Whole-Transcriptome Analysis on the Leaves of Rosa chinensis Jacq. under Exposure to Polycyclic Aromatic Hydrocarbons
Abstract
:1. Introduction
2. Experimental Section
2.1. Exposure Experiments
2.2. Transcriptome Sequencing
2.3. Bioinformatic Analyses
2.4. Statistical Analysis
3. Results and Discussion
3.1. Variations in the Physiological Parameters of Leaves
3.2. Transcriptome Statistics
3.3. Differentially Expressed Genes
3.4. KEGG Enrichment Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beriro, D.J.; Cave, M.R.; Wragg, J.; Thomas, R.; Wills, G.; Evans, F. A review of the current state of the art of physiologically-based tests for measuring human dermal in vitro bioavailability of polycyclic aromatic hydrocarbons (PAH) in soil. J. Hazard. Mater. 2016, 305, 240–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agus, B.A.P.; Rajentran, K.; Selamat, J.; Lestari, S.D.; Umar, N.B.; Hussain, N. Determination of 16 EPA PAHs in food using gas and liquid chromatography. J. Food Compos. Anal. 2023, 116, 105038. [Google Scholar] [CrossRef]
- Wang, X.; Meyer, C.P.; Reisen, F.; Keywood, M.; Thai, P.K.; Hawker, D.W.; Powell, J.; Mueller, J.F. Emission Factors for Selected Semivolatile Organic Chemicals from Burning of Tropical Biomass Fuels and Estimation of Annual Australian Emissions. Environ. Sci. Technol. 2017, 51, 9644–9652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.; Huang, B.; Bi, X.; Lin, Q.; Liu, M.; Ren, Z.; Zhang, G.; Wang, X.; Sheng, G.; Fu, J. Emission of PAHs, NPAHs and OPAHs from residential honeycomb coal briquette combustion. Energy Fuels 2014, 28, 636–642. [Google Scholar] [CrossRef]
- Shen, G.; Tao, S.; Wei, S.; Chen, Y.; Zhang, Y.; Shen, H.; Huang, Y.; Zhu, D.; Yuan, C.; Wang, H.; et al. Field Measurement of Emission Factors of PM, EC, OC, Parent, Nitro-, and Oxy- Polycyclic Aromatic Hydrocarbons for Residential Briquette, Coal Cake, and Wood in Rural Shanxi, China. Environ. Sci. Technol. 2013, 47, 2998–3005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Xu, Y.; Zhao, Y.; Liu, Q.; Yu, S.; Liu, Y.; Wang, X.; Liu, Y.; Tao, S.; Liu, W. Occurrence, source, and risk assessment of atmospheric parent polycyclic aromatic hydrocarbons in the coastal cities of the Bohai and Yellow Seas, China. Environ. Pollut. 2019, 254, 113046. [Google Scholar] [CrossRef]
- Liu, W.; Wang, J.; Li, W.; Lin, N.; Liu, Q.; Xu, M.; Du, W. Unexpected increase of PAH toxicity in ambient particulate matter under the implementation of clean air action: Evidence from two megacities in northern China. Air Qual. Atmos. Health 2022, 15, 749–760. [Google Scholar] [CrossRef]
- Shen, G.; Du, W.; Zhuo, S.; Yu, J.; Tao, S. Improving regulations on residential emissions and non-criteria hazardous contaminants—Insights from a field campaign on ambient PM and PAHs in North China Plain. Environ. Sci. Policy 2019, 92, 201–206. [Google Scholar] [CrossRef]
- Chen, J.; Song, Y.; Liu, Y.; Chen, W.; Cen, Y.; You, M.; Yang, G. DBP and BaP co-exposure induces kidney injury via promoting pyroptosis of renal tubular epithelial cells in rats. Chemosphere 2023, 314, 137714. [Google Scholar] [CrossRef]
- Song, S.; Chen, B.; Huang, T.; Ma, S.; Liu, L.; Luo, J.; Shen, H.; Wang, J.; Guo, L.; Wu, M.; et al. Assessing the contribution of global wildfire biomass burning to BaP contamination in the Arctic. Environ. Sci. Ecotechnol. 2023, 14, 100232. [Google Scholar] [CrossRef]
