Mineral Elements in the Raw Milk of Several Dairy Farms in the Province of Alberta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Milk Sample Collection
2.2. Mineral Identification and Quantification
2.3. Statistical Analysis
- Xw is weighted mean
- is weighted variance
- sdw is standard deviation of weighted mean
- sew is standard error of weighted mean
- x1, x2, xr are the individual samples
- n1, n2, nr are individual sample sizes of x1, x2, xr, respectively
- N is total sample size (N = n1 + n2 + nr)
- are individual sample variances
- r is number of observations for each element
- x1, x2 are weighted means
- n1, n2 are numbers of observations
- are weighted variances
- n1, n2, are numbers of observations
3. Results
4. Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Herwig, N.; Stephan, K.; Panne, U.; Pritzkow, W.; Vogl, J. Multi–element screening in milk and feed by SF–ICP–MS. Food Chem. 2011, 124, 1223–1230. [Google Scholar] [CrossRef]
- Roncada, P.; Piras, C.; Soggiu, A.; Turk, R.; Urbani, A.; Bonizzi, L. Farm animal milk proteomics. J. Proteom. 2012, 75, 4259–4274. [Google Scholar] [CrossRef] [PubMed]
- Miciński, J.; Zwierzchowski, G.; Kowalski, I.M.; Szarek, J. Health–promoting properties of selected milk components. J. Elem. 2013, 18, 165–186. [Google Scholar] [CrossRef]
- Ross, E.M.; Rajan, M.P.; Wesley, S.G. Milk minerals in cow milk with special reference to elevated calcium and its radiological implications. Radiat. Prot. Environ. 2012, 35, 64–68. [Google Scholar] [CrossRef]
- Suturović, Z.; Kravić, S.; Milanović, S.; Ðurović, A.; Brezo, T. Determination of heavy metals in milk and fermented milk products by potentiometric stripping analysis with constant inverse current in the analytical step. Food Chem. 2014, 155, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Zwierzchowski, G.; Ametaj, B.N. Minerals and heavy metals in the whole raw milk of dairy cows from different management systems and countries of origin: A meta-analytical study. J. Agric. Food Chem. 2018, 66, 6877–6888. [Google Scholar] [CrossRef]
- Jan, A.T.; Azam, M.; Siddiqui, K.; Ali, A.; Choi, I.; Haq, Q.M.R. Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. Int. J. Mol. Sci. 2015, 16, 29592–29630. [Google Scholar] [CrossRef]
- Forman, J.; Silverstein, J. Organic Foods: Health and Environmental Advantages and Disadvantages. Pediatrics 2012, 130, e1406–e1415. [Google Scholar] [CrossRef] [Green Version]
- Husáková, L.; Urbanová, I.; Šrámková, J.; Konečná, M.; Bohuslavová, J. Multi–element analysis of milk by ICP-oa-TOF-MS after precipitation of calcium and proteins by oxalic and nitric acid. Talanta 2013, 106, 66–72. [Google Scholar] [CrossRef]
- Australian National Health and Medical Research Council. Nutrient Reference Values for Australia and New Zealand. Available online: https://www.nrv.gov.au/nutrients (accessed on 2 September 2018).
- Agency for Toxic Substances and Disease Registry. Available online: https://www.atsdr.cdc.gov/ (accessed on 2 September 2018).
- World Health Organization; Food and Agricultural Organization of the United Nations. Vitamin and Mineral Requirements in Human Nutrition, 2nd ed. Available online: https://www.who.int/nutrition/publications/micronutrients/9241546123/en/ (accessed on 17 August 2018).
- European Food Safety Authority. Summary Report on Dietary Reference Values for Nutrients; EFSA: Parma, Italy, 2017; p. e15121. [Google Scholar] [CrossRef]
- Alberta Agriculture and Forestry. Available online: https://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/beef1710#alberta (accessed on 28 October 2018).
