Microplastics in the Lung Tissues Associated with Blood Test Index
Abstract
:1. Introduction
2. Methods
2.1. Recruitment of Patients and Lung Tissue Collection
2.2. Pretreatment and Detection of MPs in the Lung Tissues
2.3. Quality Control
2.4. Blood Index Tests
2.5. Statistical Analysis
3. Results
3.1. Characteristics of MPs in the Lung Tissues
3.2. Concentrations of MPs in the Subgroups
3.3. Relationships between MPs in the Lung Tissues and Blood Test Index
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.; McGonigle, D.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Marine pollution. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, J.; Zhang, Y.; Wang, L.; Deng, J.; Gao, Y.; Yu, L.; Zhang, J.; Sun, H. Widespread distribution of PET and PC microplastics in dust in urban China and their estimated human exposure. Environ. Int. 2019, 128, 116–124. [Google Scholar] [CrossRef]
- Liu, K.; Wang, X.; Fang, T.; Xu, P.; Zhu, L.; Li, D. Source and potential risk assessment of suspended atmospheric microplastics in Shanghai. Sci. Total Environ. 2019, 675, 462–471. [Google Scholar] [CrossRef]
- Zhu, X.; Huang, W.; Fang, M.; Liao, Z.; Wang, Y.; Xu, L.; Mu, Q.; Shi, C.; Lu, C.; Deng, H.; et al. Airborne Microplastic Concentrations in Five Megacities of Northern and Southeast China. Environ. Sci. Technol. 2021, 55, 12871–12881. [Google Scholar] [CrossRef] [PubMed]
- Boerger, C.M.; Lattin, G.L.; Moore, S.L.; Moore, C.J. Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Mar. Pollut. Bull. 2010, 60, 2275–2278. [Google Scholar] [CrossRef] [PubMed]
- Van Cauwenberghe, L.; Janssen, C.R. Microplastics in bivalves cultured for human consumption. Environ. Pollut. 2014, 193, 65–70. [Google Scholar] [CrossRef]
- Cho, Y.; Shim, W.J.; Jang, M.; Han, G.M.; Hong, S.H. Abundance and characteristics of microplastics in market bivalves from South Korea. Environ. Pollut. 2019, 245, 1107–1116. [Google Scholar] [CrossRef]
- Hosseinpour, A.; Chamani, A.; Mirzaei, R.; Mohebbi-Nozar, S.L. Occurrence, abundance and characteristics of microplastics in some commercial fish of northern coasts of the Persian Gulf. Mar. Pollut. Bull. 2021, 171, 112693. [Google Scholar] [CrossRef]
- Oliveri Conti, G.; Ferrante, M.; Banni, M.; Favara, C.; Nicolosi, I.; Cristaldi, A.; Fiore, M.; Zuccarello, P. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environ. Res. 2020, 187, 109677. [Google Scholar] [CrossRef]
- Yang, D.; Shi, H.; Li, L.; Li, J.; Jabeen, K.; Kolandhasamy, P. Microplastic Pollution in Table Salts from China. Environ. Sci. Technol. 2015, 49, 13622–13627. [Google Scholar] [CrossRef] [PubMed]
- Karami, A.; Golieskardi, A.; Keong Choo, C.; Larat, V.; Galloway, T.S.; Salamatinia, B. The presence of microplastics in commercial salts from different countries. Sci. Rep. 2017, 7, 46173. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, H.J.; Kim, S.K.; Kim, H.J. Global Pattern of Microplastics (MPs) in Commercial Food-Grade Salts: Sea Salt as an Indicator of Seawater MP Pollution. Environ. Sci. Technol. 2018, 52, 12819–12828. [Google Scholar] [CrossRef] [PubMed]