- Udom, G.J.; Frazzoli, C.; Ekhator, O.C.; Onyena, A.P.; Bocca, B.; Orisakwe, O.E. Pervasiveness, bioaccumulation and subduing environmental health challenges posed by polycyclic aromatic hydrocarbons (PAHs): A systematic review to settle a one health strategy in Niger Delta, Nigeria. Environ. Res. 2023, 226, 115620. [Google Scholar] [CrossRef] [PubMed]
- Klingberg, J.; Strandberg, B.; Sjöman, H.; Taube, M.; Wallin, G.; Pleijel, H. Polycyclic aromatic hydrocarbon (PAH) accumulation in Quercus palustris and Pinus nigra in the urban landscape of Gothenburg, Sweden. Sci. Total Environ. 2022, 805, 150163. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Tian, S.; Liu, Q.; Yang, Z.; Yang, Y.; Shao, P.; Liu, Y. Determination of 31 Polycyclic Aromatic Hydrocarbons in Plant Leaves Using Internal Standard Method with Ultrasonic Extraction-Gas Chromatography-Mass Spectrometry. Toxics 2022, 10, 634. [Google Scholar] [CrossRef] [PubMed]
- Sari, M.F.; Esen, F.; Tasdemir, Y. Characterization, source apportionment, air/plant partitioning and cancer risk assessment of atmospheric PAHs measured with tree components and passive air sampler. Environ. Res. 2021, 194, 110508. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Z.; Xu, Y.; Rodgers, T.F.M.; Ablimit, M.; Li, J.; Tan, F. Identifying the contributions of root and foliage gaseous/particle uptakes to indoor plants for phthalates, OPFRs and PAHs. Sci. Total Environ. 2023, 883, 163644. [Google Scholar] [CrossRef] [PubMed]
- Giráldez, P.; Aboal, J.R.; Fernández, J.Á.; Di Guardo, A.; Terzaghi, E. Plant-air partition coefficients for thirteen urban conifer tree species: Estimating the best gas and particulate matter associated PAH removers. Environ. Pollut. 2022, 315, 120409. [Google Scholar] [CrossRef]
- Nowak, D.J.; Ellis, A.; Greenfield, E.J. The disparity in tree cover and ecosystem service values among redlining classes in the United States. Landsc. Urban Plan. 2022, 221, 104370. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Greenfield, E. Tree and forest effects on air quality and human health in the United States. Environ. Pollut. 2014, 193, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Oksanen, E.; Kontunen-Soppela, S. Plants have different strategies to defend against air pollutants. Curr. Opin. Environ. Sci. Health 2021, 19, 100222. [Google Scholar] [CrossRef]
- Han, D.; Shen, H.; Duan, W.; Chen, L. A review on particulate matter removal capacity by urban forests at different scales. Urban For. Urban Green. 2020, 48, 126565. [Google Scholar] [CrossRef]
- Corada, K.; Woodward, H.; Alaraj, H.; Collins, C.M.; de Nazelle, A. A systematic review of the leaf traits considered to contribute to removal of airborne particulate matter pollution in urban areas. Environ. Pollut. 2021, 269, 116104. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Liu, S.; Liu, Y.; Li, X.; Lin, X.; Liu, M.; Liu, X. PAHs uptake and translocation in Cinnamomum camphora leaves from Shanghai, China. Sci. Total Environ. 2017, 574, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Fellet, G.; Pošćić, F.; Licen, S.; Marchiol, L.; Musetti, R.; Tolloi, A.; Barbieri, P.; Zerbi, G. PAHs accumulation on leaves of six evergreen urban shrubs: A field experiment. Atmos. Pollut. Res. 2016, 7, 915–924. [Google Scholar] [CrossRef]