- Woo, S.J.; Maeng, Y.S. Nutrition of Milk and Dairy Products; Hyo Il: Seoul, Korea, 1998; pp. 161–164. [Google Scholar]
- Battestin, L.; Tacla, R.M.B.; Tiboni, E.B.; Freitas, R.J.S.; Stertz, S.C. Análise de cálcio em diferentes tipos de bebidas. Acad. Vis. 2002, 3, 79–86. [Google Scholar] [CrossRef]
- Yoo, S.H.; Kang, S.B.; Park, J.H.; Lee, K.S.; Kim, J.M.; Yoon, S.S. Effect of heat-treat methods on the soluble calcium levels in the commercial milk products. Korean J. Food Sci. Anim. Resour. 2013, 33, 369–376. [Google Scholar] [CrossRef]
- Withers, P.J.A.; Peel, S.; Mansbridge, R.M.; Chalmers, A.C.; Lane, S.J. Transfers of phosphorus within three dairy farming systems receiving varying inputs in feeds and fertilizers. Nutr. Cycl. Agroecosyst. 1999, 55, 63–75. [Google Scholar] [CrossRef]
- Gustafson, G.M.; Salomon, E.; Jonsson, S. Barn balance calculations of Ca, Cu, K, Mg, Mn, N, P, S and Zn in a conventional and organic dairy farm in Sweden. Agric. Ecosyst. Environ. 2007, 119, 160–170. [Google Scholar] [CrossRef]
- Gustafson, G.M.; Salomon, E.; Jonsson, S.; Steineck, S. Fluxes of K, P, and Zn in a conventional and an organic dairy farming system through feed, animals, manure, and urine—A case study at Öjebyn, Sweden. Eur. J. Agron. 2003, 20, 89–99. [Google Scholar] [CrossRef]
- Gabryszuk, M.; Słoniewski, K.; Sakowski, T. Macro-and micro-elements in milk and hair of cows from conventional vs. organic farms. Anim. Sci. Pap. Rep. 2008, 26, 199–209. [Google Scholar]
- Shalit, U.; Maltz, E.; Silanikove, N.; Berman, A. Water, sodium, potassium, and chlorine metabolism of dairy cows at the onset of lactation in hot weather. J. Dairy Sci. 1991, 74, 1874–1883. [Google Scholar] [CrossRef]
- Qin, L.Q.; Wang, X.P.; Li, W.; Tong, X.; Tong, W.J. The minerals and heavy metals in cow’s milk from China and Japan. J. Health Sci. 2009, 55, 300–305. [Google Scholar] [CrossRef]
- Linn, J. Impact of minerals in water on dairy cows. WCDS Adv. Dairy Technol. 2006, 18, 235–247. [Google Scholar]
- Smart, M.E.; Gudmundson, J.; Christensen, D.A. Trace Mineral Deficiencies in Cattle: A Review. Can. Vet. J. 1981, 22, 372–376. [Google Scholar]
- Pawluk, S.; Bayrock, L.A. Some Characteristics and Physical Properties of Alberta Tills; Research Council of Alberta: Edmonton, AB, Canada, 1969; Volume 26. [Google Scholar]
- Card, S.; Cathcart, J.; Huang, J. The Micronutrient and Trace Element Status of Crops Grown on the Alberta Soil Quality Benchmark Sites; AESA Soil Quality Monitoring Program; Alberta Agriculture, Food and Rural Development, Conservation and Development Branch, 2005. Available online: https://www.semanticscholar.org/paper/The-Micronutrient-and-Trace-Element-Status-of-Crops-Card-Cathcart/c40fdcc5d93b5866c71bd34f506b04afde443d84 (accessed on 25 June 2019).
- Alberta Environment and Parks. Soil Remediation Guidelines for Boron: Environmental and Human Health; Land Policy Branch, Policy and Planning Division, 2015; p. 146. Available online: https://open.alberta.ca/dataset/d82ddd03-5063-43cb-87fe-849e389f2b1c/resource/ef723e60-e447-4b07-ab9a-b4c99b5e0e9f/download/soilremediationguidelinesboron-2016.pdf (accessed on 25 June 2019).