- Mason, S.A.; Welch, V.G.; Neratko, J. Synthetic Polymer Contamination in Bottled Water. Front. Chem. 2018, 6, 407. [Google Scholar] [CrossRef]
- Danopoulos, E.; Twiddy, M.; Rotchell, J.M. Microplastic contamination of drinking water: A systematic review. PLoS ONE 2020, 15, e0236838. [Google Scholar] [CrossRef] [PubMed]
- Kirstein, I.V.; Hensel, F.; Gomiero, A.; Iordachescu, L.; Vianello, A.; Wittgren, H.B.; Vollertsen, J. Drinking plastics?—Quantification qualification of microplastics in drinking water distribution systems by µFTIR and Py-GCMS. Water Res. 2021, 188, 116519. [Google Scholar] [CrossRef]
- Shen, M.; Zeng, Z.; Wen, X.; Ren, X.; Zeng, G.; Zhang, Y.; Xiao, R. Presence of microplastics in drinking water from freshwater sources: The investigation in Changsha, China. Environ. Sci. Pollut. Res. Int. 2021, 28, 42313–42324. [Google Scholar] [CrossRef]
- Habib, R.Z.; Salim Abdoon, M.M.; Al Meqbaali, R.M.; Ghebremedhin, F.; Elkashlan, M.; Kittaneh, W.F.; Cherupurakal, N.; Mourad, A.I.; Thiemann, T.; Al Kindi, R. Analysis of microbeads in cosmetic products in the United Arab Emirates. Environ. Pollut. 2020, 258, 113831. [Google Scholar] [CrossRef]
- Lim, X. Microplastics are everywhere–But are they harmful? Nature 2021, 593, 22–25. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, E.G.; Li, J.; Chen, Q.; Ma, L.; Zeng, E.Y.; Shi, H. A Review of Microplastics in Table Salt, Drinking Water, and Air: Direct Human Exposure. Environ. Sci. Technol. 2020, 54, 3740–3751. [Google Scholar] [CrossRef]
- Li, L.; Zhao, X.; Li, Z.; Song, K. COVID-19: Performance study of microplastic inhalation risk posed by wearing masks. J. Hazard. Mater. 2021, 411, 124955. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.Y.; Lin, K.T.; Jung, C.C.; Chang, C.L.; Chen, C.Y. Characteristics and influencing factors of airborne microplastics in nail salons. Sci. Total Environ. 2022, 806 Pt 4, 151472. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Gibson, C.T.; Chuah, C.; Tang, Y.; Naidu, R.; Fang, C. Raman imaging for the identification of Teflon microplastics and nanoplastics released from non-stick cookware. Sci. Total Environ. 2022, 851 Pt 2, 158293. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Huang, X.; Bi, R.; Guo, Q.; Yu, X.; Zeng, Q.; Huang, Z.; Liu, T.; Wu, H.; Chen, Y.; et al. Detection and Analysis of Microplastics in Human Sputum. Environ. Sci. Technol. 2022, 56, 2476–2486. [Google Scholar] [CrossRef]
- Baeza-Martinez, C.; Olmos, S.; Gonzalez-Pleiter, M.; Lopez-Castellanos, J.; Garcia-Pachon, E.; Masia-Canuto, M.; Hernandez-Blasco, L.; Bayo, J. First evidence of microplastics isolated in European citizens’ lower airway. J. Hazard. Mater. 2022, 438, 129439. [Google Scholar] [CrossRef]
