Carbon Pricing and the Truckload Spot Market
Abstract
1. Introduction
2. Background
2.1. Literature
2.2. International Fuel Tax Association
2.3. Interstate Fueling Decisions
2.4. Roadway Freight Markets and Fuel Surcharges
3. Data
4. Results and Discussion
4.1. Diesel Taxes and Retail Diesel Prices
4.2. Retail Diesel Prices and Truckload Spot Rates
4.3. Robustness Check: COVID-19 Exclusion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change. Synthesis Report of the IPCC Sixth Assessment Report. Available online: https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_LongerReport.pdf (accessed on 21 August 2025).
- Kinoshita, Y.; Nagao, T.; Ijuin, H.; Nagasawa, K.; Yamada, T.; Gupta, S.M. Utilization of free trade agreements to minimize costs and carbon emissions in the global supply chain for sustainable logistics. Logistics 2023, 7, 32. [Google Scholar] [CrossRef]
- Osintsev, N.; Rakhmangulov, A. Supply Chain Sustainability Drivers: Identification and Multi-Criteria Assessment. Logistics 2025, 9, 1–46. [Google Scholar] [CrossRef]
- Larson, P.D.; Parsons, R.V.; Kalluri, D. Zero-Emission Heavy-Duty, Long-Haul Trucking: Obstacles and Opportunities for Logistics in North America. Logistics 2024, 8, 64. [Google Scholar] [CrossRef]
- Environmental Protection Agency. Fast Facts on Transportation Greenhouse Gas Emissions. Available online: https://www.epa.gov/regulations-emissions-vehicles-and-engines/regulations-greenhouse-gas-emissions-commercial-trucks (accessed on 21 August 2025).
- Davis-Sramek, B.; Robinson, J.L.; Darby, J.L.; Thomas, R.W. Exploring the differential roles of environmental and social sustainability in carrier selection decisions. Int. J. Prod. Econ. 2020, 227, 107660. [Google Scholar] [CrossRef]
- Ellram, L.M.; Tate, W.L.; Saunders, L.W. A legitimacy theory perspective on Scope 3 freight transportation emissions. J. Bus. Logist. 2022, 43, 472–498. [Google Scholar] [CrossRef]
- Scott, A.; Li, M.; Cantor, D.E.; Corsi, T.M. Do voluntary environmental programs matter? Evidence from the EPA SmartWay program. J. Oper. Manag. 2023, 69, 284–304. [Google Scholar] [CrossRef]
- Hafstead, M. Carbon Pricing 101. Resources for the Future. Available online: https://media.rff.org/documents/Carbon_Pricing_Explainer.pdf (accessed on 21 August 2025).
- Marion, J.; Muehlegger, E. Fuel tax incidence and supply conditions. J. Public Econ. 2011, 95, 1202–1212. [Google Scholar] [CrossRef]
- Ellram, L.M.; Murfield, M.L.U. Environmental sustainability in freight transportation: A systematic literature review and agenda for future research. Transport. J. 2017, 56, 263–298. [Google Scholar] [CrossRef]
- Figueiredo, B.; Lopes, R.B.; Sousa, A.D. Location–Routing Problems with Sustainability and Resilience Concerns: A Systematic Review. Logistics 2025, 9, 81. [Google Scholar] [CrossRef]
- Ferraro, S.; Cantini, A.; Leoni, L.; De Carlo, F. Sustainable logistics 4.0: A study on selecting the best technology for internal material handling. Sustainability 2023, 15, 7067. [Google Scholar] [CrossRef]
- Ellram, L.M.; Golicic, S.L. Adopting environmental transportation practices. Transport. J. 2015, 54, 55–88. [Google Scholar] [CrossRef]
- Kotchen, M.J. Voluntary-and information-based approaches to environmental management: A public economics perspective. Rev. Env. Econ. Policy 2013, 7, 276–295. [Google Scholar] [CrossRef]