- Patra, R.C.; Swarup, D.; Kumar, P.; Nandi, D.; Naresh, R.; Ali, S.L. Milk trace elements in lactating cows environmentally exposed to higher level of lead and cadmium around different industrial units. Sci. Total Environ. 2008, 404, 36–43. [Google Scholar] [CrossRef]
- Oestreicher, P.; Cousins, R.J. Copper and zinc absorption in the rat: Mechanism of mutual antagonism. J. Nutr. 1985, 115, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Khaniki, G.R.J. Chemical contaminants in milk and public health concerns: A review. Int. J. Dairy Sci. 2007, 2, 104–115. [Google Scholar]
- Król, J.; Litwińczuk, Z.; Brodziak, A.; Kędzierska-Matysek, M. Content of selected essential and potentially toxic trace elements in milk of cows maintained in Eastern Poland. J. Elem. 2012, 17, 597–608. [Google Scholar] [CrossRef]
- Mann, G.R.; Duncan, S.E.; Knowlton, K.F.; Dietrich, A.D.; O’Keefe, S.F. Effects of mineral content of bovine drinking water: Does iron content affect milk quality? J. Dairy Sci. 2013, 96, 7478–7489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez, E.M.R.; Sanz Alaejos, M.; Díaz Romero, C. Mineral Concentrations in Cow’s Milk from the Canary Island. J. Food Comp. Anal. 2001, 4, 419–430. [Google Scholar] [CrossRef]
- Hermansen, J.E.; Badsberg, J.H.; Kristensen, T.; Gundersen, V. Major and trace elements in organically or conventionally produced milk. J. Dairy Res. 2005, 72, 362–368. [Google Scholar] [CrossRef]
- Zhai, X.W.; Zhang, Y.L.; Qi, Q.; Bai, Y.; Chen, X.L.; Jin, L.J.; Ma, X.G.; Shu, R.Z.; Yang, Z.J.; Liu, F.J. Effects of molybdenum on sperm quality and testis oxidative stress. Syst. Biol. Reprod. Med. 2013, 59, 251–255. [Google Scholar] [CrossRef]
- Wang, H.W.; Zhou, B.H.; Zhang, S.; Guo, H.W.; Zhang, J.L.; Zhao, J.; Tian, E.J. Reproductive toxicity in male mice after exposure to high molybdenum and low copper concentrations. Toxicol. Ind. Health 2016, 32, 1598–1606. [Google Scholar] [CrossRef]
- Trumbo, P.; Yates, A.A.; Schlicker, S.; Poos, M. Dietary Reference Intakes: Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. J. Acad. Nutr. Diet. 2001, 101, 294–301. [Google Scholar]
- Fieve, R.R.; Meltzer, H.L. Proceedings: Rubidium salts--toxic effects in humans and clinical effects as an antidepressant drug. Psychopharmacol. Bull. 1974, 10, 38–50. [Google Scholar]
- Meltzer, H.L.; Fieve, R.R. Rubidium in psychiatry and medicine: An overview. In Current Developments in Psychopharmacology; Essman, W.B., Valzelli, L., Eds.; Spectrum Publications: Holliswood, NY, USA, 1975; Volume 1, pp. 203–242. [Google Scholar]
- Placidi, G.; Lenzi, A.; Lazzerini, F.; Dell’Osso, L.; Cassano, G.B.; Akiskal, H.S. Exploration of the clinical profile of rubidium chloride in depression: A systematic open trial. J. Clin. Psychopharmacol. 1988, 8, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Brundusino, A.O.; Cairoli, S. The pharmacological action of rubidium chloride in depression. Minerva Psichiatr. 1996, 37, 45–49. [Google Scholar] [PubMed]
- Chellan, P.; Sadler, P.J. The elements of life and medicines. Philos. Trans. R. Soc. A 2015, 373, 20140182. [Google Scholar] [CrossRef] [PubMed]
- Osacky, M.; Geramian, M.; Ivey, D.G.; Liu, Q.; Etsell, T.H. Influence of Nonswelling Clay Minerals (Illite, Kaolinite, and Chlorite) on Nonaqueous Solvent Extraction of Bitumen. Energy Fuels 2015, 29, 4150–4159. [Google Scholar] [CrossRef]
- Campbell, L.M.; Fisk, A.T.; Wang, X.; Köck, G.; Muir, D.C.G. Evidence for biomagnification of rubidium in freshwater and marine food webs. Can. J. Fish. Aquat. Sci. 2005, 62, 1161–1167. [Google Scholar] [CrossRef]
- National Research Council. Selenium in Nutrition: Revised Edition. 1983. Available online: https://www.ncbi.nlm.nih.gov/books/NBK216727/pdf/Bookshelf_NBK216727.pdf (accessed on 28 October 2018).
