfonate Induce Cardiotoxic Effects in Zebrafish. Environ. Toxicol. Chem. 2022, 41, 2527–2536. [Google Scholar] [CrossRef]
- Benninghoff, A.D.; Orner, G.A.; Buchner, C.H.; Hendricks, J.D.; Duffy, A.M.; Williams, D.E. Promotion of hepatocarcinogenesis by perfluoroalkyl acids in rainbow trout. Toxicol. Sci. 2012, 125, 69–78. [Google Scholar] [CrossRef]
- Qian, M.; Sun, W.; Cheng, L.; Wu, Y.; Wang, L.; Liu, H. Transcriptome-based analysis reveals the toxic effects of perfluorononanoic acid by affecting the development of the cardiovascular system and lipid metabolism in zebrafish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2024, 289, 110108. [Google Scholar] [CrossRef]
- Davis, A.P.; Wiegers, T.C.; Johnson, R.J.; Sciaky, D.; Wiegers, J.; Mattingly, C.J. Comparative toxicogenomics database (CTD): Update 2023. Nucleic Acids Res. 2023, 51, D1257–D1262. [Google Scholar] [CrossRef] [PubMed]
- English, C.D.; Kazi, K.J.; Konig, I.; Ivantsova, E.; Souders II, C.L.; Martyniuk, C.J. Exposure to the antineoplastic ifosfamide alters molecular pathways related to cardiovascular function, increases heart rate, and induces hyperactivity in zebrafish (Danio rerio). Environ. Toxicol. Pharmacol. 2024, 107, 104427. [Google Scholar] [CrossRef] [PubMed]
- Bassler, J.; Ducatman, A.; Elliott, M.; Wen, S.; Wahlang, B.; Barnett, J.; Cave, M.C. Environmental perfluoroalkyl acid exposures are associated with liver disease characterized by apoptosis and altered serum adipocytokines. Environ. Pollut. 2019, 247, 1055–1063. [Google Scholar] [CrossRef] [PubMed]
- Bangma, J.T.; Reiner, J.L.; Botha, H.; Cantu, T.M.; Gouws, M.A.; Guillette, M.P.; Koelmel, J.P.; Luus-Powell, W.J.; Myburgh, J.; Rynders, O. Tissue distribution of perfluoroalkyl acids and health status in wild Mozambique tilapia (Oreochromis mossambicus) from Loskop Dam, Mpumalanga, South Africa. J. Environ. Sci. 2017, 61, 59–67. [Google Scholar] [CrossRef]
- Fair, P.A.; Romano, T.; Schaefer, A.M.; Reif, J.S.; Bossart, G.D.; Houde, M.; Muir, D.; Adams, J.; Rice, C.; Hulsey, T.C. Associations between perfluoroalkyl compounds and immune and clinical chemistry parameters in highly exposed bottlenose dolphins (Tursiops truncatus). Environ. Toxicol. Chem. 2013, 32, 736–746. [Google Scholar] [CrossRef]
- Zhang, X.; Flaws, J.A.; Spinella, M.J.; Irudayaraj, J. The relationship between typical environmental endocrine disruptors and kidney disease. Toxics 2022, 11, 32. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S.; Kawashima, S.; Nakaya, A. The KEGG databases at GenomeNet. Nucleic Acids Res. 2002, 30, 42–46. [Google Scholar] [CrossRef]
- Draghici, S.; Khatri, P.; Tarca, A.L.; Amin, K.; Done, A.; Voichita, C.; Georgescu, C.; Romero, R. A systems biology approach for pathway level analysis. Genome Res. 2007, 17, 1537–1545. [Google Scholar] [CrossRef]