- Tian, L.; Yin, S.; Ma, Y.; Kang, H.; Zhang, X.; Tan, H.; Meng, H.; Liu, C. Impact factor assessment of the uptake and accumulation of polycyclic aromatic hydrocarbons by plant leaves: Morphological characteristics have the greatest impact. Sci. Total Environ. 2019, 652, 1149–1155. [Google Scholar] [CrossRef]
- Prigioniero, A.; Zuzolo, D.; Niinemets, Ü.; Postiglione, A.; Mercurio, M.; Izzo, F.; Trifuoggi, M.; Toscanesi, M.; Scarano, P.; Tartaglia, M.; et al. Particulate matter and polycyclic aromatic hydrocarbon uptake in relation to leaf surface functional traits in Mediterranean evergreens: Potentials for air phytoremediation. J. Hazard. Mater. 2022, 435, 129029. [Google Scholar] [CrossRef]
- Yli-Pelkonen, V.; Viippola, V.; Rantalainen, A.-L.; Zheng, J.; Setälä, H. The impact of urban trees on concentrations of PAHs and other gaseous air pollutants in Yanji, northeast China. Atmos. Environ. 2018, 192, 151–159. [Google Scholar] [CrossRef]
- De Nicola, F.; Concha Graña, E.; López Mahía, P.; Muniategui Lorenzo, S.; Prada Rodríguez, D.; Retuerto, R.; Carballeira, A.; Aboal, J.R.; Fernández, J.Á. Evergreen or deciduous trees for capturing PAHs from ambient air? A case study. Environ. Pollut. 2017, 221, 276–284. [Google Scholar] [CrossRef]
- Anna, K.-I.; Emanuel, G.; Anna, S.-R.; Błońska, E.; Lasota, J.; Łagan, S. Linking the contents of hydrophobic PAHs with the canopy water storage capacity of coniferous trees. Environ. Pollut. 2018, 242, 1176–1184. [Google Scholar] [CrossRef]
- Nemecek-Marshall, M.; MacDonald, R.C.; Franzen, J.J.; Wojciechowski, C.L.; Fall, R. Methanol Emission from Leaves (Enzymatic Detection of Gas-Phase Methanol and Relation of Methanol Fluxes to Stomatal Conductance and Leaf Development). Plant Physiol. 1995, 108, 1359–1368. [Google Scholar] [CrossRef] [Green Version]
- Tao, M.; Xu, Y.; Liu, Q.; Liu, Y.; Tian, S.; Schauer, J.J. Penetration of submicron amino-functionalized graphene quantum dots in plant stomata, implication for the depollution of atmospheric soot particles. Environ. Chem. Lett. 2023, 21, 1281–1286. [Google Scholar] [CrossRef]
- Sabaratnam, S.; Gupta, G.; Mulchi, C. Effects of nitrogen dioxide on leaf chlorophyll and nitrogen content of soybean. Environ. Pollut. 1988, 51, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.A.; Williams, O.; Dash, J. Calibration and characterisation of four chlorophyll meters and transmittance spectroscopy for non-destructive estimation of forest leaf chlorophyll concentration. Agric. For. Meteorol. 2022, 323, 109059. [Google Scholar] [CrossRef]
- Terzaghi, E.; De Nicola, F.; Cerabolini, B.E.L.; Posada-Baquero, R.; Ortega-Calvo, J.-J.; Di Guardo, A. Role of photo- and biodegradation of two PAHs on leaves: Modelling the impact on air quality ecosystem services provided by urban trees. Sci. Total Environ. 2020, 739, 139893. [Google Scholar] [CrossRef]