- Gaucheron, F. Milk minerals, trace elements, and macroelements. In Milk and Dairy Products in Human Nutrition: Production, Composition and Health, 1st ed.; Park, Y.W., Haenlein, G.F.W., Eds.; John Wiley & Sons: Chichester, UK, 2013; pp. 172–199. [Google Scholar]
- Yanardag, R.; Orak, H. Selenium content of milk and milk products of Turkey II. Biol. Trace Elem. Res. 1999, 68, 79–95. [Google Scholar] [CrossRef] [PubMed]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Strontium. 2004. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp159.pdf (accessed on 28 October 2018).
- Emsley, J. An A–Z guide to the elements. In Nature’s Building Blocks; Oxford University Press: Oxford, UK, 2011; p. 507. [Google Scholar]
- Dudas, M.J.; Pawluk, S. Heavy metals in cultivated soils and in cereal crops in Alberta. Can. J. Soil Sci. 1977, 57, 329–339. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metals toxicity and the environment. In Molecular, Clinical and Environmental Toxicology; EXS; Springer Nature: Basel, Switzerland, 2012; Volume 101, pp. 133–164. [Google Scholar]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
- Lemay, T.G. Arsenic Concentrations in Quaternary Drift and Quaternary-Tertiary Buried Channel Aquifers in the Athabasca Oil Sands (In Situ) Area, Alberta—EUB/AGS Geo-Note; Alberta Energy and Utilities Board: 2002; Volume 41. Available online: https://ags.aer.ca/publications/GEO_2002_04.html (accessed on 25 June 2019).
- Anderson, R.A.; Polansky, M.M.; Bryden, N.A.; Canary, J.J. Supplemental-chromium effects on glucose, insulin, glucagon, and urinary chromium losses in subjects consuming controlled low-chromium diets. Am. J. Clin. Nutr. 1991, 54, 909–916. [Google Scholar] [CrossRef]
Macromineral | Northern | SD | n | Central | SD | n | Southern | SD | n | p-value |
Calcium | 38,519 | 5941 | 48 | 37,078 | 7760 | 66 | 38,784 | 10,118 | 42 | NS |
Magnesium | 7148 | 1353 | 48 | 6644 | 1448 | 66 | 6659 | 1348 | 42 | NS |
Phosphorus | 44,072 | 8960 | 48 | 42,965 | 8134 | 66 | 43,852 | 9057 | 42 | NS |
Potassium | 43,701 | 4942 | 48 | 43,417 | 6437 | 66 | 44,040 | 4835 | 42 | NS |
Sodium | 31,200 | 6711 | 48 | 31,923 | 8169 | 66 | 31,420 | 6459 | 42 | NS |
Micromineral | Northern | SD | n | Central | SD | n | Southern | SD | n | p-value |
Boron | 28.58 a | 5.13 | 48 | 30.74 | 7.91 | 65 | 38.80 b | 8.58 | 42 | p < 0.05 |
Cobalt | 0.04 | 0.01 | 48 | 0.05 | 0.02 | 66 | 0.04 | 0.01 | 42 | NS |
Copper | 0.92 | 0.38 | 48 | 0.91 | 0.74 | 66 | 0.96 | 0.46 | 42 | NS |
Iron | 4.05 | 1.59 | 48 | 4.90 | 3.72 | 65 | 5.06 | 1.93 | 42 | NS |
Manganese | 0.58 | 0.18 | 48 | 0.55 | 0.20 | 66 | 0.50 | 0.18 | 42 | NS |
Molybdenum | 0.53 | 0.09 | 48 | 0.51 | 0.18 | 66 | 0.51 | 0.12 | 42 | NS |