- Yang, H.; Lai, H.; Huang, J.; Sun, L.; Mennigen, J.A.; Wang, Q.; Liu, Y.; Jin, Y.; Tu, W. Polystyrene microplastics decrease F–53B bioaccumulation but induce inflammatory stress in larval zebrafish. Chemosphere 2020, 255, 127040. [Google Scholar] [CrossRef]
- Lin, H.; Liu, Z.; Yang, H.; Lu, L.; Chen, R.; Zhang, X.; Zhong, Y.; Zhang, H. Per-and polyfluoroalkyl substances (PFASs) impair lipid metabolism in Rana nigromaculata: A field investigation and laboratory study. Environ. Sci. Technol. 2022, 56, 13222–13232. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Gu, X.; Mo, L.; Wan, N.; Wu, L.; Liu, S.; Zhang, M.; Li, M.; Liu, X.; Liu, Y. Per-and polyfluoroalkyl substances induce lipid metabolic impairment in fish: Integration on field investigation and laboratory study. Environ. Int. 2024, 187, 108687. [Google Scholar] [CrossRef] [PubMed]
- Dale, K.; Yadetie, F.; Horvli, T.; Zhang, X.; Frøysa, H.G.; Karlsen, O.A.; Goksøyr, A. Single PFAS and PFAS mixtures affect nuclear receptor-and oxidative stress-related pathways in precision-cut liver slices of Atlantic cod (Gadus morhua). Sci. Total Environ. 2022, 814, 152732. [Google Scholar] [CrossRef] [PubMed]
- Louisse, J.; Rijkers, D.; Stoopen, G.; Janssen, A.; Staats, M.; Hoogenboom, R.; Kersten, S.; Peijnenburg, A. Perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and perfluorononanoic acid (PFNA) increase triglyceride levels and decrease cholesterogenic gene expression in human HepaRG liver cells. Arch. Toxicol. 2020, 94, 3137–3155. [Google Scholar] [CrossRef]
PFAS | Process or Function | Upregulated Genes | Downregulated Genes | Reference |
---|---|---|---|---|
PFNA | Transport pathways | slco2b1 at 14 dpf | ap1s, slco2b1, tgfb1a at 5 dpf | [35] |
Apoptosis | jnk, aif, p53 | pparαa, pparαb, bcl-2 | [87] | |
Oxidative stress, lipid metabolism | ucp2, lfabp | mt-nd1, sod1, cox1, mt-atp6 | Liu, Sheng [84] | |
Thyroid disruption | tpo, trα, ttr, ugt2a1 | dio2, trβ, ugt1a5 | Liu, Wang [91] | |
Reproduction | erα, fshβ, cyp19b, lhβ | erβ, ar, fshr, lhr, star, fshr, 3β-hsd | [89] | |
Cardiotoxicity | amhc, nppa, nkx2.5, end1, tgfb2 | [93] | ||
Apoptosis, PPAR-signaling pathway | angptl4, cyp24a1, elovl7b, hbbe3, hmgcra, hspb11, lyve1a, sqlea, ucp3 | aqp8a.2, chia.1, cyp7a1, fabp10a, gck, mogat2 | [95] | |
PFDA | Endocrine disruption | cyp19a, cyp19b, erα, er2β, fshβ, vtg1 | [90] | |
Immune system apoptosis | cxcl-c1c, il-8, il-β, tlr-4, tnf-α | [86] | ||
PFUnDA | Thyroid disruption | trα, trβ | [41] |
Name | # of Entities | Expanded # of Entities | Overlap | Percent Overlap | p-Value |
---|---|---|---|---|---|
TNF -> STAT Expression Targets | 83 | 98 | 47 | 47 | 5.19 × 10−21 |
Insulin -> CEBPA/CTNNB/FOXA/FOXO Expression Targets | 145 | 192 | 68 | 35 | 7.28 × 10−21 |
Insulin -> STAT Expression Targets | 132 | 182 | 64 | 35 | 1.85 × 10−19 |