- Prakash, A.; Potoski, M. Voluntary environmental programs: A comparative perspective. J. Policy Anal. Manag. 2012, 31, 123–138. [Google Scholar] [CrossRef]
- Akerlof, G.A. The market for “lemons”: Quality uncertainty and the market mechanism. In Uncertainty in Economics; Diamon, P., Rothschild, M., Eds.; Academic Press: Cambridge, MA, USA, 1978; pp. 235–251. [Google Scholar]
- Jin, G.Z.; Leslie, P. Reputational incentives for restaurant hygiene. Am. Econ. J. Microecon. 2009, 1, 237–267. [Google Scholar] [CrossRef]
- Dranove, D.; Kessler, D.; McClellan, M.; Satterthwaite, M. Is more information better? The effects of “report cards” on health care providers. J. Polit. Econ. 2003, 111, 555–588. [Google Scholar] [CrossRef]
- Tate, W.L.; Ellram, L.M.; Saunders, L. The Limited Influence of Voluntary Environmental Partnerships on Increasing the Saliency of Freight Emissions in Corporate Sustainability Strategy. Transport. J. 2023, 62, 269–310. [Google Scholar] [CrossRef]
- Chouinard, H.; Perloff, J.M. Incidence of federal and state gasoline taxes. Econ. Lett. 2004, 83, 55–60. [Google Scholar] [CrossRef]
- Alm, J.; Sennoga, E.; Skidmore, M. Perfect competition, urbanization, and tax incidence in the retail gasoline market. Econ. Inq. 2009, 47, 118–134. [Google Scholar] [CrossRef]
- Davis, L.W.; Kilian, L. Estimating the effect of a gasoline tax on carbon emissions. J. Appl. Econom. 2011, 26, 1187–1214. [Google Scholar] [CrossRef]
- Li, S.; Linn, J.; Muehlegger, E. Gasoline taxes and consumer behavior. Am. Econ. J. Econ. Policy 2014, 6, 302–342. [Google Scholar] [CrossRef]
- Straight, B. 5 Red Flags That Can Trigger an IFTA Audit. FreightWaves 2022. Available online: https://www.freightwaves.com/news/5-red-flags-that-can-trigger-an-ifta-audit (accessed on 21 August 2025).
- Neves-Moreira, F.; Amorim-Lopes, M.; Amorim, P. The multi-period vehicle routing problem with refueling decisions: Traveling further to decrease fuel cost? Transp. Res. Part E Logist. Transp. Rev. 2020, 133, 101817. [Google Scholar] [CrossRef]
- Acocella, A.; Caplice, C. Research on truckload transportation procurement: A review, framework, and future research agenda. J. Bus. Logist. 2023, 44, 228–256. [Google Scholar] [CrossRef]
- Department of Energy. Average Fuel Economy by Major Vehicle Category. Available online: https://afdc.energy.gov/data/10310 (accessed on 21 August 2025).
- Schoettle, B.; Sivak, M.; Tunnel, M. A Survey of Fuel Economy and Fuel Usage by Heavy Duty Truck Fleets; Report No. SWT-2016-12; University of Michigan Transportation Research Institute: Ann Arbor, MI, USA, 2016. [Google Scholar]
- Davis-Sramek, B.; Scott, A.; Richey, R.G. A case and framework for expanding the use of model-free evidence. J. Bus. Logist. 2023, 44, 4. [Google Scholar] [CrossRef]
- Imai, K.; Kim, I.S. On the use of two-way fixed effects regression models for causal inference with panel data. Polit. Anal. 2021, 29, 405–415. [Google Scholar] [CrossRef]
- De Chaisemartin, C.; d’Haultfoeuille, X. Two-way fixed effects estimators with heterogeneous treatment effects. Am. Econ. Rev. 2020, 110, 2964–2996. [Google Scholar] [CrossRef]
- Callaway, B.; Sant’Anna, P.H. Difference-in-differences with multiple time periods. J. Econom. 2021, 225, 200–230. [Google Scholar] [CrossRef]
- Callaway, B.; Goodman-Bacon, A.; Sant’Anna, P.H. Difference-in-Differences with a Continuous Treatment. Available online: https://www.nber.org/system/files/working_papers/w32117/w32117.pdf (accessed on 21 August 2025).