Rubidium | 43.65 a | 12.12 | 48 | 22.60 b | 5.59 | 66 | 20.69 b | 3.10 | 42 | p < 0.05 |
Selenium | 1.06 | 0.16 | 48 | 1.31 | 0.83 | 66 | 1.11 | 0.26 | 42 | NS |
Strontium | 7.31 | 1.79 | 48 | 6.76 | 2.31 | 66 | 5.31 | 1.99 | 42 | NS |
Zinc | 71.25 | 16.25 | 48 | 68.88 | 20.24 | 66 | 73.90 | 25.23 | 40 | NS |
Heavy metal | Northern | SD | n | Central | SD | n | Southern | SD | n | p-value |
Aluminium | 1.301 | 0.407 | 47 | 1.449 | 1.018 | 66 | 0.998 | 0.310 | 42 | NS |
Arsenic | 0.106 a | 0.014 | 48 | 0.123 | 0.172 | 66 | 0.088 b | 0.017 | 42 | p < 0.05 |
Cadmium | 0.001 | 0.000 | 48 | 0.002 | 0.003 | 66 | 0.002 | 0.000 | 42 | NS |
Chromium | 5.227 | 0.558 | 48 | 4.949 | 1.953 | 66 | 4.664 | 1.880 | 42 | NS |
Lead | 0.003 | 0.002 | 48 | 0.004 | 0.003 | 66 | 0.004 | 0.001 | 42 | NS |
Macromineral | Canada | SD | n | Min | Max | World * | SD | n | Min | Country | Max | Country | p-value |
Calcium | 37,980 | 7327 | 156 | 26,904 | 47,955 | 36,632 | 5476 | 3345 | 2096 | Czech Republic | 242,016 | Austria | NS |
Magnesium | 6803 a | 1248 | 156 | 4625 | 10,166 | 4792 b | 911 | 3,274 | 2350 | Poland | 38,272 | Germany | p < 0.05 |
Phosphorus | 43,545 a | 7873 | 156 | 31,394 | 61,148 | 34,093 b | 6544 | 818 | 13,691 | Poland | 271,230 | Germany | p < 0.05 |
Potassium | 43,672 a | 4920 | 156 | 39,396 | 48,730 | 39,332 b | 5939 | 3001 | 21,893 | Czech Republic | 371,355 | Austria | p < 0.05 |
Sodium | 31,565 a | 6453 | 156 | 21,954 | 45,160 | 22,516 b | 4900 | 2986 | 12,049 | Czech Republic | 130,492 | Germany | p < 0.05 |
Micromineral | Canada | SD | n | Min | Max | World * | SD | n | Min | Country | Max | Country | p-value |
Boron | 32.25 | 6.64 | 155 | 14.01 | 54.26 | 29.33 | 62.58 | 173 | 7.86 | Poland | 277.52 | Germany | NS |
Cobalt | 0.04 a | 0.01 | 156 | 0.02 | 0.06 | 3.99 b | 1.95 | 511 | <0.01 | Spain | 83.98 | Germany | p < 0.05 |
Copper | 0.93 a | 0.49 | 156 | 0.51 | 1.68 | 3.43 b | 9.08 | 3668 | 0.50 | Poland | 61.37 | Slovakia | p < 0.05 |
Iron | 4.67 a | 2.33 | 156 | 1.49 | 8.55 | 16.63 b | 24.93 | 2990 | 2.69 | Czech Republic | 155.42 | India | p < 0.05 |
Manganese | 0.55 a | 0.17 | 156 | 0.38 | 0.82 | 1.11 b | 0.42 | 1590 | 0.24 | Czech Republic | 6.92 | China | p < 0.05 |
Molybdenum | 0.52 a | 0.12 | 156 | 0.35 | 0.74 | 0.95 b | 0.28 | 274 | 0.11 | Poland | 3.86 | Germany | p < 0.05 |
Rubidium | 28.56 a | 7.14 | 156 | 13.84 | 58.51 | 47.05 b | 10.84 | 152 | 0.02 | Japan | 427.87 | Austria | p < 0.05 |
Selenium | 1.18 | 0.46 | 156 | 0.78 | 2.34 | 0.77 | 13.33 | 2240 | 0.07 | Brazil | 18.05 | South Korea | NS |
Strontium | 6.54 | 1.84 | 156 | 4.59 | 10.77 | 6.65 | 1.09 | 283 | 0.05 | Japan | 35.61 | Germany | NS |
Zinc | 70.02 | 18.85 | 156 | 45.89 | 108.14 | 64.04 | 29.13 | 3358 | 14.45 | Saudi Arabia | 688.18 | Germany | NS |