- Amato-Lourenço, L.F.; Carvalho-Oliveira, R.; Júnior, G.R.; Dos Santos Galvão, L.; Ando, R.A.; Mauad, T. Presence of airborne microplastics in human lung tissue. J. Hazard. Mater. 2021, 416, 126124. [Google Scholar] [CrossRef]
- Jenner, L.C.; Rotchell, J.M.; Bennett, R.T.; Cowen, M.; Tentzeris, V.; Sadofsky, L.R. Detection of microplastics in human lung tissue using muFTIR spectroscopy. Sci. Total Environ. 2022, 831, 154907. [Google Scholar] [CrossRef]
- Kutralam-Muniasamy, G.; Shruti, V.C.; Perez-Guevara, F.; Roy, P.D. Microplastic diagnostics in humans: "The 3Ps" Progress, problems, and prospects. Sci. Total Environ. 2023, 856 Pt 2, 159164. [Google Scholar] [CrossRef]
- Song, Y.K.; Hong, S.H.; Eo, S.; Shim, W.J. A comparison of spectroscopic analysis methods for microplastics: Manual, semi-automated, and automated Fourier transform infrared and Raman techniques. Mar. Pollut. Bull. 2021, 173 Pt B, 113101. [Google Scholar] [CrossRef]
- Dong, M.; She, Z.; Xiong, X.; Ouyang, G.; Luo, Z. Automated analysis of microplastics based on vibrational spectroscopy: Are we measuring the same metrics? Anal. Bioanal. Chem. 2022, 414, 3359–3372. [Google Scholar] [CrossRef]
- Li, Q.; Zeng, A.; Jiang, X.; Gu, X. Are microplastics correlated to phthalates in facility agriculture soil? J. Hazard. Mater. 2021, 412, 125164. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Rosales, A.; Andrade, J.; Fernandez-Gonzalez, V.; Lopez-Mahia, P.; Muniategui-Lorenzo, S. A reliable method for the isolation and characterization of microplastics in fish gastrointestinal tracts using an infrared tunable quantum cascade laser system. Mar. Pollut. Bull. 2022, 178, 113591. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Wang, G.; Yin, W.; Zhou, Y.; Hou, J.; Wang, X.; Chen, W.; Yuan, J. Central obesity transition increased urinary levels of 8-hydroxydeoxyguanosine in male adults: A 3-year follow up study. Metabolism 2019, 91, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Hytych, V.; Horazdovsky, P.; Pohnan, R.; Pracharova, S.; Taskova, A.; Konopa, Z.; Cernovska, M.; Demes, R.; Cermak, J.; Vasakova, M.; et al. VATS lobectomy, history, indication, contraindication and general techniques. Bratisl. Lek. Listy 2015, 116, 400–403. [Google Scholar] [CrossRef] [PubMed]
- Shruti, V.C.; Kutralam-Muniasamy, G. Blanks and bias in microplastic research: Implications for future quality assurance. Trends Environ. Anal. Chem. 2023, 38, e00203. [Google Scholar] [CrossRef]
- Qiu, L.; Lu, W.; Tu, C.; Li, X.; Zhang, H.; Wang, S.; Chen, M.; Zheng, X.; Wang, Z.; Lin, M.; et al. Evidence of Microplastics in Bronchoalveolar Lavage Fluid among Never-Smokers: A Prospective Case Series. Environ. Sci. Technol. 2023, 57, 2435–2444. [Google Scholar] [CrossRef]