- Panwar, R.; Pinkse, J.; De Marchi, V. The future of global supply chains in a post-COVID-19 world. Calif. Manage. Rev. 2022, 64, 5–23. [Google Scholar] [CrossRef]
- Phares, J.; Miller, J.W.; Burks, S.V. Shedding light on truck driver supply and demand: Heterogeneous state-level recovery of trucking employment following the COVID-19 employment shock. Transport. J. 2025, 64, e12038. [Google Scholar] [CrossRef]
- Valadkhani, A.; Ghazanfari, A.; Nguyen, J.; Moradi-Motlagh, A. The asymmetric effects of COVID19 on wholesale fuel prices in Australia. Econ. Anal. Policy 2021, 71, 255–266. [Google Scholar] [CrossRef]
- Yandle, B. Bootleggers and Baptists-the education of a regulatory economists. Regulation 1983, 7, 12. [Google Scholar]
- Balthrop, A.; Scott, A.; Miller, J. How do trucking companies respond to announced versus unannounced safety crackdowns? The case of government inspection blitzes. J. Bus. Logist. 2023, 44, 641–665. [Google Scholar] [CrossRef]
Variable Name | Description | Source | Obs. | Mean | Std. Dev. |
---|---|---|---|---|---|
Lane Variables | |||||
Spot Price | Spot Market Lane Rate (USD/mi) | DAT | 98,256 | 1.73 | 0.58 |
Q | Number of Truckloads | DAT | 98,256 | 402.12 | 705.01 |
Distance | Lane Distance (mi) | DAT | 98,256 | 1184.92 | 614.98 |
WTI | West Texas Intermediate (USD/gal) | EIA | 98,256 | 1.26 | 0.28 |
Origin and Destination Variables (Origin Summary Statistics Reported) | |||||
Diesel | Retail Diesel Price (USD/mi) | OPIS | 98,256 | 0.40 | 0.07 |
Tax | Diesel Tax (State + Federal) (USD/mi) | TPC | 98,256 | 0.09 | 0.02 |
GDP | State GDP | BEA | 98,256 | 479,248 | 537,647 |
GDP_Manufacturing | State Manufacturing GDP | BEA | 98,160 | 59,281 | 66,990 |
GDP_Ag | State Agricultural GDP | BEA | 94,716 | 6216 | 8833 |
GDP_Retail | State Retail GDP | BEA | 98,256 | 28,397 | 29,462 |
GDP_Transport | State Transportation GDP | BEA | 98,256 | 13,905 | 14,309 |
Population | State Population | BEA | 98,256 | 8,599,023 | 8,255,289 |
Balance | Outbound–Inbound Truckloads | DAT | 98,256 | 346 | 6855 |
Tractor | State HD vehicle registrations | FHA | 98,256 | 73,572 | 77,543 |
Dependent Variable: | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Diesel Price | Pooled | GLS | Within | Between | ||
WTI | 0.990 *** | 0.990 *** | 0.990 *** | 1.180 *** | 1.210 *** | |
(0.0169) | (0.0119) | (0.0120) | (0.0513) | (0.0294) | ||
Tax (State + Federal) | 1.182 *** | 1.156 *** | 1.154 *** | 1.188 *** | 1.094 *** | 0.518 *** |
(0.0432) | (0.0730) | (0.0756) | (0.285) | (0.0385) | (0.0586) | |
State FE | Random | YES | YES | |||
Year–Month FE | YES | YES | ||||
Observations | 3312 | 3312 | 3312 | 3312 | 3312 | 3312 |
R-squared | 0.563 | 0.784 | 0.274 | 0.669 | 0.894 | |
Number of States | 48 | 48 | 48 | 48 | 48 | 48 |
OLS | 2SLS | ||||||
---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