Heavy metal | Canada | SD | n | Min | Max | World * | SD | n | Min | Country | Max | Country | p-value |
Aluminum | 1.28 a | 0.59 | 156 | 0.267 | 2.573 | 13.92 b | 9.17 | 564 | 1.89 | Poland | 275.28 | Turkey | p < 0.05 |
Arsenic | 0.11 | 0.09 | 156 | 0.056 | 0.281 | 0.39 | 1.09 | 648 | 0.01 | South Korea | 1.78 | Italy | NS |
Cadmium | <0.01 | <0.01 | 156 | <0.01 | <0.01 | 0.17 | 0.76 | 2007 | <0.01 | Turkey | 2.40 | Slovakia | NS |
Chromium | 4.92 a | 1.44 | 156 | 3.017 | 6.096 | 1.91 b | 7.09 | 1032 | 0.07 | Germany | 33.78 | Nigeria | p < 0.05 |
Lead | <0.01 a | <0.01 | 156 | <0.01 | <0.01 | 0.34 b | 0.43 | 2218 | <0.01 | RSA | 4.10 | India | p < 0.05 |
Macromineral | Canada | SD | n | Min | Max | COM * | SD | n | Min | Max | CONV * | SD | n | Min | Max | p-value |
Calcium | 37,980 a | 7327 | 156 | 26,904 | 47,955 | 31,819 b | 2054 | 461 | 2096 | 38,423 | 37,744 a | 5,885 | 2791 | 14,147 | 242,016 | p < 0.05 |
Magnesium | 6803 a | 1248 | 156 | 4625 | 10,166 | 4649 b | 467 | 479 | 4239 | 5144 | 4855 b | 977 | 2702 | 2350 | 38,272 | p < 0.05 |
Phosphorus | 43,545 a | 7873 | 156 | 31,394 | 61,148 | 28,285 b | 1726 | 32 | 27,058 | 29,383 | 35,954c | 6,986 | 689 | 13,691 | 271,230 | p < 0.05 |
Potassium | 43,672 a | 4920 | 156 | 39,396 | 48,730 | 38,781 b | 2487 | 407 | 23,223 | 43,095 | 39,756 b | 5,817 | 2537 | 21,893 | 371,355 | p < 0.05 |
Sodium | 31,565 a | 6453 | 156 | 21,954 | 45,160 | 23,520 b | 3408 | 425 | 15,702 | 26,490 | 22,417 b | 5,109 | 2508 | 12,049 | 130,492 | p < 0.05 |
Micromineral | Canada | SD | n | Min | Max | COM * | SD | n | Min | Max | CONV * | SD | n | Min | Max | p-value |
Boron | 32.25 a | 6.64 | 155 | 14.01 | 54.26 | 10.58 b | 0.77 | 18 | 9.71 | 11.29 | 43.52 | 80.43 | 102 | 8.39 | 277.52 | p < 0.05 |
Cobalt | 0.04 a | 0.01 | 156 | 0.02 | 0.06 | 0.07 b | 0.01 | 87 | <0.01 | 0.10 | 5.82c | 2.34 | 349 | <0.01 | 83.98 | p < 0.05 |
Copper | 0.93 a | 0.49 | 156 | 0.51 | 1.68 | 3.82 b | 3.10 | 573 | 1.08 | 27.22 | 3.43 | 9.95 | 2980 | 0.50 | 61.37 | p < 0.05 |
Iron | 4.67 a | 2.33 | 155 | 1.49 | 8.55 | 18.35 b | 9.60 | 522 | 3.04 | 147.31 | 16.62 b | 27.63 | 2353 | 2.69 | 155.42 | p < 0.05 |
Manganese | 0.55 a | 0.17 | 156 | 0.38 | 0.82 | 2.13 b | 0.72 | 167 | 0.24 | 6.92 | 1.04c | 0.39 | 1308 | 0.31 | 4.79 | p < 0.05 |
Molybdenum | 0.52 a | 0.12 | 156 | 0.35 | 0.74 | 1.20 b | 0.44 | 55 | 0.26 | 1.98 | 0.96c | 0.25 | 144 | 0.11 | 3.86 | p < 0.05 |
Rubidium | 28.56 a | 7.14 | 156 | 13.84 | 58.51 | 18.10 b | 0.02 | 96 | 0.02 | 27.27 | 96.69c | 18.26 | 56 | 0.02 | 427.87 | p < 0.05 |
Selenium | 1.18 a | 0.46 | 156 | 0.78 | 2.34 | 2.99a | 31.83 | 411 | 0.07 | 18.05 | 0.27 b | 0.12 | 1683 | 0.12 | 5.07 | p < 0.05 |