- Kim, J.W.; Lee, C.H.; Yang, Z.; Kim, B.H.; Lee, Y.S.; Kim, K.A. The spectrum of magnetic resonance imaging proton density fat fraction (MRI-PDFF), magnetic resonance spectroscopy (MRS), and two different histopathologic methods (artificial intelligence vs. pathologist) in quantifying hepatic steatosis. Quant. Imaging Med. Surg. 2022, 12, 5251–5262. [Google Scholar] [CrossRef]
- Skoutelis, V.C.; Mastronikola, N.; Dinopoulos, A.; Skouteli, E.; Dimitriadis, Z.; Bakalidou, D. The Greek Version of Mini-Manual Ability Classification System (Mini-MACS): Translation and Reliability Study. Cureus 2022, 14, e30073. [Google Scholar] [CrossRef]
- Lim, D.; Jeong, J.; Song, K.S.; Sung, J.H.; Oh, S.M.; Choi, J. Inhalation toxicity of polystyrene micro(nano)plastics using modified OECD TG 412. Chemosphere 2021, 262, 128330. [Google Scholar] [CrossRef]
- Bourguignon, A.; Tasneem, S.; Hayward, C.P.M. Update on platelet procoagulant mechanisms in health and in bleeding disorders. Int. J. Lab. Hematol. 2022, 44 (Suppl. S1), 89–100. [Google Scholar] [CrossRef]
- Nemmar, A.; Hoylaerts, M.F.; Hoet, P.H.; Vermylen, J.; Nemery, B. Size effect of intratracheally instilled particles on pulmonary inflammation and vascular thrombosis. Toxicol Appl. Pharmacol. 2003, 186, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Shi, M.; Wang, Y.; Xiao, Y.; Cai, D.; Xiao, F. Keap1-Nrf2 pathway up-regulation via hydrogen sulfide mitigates polystyrene microplastics induced-hepatotoxic effects. J. Hazard. Mater. 2021, 402, 123933. [Google Scholar] [CrossRef] [PubMed]
- Kole, P.J.; Lohr, A.J.; Van Belleghem, F.; Ragas, A.M.J. Wear and Tear of Tyres: A Stealthy Source of Microplastics in the Environment. Int. J. Environ. Res. Public Health 2017, 14, 1265. [Google Scholar] [CrossRef]
- Knight, L.J.; Parker-Jurd, F.N.F.; Al-Sid-Cheikh, M.; Thompson, R.C. Tyre wear particles: An abundant yet widely unreported microplastic? Environ. Sci. Pollut. Res. Int. 2020, 27, 18345–18354. [Google Scholar] [CrossRef] [PubMed]
- Parker-Jurd, F.N.F.; Napper, I.E.; Abbott, G.D.; Hann, S.; Thompson, R.C. Quantifying the release of tyre wear particles to the marine environment via multiple pathways. Mar. Pollut. Bull. 2021, 172, 112897. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhao, J.; Xing, B. Environmental source, fate, and toxicity of microplastics. J. Hazard. Mater. 2021, 407, 124357. [Google Scholar] [CrossRef] [PubMed]
- Napper, I.E.; Thompson, R.C. Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions. Mar. Pollut. Bull. 2016, 112, 39–45. [Google Scholar] [CrossRef]
- Mathalon, A.; Hill, P. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Mar. Pollut. Bull. 2014, 81, 69–79. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Mirande, C.; Mandin, C.; Guerrouache, M.; Langlois, V.; Tassin, B. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ. Pollut. 2017, 221, 453–458. [Google Scholar] [CrossRef]
- Chen, G.; Feng, Q.; Wang, J. Mini-review of microplastics in the atmosphere and their risks to humans. Sci. Total Environ. 2020, 703, 135504. [Google Scholar] [CrossRef]