First Stage | Second Stage | ||||||
Dependent Variables: | Spot Price | Spot Price | Spot Price | Diesel | Diesel | Spot Price | Spot Price |
Diesel (Origin) | 1.232 *** | 1.165 *** | 1.559 *** | −0.310 *** | 2.288 *** | ||
(0.0385) | (0.0390) | (0.0421) | (0.0989) | (0.157) | |||
Diesel (Destination) | 1.354 *** | 1.817 *** | 1.721 *** | 5.980 *** | 3.158 *** | ||
(0.0382) | (0.0388) | (0.0419) | (0.100) | (0.157) | |||
Tax (Origin) | 1.009 *** | ||||||
(0.0106) | |||||||
Tax (Destination) | 1.014 *** | ||||||
(0.0109) | |||||||
Control Variables: | No | Yes | Yes | Yes | Yes | Yes | Yes |
Lane FEs | No | No | Yes | No | No | No | Yes |
Observations | 98,256 | 91,107 | 91,107 | 94,716 | 94,458 | 91,107 | 91,107 |
R-squared | 0.061 | 0.241 | 0.449 | 0.178 | 0.174 | 0.197 | 0.321 |
Number of Lanes | 1424 | 1399 | 1399 | 1416 | 1411 | 1399 | 1399 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
---|---|---|---|---|---|---|---|
Variables | ln(Q) | ln(Q) | ln(Q) | ln(Q) | ln(Q) | ln(Q) | ln(Q) |
ln(Tax_Origin) | −0.309 *** | −0.313 *** | −0.365 *** | −0.318 *** | −0.324 *** | −0.460 *** | −0.288 *** |
(0.0162) | (0.0161) | (0.0160) | (0.0189) | (0.0189) | (0.0154) | (0.0152) | |
ln(Tax_Dest.) | −0.248 *** | −0.345 *** | −0.438 *** | −0.508 *** | −0.424 *** | ||
(0.0166) | (0.0163) | (0.0199) | (0.0169) | (0.0174) | |||
Demand Controls | |||||||
ln(GDP_Origin) | −0.547 *** | −0.548 *** | −0.469 *** | −0.814 *** | |||
(0.0178) | (0.0177) | (0.0199) | (0.0205) | ||||
ln(Pop_Origin) | 1.438 *** | 1.440 *** | 1.364 *** | 0.993 *** | |||
(0.0191) | (0.0191) | (0.0266) | (0.0260) | ||||
ln(Manfctg_Origin) | 0.581 *** | 0.544 *** | |||||
(0.00782) | (0.00808) | ||||||
ln(Retail_Origin) | −0.625 *** | −0.366 *** | |||||
(0.0263) | (0.0260) | ||||||
ln(Ag_Origin) | 0.0542 *** | −0.165 *** | |||||
(0.00345) | (0.00566) | ||||||
ln(GDP_Dest) | −0.296 *** | −0.229 *** | −0.263 *** | −0.756 *** | |||
(0.0177) | (0.0184) | (0.0199) | (0.0200) | ||||
ln(Pop_Dest) | 1.123 *** | 1.064 *** | 0.989 *** | 0.766 *** | |||
(0.0191) | (0.0195) | (0.0258) | (0.0251) | ||||
ln(Manfctg_Origin) | 0.281 *** | 0.265 *** | |||||
(0.00767) | (0.00798) | ||||||
ln(Retail_Origin) | −0.216 *** | 0.0481 ** | |||||
(0.0250) | (0.0243) | ||||||
ln(Ag_Origin) | 0.106 *** | 0.0546 *** | |||||
(0.00319) | (0.00346) | ||||||
Supply Controls | |||||||
ln(Trnsp_Origin) | 0.489 *** | 0.486 *** | 0.579 *** | 0.436 *** | |||
(0.00507) | (0.00506) | (0.00420) | (0.00997) | ||||
ln(Tractors_Origin) | 0.220 *** | 0.225 *** | 0.273 *** | 0.565 *** | |||
(0.00467) | (0.00468) | (0.00384) | (0.00999) | ||||
ln(Price_Dest) | 2.015 *** | 2.194 *** | 0.0421 ** | 0.269 *** | |||
(0.0163) | (0.0183) | (0.0180) | (0.00751) | ||||
ln(Trnsp_Dest) | 0.778 *** | −0.216 *** | |||||
(0.00348) | (0.0193) | ||||||