Insulin -> ELK/SRF/HIF1A/MYC/SREBF Expression Targets | 138 | 208 | 64 | 30 | 4.28 × 10−16 |
PRL/GHR -> STAT Expression Targets | 82 | 97 | 41 | 42 | 5.65 × 10−16 |
Insulin -> MEF/MYOD Expression Targets | 148 | 199 | 62 | 31 | 6.72 × 10−16 |
IL6 Expression Targets | 110 | 179 | 57 | 31 | 3.89 × 10−15 |
PRL/PRLR Expression Targets | 78 | 93 | 39 | 41 | 4.21 × 10−15 |
IFNA1/IFNR Expression Targets | 40 | 49 | 26 | 53 | 2.07 × 10−13 |
IL2 Expression Targets | 97 | 138 | 46 | 33 | 3.48 × 10−13 |
GH1/GHR -> STAT Expression Targets | 82 | 95 | 36 | 37 | 2.02 × 10−12 |
Leptin -> STAT Expression Targets | 96 | 139 | 45 | 32 | 2.09 × 10−12 |
IFNG/IFNR Expression Targets | 134 | 151 | 47 | 31 | 3.25 × 10−12 |
OSM/OSMR Expression Targets | 37 | 55 | 26 | 47 | 6.76 × 10−12 |
TGFB1-ACVRL1 Expression Targets | 221 | 306 | 73 | 23 | 6.95 × 10−12 |
EGF -> CTNN Expression Targets | 143 | 167 | 49 | 29 | 1.25 × 10−11 |
CSF1 -> STAT Expression Targets | 43 | 49 | 24 | 48 | 1.72 × 10−11 |
Cell Cycle Overiew | 140 | 447 | 40 | 8 | 2.96 × 10−11 |
BMP4/BMPR2 Expression Targets | 59 | 76 | 30 | 39 | 4.59 × 10−11 |
GH1/PRLR Expression Targets | 58 | 69 | 28 | 40 | 9.61 × 10−11 |
Liver Injury | Dental Caries | Diabetes Mellitus | Hepatotoxicity |
---|---|---|---|
Hepatomegaly | Testicular toxicity | Death | Glucose intolerance |
Atherosclerosis | Hyperbilirubinemia | Smoking | Liver cancer |
Spermatogenic failure | Insulin resistance | Reproductive toxicity | Congenital malformation |
Toxicity | Congenital heart defect | Hepatocellular carcinoma | Fatty liver |
Metabolic syndrome X | Steatosis | Cholestasis | Immunotoxicity |
Low birth weight | Body weight loss | Spinal deformity | |
Developmental toxicity | Edema | Cardiotoxicity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivantsova, E.; Sultan, A.; Martyniuk, C.J. Occurrence and Toxicity Mechanisms of Perfluorononanoic Acid, Perfluorodecanoic Acid, and Perfluoroundecanoic Acid in Fish: A Review. Toxics 2025, 13, 436. https://doi.org/10.3390/toxics13060436
Ivantsova E, Sultan A, Martyniuk CJ. Occurrence and Toxicity Mechanisms of Perfluorononanoic Acid, Perfluorodecanoic Acid, and Perfluoroundecanoic Acid in Fish: A Review. Toxics. 2025; 13(6):436. https://doi.org/10.3390/toxics13060436
Chicago/Turabian StyleIvantsova, Emma, Amany Sultan, and Christopher J. Martyniuk. 2025. "Occurrence and Toxicity Mechanisms of Perfluorononanoic Acid, Perfluorodecanoic Acid, and Perfluoroundecanoic Acid in Fish: A Review" Toxics 13, no. 6: 436. https://doi.org/10.3390/toxics13060436
APA StyleIvantsova, E., Sultan, A., & Martyniuk, C. J. (2025). Occurrence and Toxicity Mechanisms of Perfluorononanoic Acid, Perfluorodecanoic Acid, and Perfluoroundecanoic Acid in Fish: A Review. Toxics, 13(6), 436. https://doi.org/10.3390/toxics13060436