- Li, Y.; Shao, L.; Wang, W.; Zhang, M.; Feng, X.; Li, W.; Zhang, D. Airborne fiber particles: Types, size and concentration observed in Beijing. Sci. Total Environ. 2020, 705, 135967. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, K.; Brown, R.C.; Brown, G.M. New perspectives on basic mechanisms in lung disease. 5. Respirable industrial fibres: Mechanisms of pathogenicity. Thorax 1993, 48, 390–395. [Google Scholar] [CrossRef]
- Molina, D.K.; DiMaio, V.J. Normal organ weights in men: Part II-the brain, lungs, liver, spleen, and kidneys. Am. J. Forensic Med. Pathol. 2012, 33, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Cox, K.D.; Covernton, G.A.; Davies, H.L.; Dower, J.F.; Juanes, F.; Dudas, S.E. Human Consumption of Microplastics. Environ. Sci. Technol. 2019, 53, 7068–7074. [Google Scholar] [CrossRef] [PubMed]
MPS | Lung Tissue | Control | p-Value c |
---|---|---|---|
Mean (SD), Particles/g | Mean (SD), Particles/g | ||
Total | 4.31 (5.11) | 0.47 (0.50) | 0.04 |
PP | 1.65 (4.02) | 0.13 (0.23) | 0.22 |
PET | 0.94 (1.47) | 0.07 (0.12) | 0.14 |
PS | 0.35 (0.73) | 0 b | 0.35 |
PVC | 0.25 (0.27) | 0 b | 0.14 |
PTFE | 0.15 (0.53) | 0 b | 0.62 |
CPE | 0.26 (0.62) | 0 b | 0.46 |
PE | 0.13 (0.32) | 0 b | 0.46 |
ACR | 0.22 (0.35) | 0 b | 0.27 |
EVA | 0.12 (0.31) | 0 b | 0.46 |
BR | 0.18 (0.49) | 0 b | 0.46 |
PU | 0.06 (0.13) | 0.20 (0.35) | 0.41 |
SIL | 0.05 (0.17) | 0 b | 0.62 |
EPN | 0 b | 0.07 (0.12) | 0.05 |
Characteristics | N (%) | Median (IQR), Particles/g | p-Value b |
---|---|---|---|
Sex | 0.01 | ||
Male | 7 (58.33) | 1.20 (1.80) | |
Female | 5 (41.67) | 7.77 (9.90) | |
Age, years | 0.87 | ||
<55 | 4 (33.33) | 2.49 (6.05) | |
≥55 | 8 (66.67) | 1.93 (7.31) | |
Working indoors | 0.09 | ||
No | 2 (16.67) | 11.40 | |
Yes | 10 (83.33) | 1.78 (3.22) | |
Wearing face masks, hours per day | 0.37 | ||
<5.25 | 7 (58.33) | 2.34 (8.41) | |
≥5.25 | 5 (41.67) | 1.51 (3.48) | |
Alcohol consumption | 0.13 | ||
Yes | 2 (16.67) | 0.87 | |
No | 10 (41.67) | 2.64 (6.80) | |
Educational level | 0.09 | ||
Middle school or below | 4 (33.33) | 6.49 (12.69) | |
High school or above | 8 (66.67) | 1.62 (2.12) | |
BMI level | 0.47 | ||
Non-obese, <24 kg/m2 | 5 (41.67) | 2.34 (4.43) | |
Overweight or obese, ≥24 kg/m2 | 7 (58.33) | 1.20 (7.23) | |
Seafood consumption, times per week | 0.06 | ||
≥4 | 5 (41.67) | 1.06 (3.36) | |
<4 | 7 (58.33) | 2.94 (7.96) | |
Traffic pollution exposure time, minutes per day | 0.40 | ||
<30 | 8 (66.67) | 3.78 (8.26) | |
≥30 | 4 (33.33) | 1.62 (1.62) | |
Self-cooking | 0.52 | ||
No | 6 (50.00) | 2.00 (7.79) | |
Yes | 6 (50.00) | 2.19 (6.87) | |
Distance between residence and nearest major roads, meter | 0.04 | ||
<300 | 5 (41.67) | 5.21 (5.98) | |
≥300 | 7 (58.33) | 1.20 (1.50) |
Blood Test Index | Median (IQR) | p-Value b | |
---|---|---|---|
Low MP Group (<2.19 Particles/g) | High MP Group (≥2.19 Particles/g) | ||