Dest Balance | 1.36 × 10−05 *** | 1.35 × 10−05 *** | |||||
(4.64 × 10−07) | (4.69 × 10−07) | ||||||
Constant | −25.20 *** | −25.32 *** | −25.74 *** | −4.413 *** | −4.901 *** | −11.65 *** | −20.06 *** |
(0.139) | (0.138) | (0.228) | (0.0504) | (0.0542) | (0.0534) | (0.231) | |
Observations | 98,256 | 98,256 | 91,107 | 98,256 | 98,256 | 98,256 | 91,107 |
R-squared | 0.518 | 0.519 | 0.573 | 0.330 | 0.334 | 0.546 | 0.611 |
Dependent Variable: | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Diesel Price | Pooled | GLS | Within | Between | ||
WTI | 1.104 *** | 1.101 *** | 1.101 *** | 0.999 *** | 1.016 *** | |
(0.0243) | (0.0163) | (0.0163) | (0.0721) | (0.0383) | ||
Tax (State + Federal) | 1.158 *** | 1.233 *** | 1.243 *** | 1.146 *** | 1.101 *** | 0.741 *** |
(0.0531) | (0.0963) | (0.102) | (0.303) | (0.0480) | (0.0765) | |
State FE | Random | YES | YES | |||
Year–Month FE | YES | YES | ||||
Observations | 2304 | 2304 | 2304 | 2304 | 2304 | 2304 |
R-squared | 0.54 | 0.805 | 0.237 | 0.633 | 0.899 | |
Number of States | 48 | 48 | 48 | 48 | 48 | 48 |
OLS | 2SLS | ||||||
---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
First Stage | Second Stage | ||||||
Dependent Variables: | Spot Price | Spot Price | Spot Price | Diesel | Diesel | Spot Price | Spot Price |
Diesel (Origin) | 0.635 *** | 0.711 *** | 1.703 *** | −2.024 *** | 2.288 *** | ||
(0.0354) | (0.0341) | (0.0383) | (0.0796) | −0.157 | |||
Diesel (Destination) | 1.132 *** | 1.611 *** | 1.523 *** | 3.837 *** | 3.158 *** | ||
(0.0351) | (0.0339) | (0.0383) | (0.0800) | −0.157 | |||
Tax (Origin) | 1.111 *** | ||||||
(0.0121) | |||||||
Tax (Destination) | 1.128 *** | ||||||
(0.0123) | |||||||
Control Variables: | No | Yes | Yes | Yes | Yes | Yes | Yes |
Lane FEs | No | No | Yes | No | No | No | Yes |
Observations | 68,352 | 66,012 | 66,012 | 67,248 | 67,116 | 66,012 | 66,012 |
R-squared | 0.046 | 0.285 | 0.366 | 0.220 | 0.216 | 0.248 | 0.116 |
Number of Lanes | 1424 | 1378 | 1378 | 1403 | 1399 | 1378 | 1378 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balthrop, A.; Kistler, J.T.; Bolumole, Y.; Scott, A.; Autry, C.W. Carbon Pricing and the Truckload Spot Market. Logistics 2025, 9, 121. https://doi.org/10.3390/logistics9030121
Balthrop A, Kistler JT, Bolumole Y, Scott A, Autry CW. Carbon Pricing and the Truckload Spot Market. Logistics. 2025; 9(3):121. https://doi.org/10.3390/logistics9030121
Chicago/Turabian StyleBalthrop, Andrew, Justin T. Kistler, Yemisi Bolumole, Alex Scott, and Chad W. Autry. 2025. "Carbon Pricing and the Truckload Spot Market" Logistics 9, no. 3: 121. https://doi.org/10.3390/logistics9030121
APA StyleBalthrop, A., Kistler, J. T., Bolumole, Y., Scott, A., & Autry, C. W. (2025). Carbon Pricing and the Truckload Spot Market. Logistics, 9(3), 121. https://doi.org/10.3390/logistics9030121