Strontium | 6.54 a | 1.84 | 156 | 4.59 | 10.77 | 4.29 b | 0.01 | 96 | 0.05 | 6.95 | 10.32c | 1.59 | 134 | 0.06 | 35.61 | p < 0.05 |
Zinc | 70.02 a | 18.85 | 156 | 45.89 | 108.14 | 53.45 b | 8.32 | 550 | 41.6 | 72.71 | 67.33 a | 32.25 | 2689 | 14.45 | 688.18 | p < 0.05 |
Heavy metal | Canada | SD | n | Min | Max | COM * | SD | n | Min | Max | CONV * | SD | n | Min | Max | p-value |
Aluminum | 1.28 a | 0.59 | 155 | 0.27 | 2.57 | NO DATA | 15.13 b | 9.59 | 511 | 2.06 | 275.28 | p <0.05 | ||||
Arsenic | 0.11 a | 0.09 | 156 | 0.06 | 0.28 | 0.05 b | <0.01 | 87 | 0.01 | 0.23 | 0.49a | 1.25 | 486 | 0.01 | 1.78 | p < 0.05 |
Cadmium | <0.01 a | <0.01 | 156 | <0.01 | <0.01 | 0.07 b | 0.05 | 145 | 0.01 | 0.91 | 0.19a | 0.81 | 1747 | 0.00 | 2.40 | p < 0.05 |
Chromium | 4.92 a | 1.44 | 156 | 3.02 | 6.10 | 2.95 b | 0.65 | 161 | 0.09 | 7.02 | 1.85a | 8.02 | 796 | 0.07 | 33.78 | p < 0.05 |
Lead | <0.01 a | <0.01 | 156 | <0.01 | <0.01 | 0.45 b | 0.31 | 203 | 0.02 | 1.11 | 0.34 b | 0.45 | 1900 | 0.00 | 4.10 | p < 0.05 |
Macromineral | Total Concentration (mg/300 mL) | RDI 1(mg/day) | Intake from Milk 3 (%) |
Calcium | 456.7 | 1000 | 45.67 |
Magnesium | 49.59 | 350 | 14.17 |
Phosphorus | 404.6 | 1000 | 40.46 |
Potassium | 512.3 | 3500 | 14.64 |
Sodium | 217.7 | 2400 | 9.07 |
Micromineral | Total Concentration (µg/300 mL) | RDI 1(µg/day) | Intake from Milk 3 (%) |
Boron | 104.6 | 20,000 | 0.52 |
Cobalt | 0.8 | 19.85 | 3.83 |
Copper | 17.7 | 2000 | 0.88 |
Iron | 78.2 | 15,000 | 0.52 |
Manganese | 9.0 | 5000 | 0.18 |
Molybdenum | 14.9 | 75.00 | 19.83 |
Rubidium | 643.9 | ND | ND |
Selenium | 27.9 | 35.00 | 79.73 |
Strontium | 171.9 | 4030 | 4.27 |
Zinc | 1,373.8 | 15,000 | 9.16 |
Heavy Metal | Total Concentration (µg/300 mL) | Toxic Dose 2 (µg/day) | Intake from Milk 3 (%) |
Aluminum | 10.38 | 2020.30 | 0.51 |
Arsenic | 2.43 | 10.14 | 23.94 |
Cadmium | 0.05 | 0.97 | 5.62 |
Chromium | 76.71 | 120.00 | 63.93 |
Lead | 0.21 | 2.39 | 8.85 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zwierzchowski, G.; Ametaj, B.N. Mineral Elements in the Raw Milk of Several Dairy Farms in the Province of Alberta. Foods 2019, 8, 345. https://doi.org/10.3390/foods8080345
Zwierzchowski G, Ametaj BN. Mineral Elements in the Raw Milk of Several Dairy Farms in the Province of Alberta. Foods. 2019; 8(8):345. https://doi.org/10.3390/foods8080345
Chicago/Turabian StyleZwierzchowski, Grzegorz, and Burim N. Ametaj. 2019. "Mineral Elements in the Raw Milk of Several Dairy Farms in the Province of Alberta" Foods 8, no. 8: 345. https://doi.org/10.3390/foods8080345
APA StyleZwierzchowski, G., & Ametaj, B. N. (2019). Mineral Elements in the Raw Milk of Several Dairy Farms in the Province of Alberta. Foods, 8(8), 345. https://doi.org/10.3390/foods8080345