WBC (×109/L) | 6.46 (0.98) | 7.30 (3.68) | 0.75 |
RBC (×109/L) | 5.06 (0.85) | 4.40(1.42) | 0.26 |
HGB (g/L) | 152.00 (23.00) | 136.50 (38.75) | 0.17 |
PLT (×109/L) | 187.00 (19.75) | 244.50 (119.00) | <0.01 |
Hematocrit (%) | 45.30 (6.23) | 40.05 (10.38) | 0.20 |
MCV (fL) | 89.55 (2.60) | 88.90 (5.73) | 1.00 |
Mean red cell hemoglobin content (pg) | 30.25 (0.82) | 29.05 (2.93) | 0.20 |
MCHC (g/L) | 339.00 (8.00) | 329.50 (18.50) | 0.15 |
RDW SD (fL) | 41.70 (2.75) | 42.75 (4.80) | 0.34 |
RDW CV (%) | 12.90 (0.80) | 12.50 (1.22) | 0.87 |
N (×109/L) | 3.91 (0.95) | 3.72 (4.12) | 0.75 |
L (×109/L) | 1.79 (0.55) | 2.09 (1.32) | 0.52 |
N/L | 2.24 (0.84) | 1.73 (3.44) | 0.42 |
MON# (×109/L) | 0.52 (0.29) | 0.44 (0.21) | 0.87 |
EOS# (×109/L) | 0.10 (0.20) | 0.24 (0.27) | 0.08 |
Thrombocytocrit (%) | 0.20 (0.04) | 0.25 (0.07) | <0.01 |
PDW (fL) | 11.70 (1.45) | 11.60 (2.45) | 0.58 |
MPV (fL) | 10.35 (1.10) | 10.20 (1.23) | 0.47 |
PT (S) | 11.35 (0.67) | 11.25 (0.78) | 0.69 |
APTT (S) | 30.55 (4.85) | 30.40 (4.17) | 0.69 |
FIB (g/L) | 2.70 (0.80) | 3.56 (0.97) | 0.04 |
Urea (mmol/L) | 5.20 (1.05) | 4.15 (2.25) | 0.15 |
Cr (μmol/L) | 85.00 (23.50) | 65.00 (40.25) | 0.57 |
UA (μmol/L) | 442.00 (60.25) | 302.00 (204.50) | 0.34 |
K+ (mmol/L) | 3.61 (0.44) | 3.55 (0.29) | 0.94 |
Na+ (mmol/L) | 136.65 (1.88) | 139.60 (3.05) | 0.04 |
Cl- (mmol/L) | 100.45 (2.28) | 100.95 (3.67) | 0.52 |
GLU (mmol/L) | 5.08 (1.17) | 5.15 (0.64) | 0.52 |
AST (U/L) | 18.85 (21.18) | 17.50 (22.92) | 0.63 |
ALT (U/L) | 16.50 (10.85) | 20.80 (9.95) | 0.42 |
TB (μmol/L) | 13.50 (8.50) | 7.95 (3.93) | 0.06 |
DB (μmol/L) | 5.25 (2.48) | 3.20 (0.82) | 0.03 |
Hemobilirubin (μmol/L) | 8.45 (6.18) | 4.75 (3.10) | 0.07 |
TP (g/L) | 69.00 (7.00) | 72.25 (3.97) | 0.26 |
Albumin (g/L) | 42.20 (5.80) | 43.55 (3.55) | 0.87 |
Globulin (g/L) | 25.75 (5.37) | 29.00 (2.63) | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Lu, W.; Cao, Q.; Tu, C.; Zhong, C.; Qiu, L.; Li, S.; Zhang, H.; Lan, M.; Qiu, L.; et al. Microplastics in the Lung Tissues Associated with Blood Test Index. Toxics 2023, 11, 759. https://doi.org/10.3390/toxics11090759
Wang S, Lu W, Cao Q, Tu C, Zhong C, Qiu L, Li S, Zhang H, Lan M, Qiu L, et al. Microplastics in the Lung Tissues Associated with Blood Test Index. Toxics. 2023; 11(9):759. https://doi.org/10.3390/toxics11090759
Chicago/Turabian StyleWang, Shuguang, Wenfeng Lu, Qingdong Cao, Changli Tu, Chenghui Zhong, Lan Qiu, Saifeng Li, Han Zhang, Meiqi Lan, Liqiu Qiu, and et al. 2023. "Microplastics in the Lung Tissues Associated with Blood Test Index" Toxics 11, no. 9: 759. https://doi.org/10.3390/toxics11090759
APA StyleWang, S., Lu, W., Cao, Q., Tu, C., Zhong, C., Qiu, L., Li, S., Zhang, H., Lan, M., Qiu, L., Li, X., Liu, Y., Zhou, Y., & Liu, J. (2023). Microplastics in the Lung Tissues Associated with Blood Test Index. Toxics, 11(9), 759. https://doi.org/10.3390/toxics11090759