- Sangwan, R.S.; Tripathi, S.; Singh, J.; Narnoliya, L.K.; Sangwan, N.S. De novo sequencing and assembly of Centella asiatica leaf transcriptome for mapping of structural, functional and regulatory genes with special reference to secondary metabolism. Gene 2013, 525, 58–76. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Fu, T.; Zhang, L.; Wanrong Gao, L.; Rensel, M.; Remage-Healey, L.; White, S.A.; Gedman, G.; Whitelegge, J.; Xiao, X.; et al. Improved zebra finch brain transcriptome identifies novel proteins with sex differences. Gene 2022, 843, 146803. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Fu, M.; Li, J.; Chen, L.; Feng, K.; Huang, T.; Cai, Y.-D. Analysis and prediction of protein stability based on interaction network, gene ontology, and KEGG pathway enrichment scores. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2023, 1871, 140889. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, X.; Tang, B.; Xie, Q.; Chen, G.; Chen, X.; Hu, Z. SlERF.J2 reduces chlorophyll accumulation and inhibits chloroplast biogenesis and development in tomato leaves. Plant Sci. 2023, 328, 111578. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Blain, R.B. Hormesis and plant biology. Environ. Pollut. 2009, 157, 42–48. [Google Scholar] [CrossRef]
- Zhou, S.; Yang, Q.; Song, Y.; Cheng, B.; Ai, X. Effect of Copper Sulphate Exposure on the Oxidative Stress, Gill Transcriptome and External Microbiota of Yellow Catfish, Pelteobagrusfulvidraco. Antioxidants 2023, 12, 1288. [Google Scholar] [CrossRef]
Sample | Library | Raw Reads | Raw Bases | Clean Reads | Clean Bases | Error Rate | Q20 | Q30 | GCpct |
---|---|---|---|---|---|---|---|---|---|
C1 | FRAS220304683-1r | 45249234 | 6.79 G | 44431476 | 6.66 G | 0.03 | 97.42 | 92.76 | 45.9 |
C2 | FRAS220304686-1r | 47878640 | 7.18 G | 46845610 | 7.03 G | 0.03 | 97.36 | 92.7 | 48.22 |
C3 | FRAS220304684-1r | 44127062 | 6.62 G | 42798502 | 6.42 G | 0.03 | 97.03 | 91.98 | 48.1 |
C4 | FRAS220304680-1r | 40273130 | 6.04 G | 39445930 | 5.92 G | 0.03 | 97.49 | 92.9 | 45.73 |
L1 | FRAS220304681-1r | 42791504 | 6.42 G | 42058236 | 6.31 G | 0.03 | 97.54 | 93.02 | 45.14 |
L2 | FRAS220304682-1r | 46399720 | 6.96 G | 45127820 | 6.77 G | 0.03 | 97.33 | 92.69 | 47.96 |
L3 | FRAS220304685-1r | 45209526 | 6.78 G | 43244788 | 6.49 G | 0.03 | 97.03 | 92.12 | 48.26 |
L4 | FRAS220304687-1r | 45394486 | 6.81 G | 44053436 | 6.61 G | 0.03 | 97.4 | 92.76 | 47.11 |
H1 | FRAS220304677-1r | 46123300 | 6.92 G | 44909222 | 6.74 G | 0.03 | 97.18 | 92.4 | 48.88 |
H2 | FRAS220304679-1r | 39183628 | 5.88 G | 38560642 | 5.78 G | 0.03 | 97.44 | 92.72 | 45.4 |
H3 | FRAS220304676-1r | 42299468 | 6.34 G | 41356972 | 6.2 G | 0.03 | 97.28 | 92.45 | 45.95 |
H4 | FRAS220304678-1r | 39450472 | 5.92 G | 38546398 | 5.78 G | 0.03 | 96.65 | 91.03 | 45.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, S.; Liu, Q.; Qu, J.; Yang, M.; Ma, Q.; Liu, J.; Shao, P.; Liu, Y. Whole-Transcriptome Analysis on the Leaves of Rosa chinensis Jacq. under Exposure to Polycyclic Aromatic Hydrocarbons. Toxics 2023, 11, 610. https://doi.org/10.3390/toxics11070610
Tian S, Liu Q, Qu J, Yang M, Ma Q, Liu J, Shao P, Liu Y. Whole-Transcriptome Analysis on the Leaves of Rosa chinensis Jacq. under Exposure to Polycyclic Aromatic Hydrocarbons. Toxics. 2023; 11(7):610. https://doi.org/10.3390/toxics11070610
Chicago/Turabian StyleTian, Shili, Qingyang Liu, Jingming Qu, Ming Yang, Qiaoyun Ma, Jia Liu, Peng Shao, and Yanju Liu. 2023. "Whole-Transcriptome Analysis on the Leaves of Rosa chinensis Jacq. under Exposure to Polycyclic Aromatic Hydrocarbons" Toxics 11, no. 7: 610. https://doi.org/10.3390/toxics11070610