Metabolomic Screening of Anti-Inflammatory Compounds from the Leaves of Actinidia arguta (Hardy Kiwi)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Extracts
2.3. Partial Purification of the Extract
2.4. Cell Culture
2.5. Cell Proliferation Assay (MTT Assay)
2.6. Measurement of Anti-Inflammatory Activity (NO Assay)
2.7. Western Blotting
2.8. LC-MS/MS Analysis
2.9. Data Processing and Multivariate Statistical Analyses
2.10. Metabolite Identification
3. Results
3.1. Preparing Ethanol Extracts of A. arguta Leaves
3.2. Anti-Inflammatory Activity of the Extracts and Its Fractions: NO Production in LPS-Induced RAW 264.7 Cells
3.3. Inhibitory Effect on iNOS Expression in LPS-Stimulated RAW 264.7 Cells
3.4. Multivariate Statistical Analyses
3.5. Metabolite Identification
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Kim, Y.-J.; Song, C.-H. Anti-Inflammatory effect of bower Actinidia in LPS-stimulated RAW264.7 cells. Korean J. Acupunct. 2013, 30, 243–251. [Google Scholar] [CrossRef]
- Lim, H.-W.; Kang, S.-J.; Park, M.; Yoon, J.-H.; Han, B.-H.; Choi, S.-E.; Lee, M.-W. Anti-oxidative and nitric oxide production inhibitory activities of phenolic compounds from the fruits of Actinidia arguta. Nat. Prod. Sci. 2006, 12, 221–225. [Google Scholar]
- Zou, L.-L.; Wang, Z.-Y.; Fan, Z.-L.; Tian, S.-Q.; Liu, J.-R. Evaluation of antioxidant and antiproliferative properties of three Actinidia (Actinidia kolomikta, Actinidia arguta, Actinidia chinensis) extracts in vitro. Int. J. Mol. Sci. 2012, 13, 5506–5518. [Google Scholar]
- Park, J.H.; Lee, Y.J.; Choi, J.K. Pharmacognostical study on the Korean folk medicine ‘Da Rae Ip’. Korean J. Pharmacogn. 2005, 36, 26–33. [Google Scholar]
- Dillard, C.J.; Bruce German, J. Phytochemicals: Nutraceuticals and human health. J. Sci. Food Agric. 2000, 80, 1744–1756. [Google Scholar] [CrossRef]
- Donno, D.; Beccaro, G.L.; Mellano, M.G.; Cerutti, A.K.; Canterino, S.; Bounous, G. Effect of agronomic and environmental conditions on chemical composition of tree-species buds used for herbal preparations. Vegetos 2012, 25, 21–29. [Google Scholar]
- Webby, R.; Wilson, R.; Ferguson, A. Leaf flavonoids of Actinidia. Biochem. Syst. Ecol. 1994, 22, 277–286. [Google Scholar] [CrossRef]
- Kwon, D.; Kim, G.D.; Kang, W.; Park, J.-E.; Kim, S.H.; Choe, E.; Kim, J.-I.; Auh, J.-H. Pinoresinol diglucoside is screened as a putative α-glucosidase inhibiting compound in Actinidia arguta leaves. J. Korean. Soc. Appl. Biol. Chem. 2014, 57, 473–479. [Google Scholar] [CrossRef]
- Kwak, C.S.; Lee, J.H. In vitro antioxidant and anti-inflammatory effects of ethanol extracts from sprout of evening primrose (Oenothera laciniata) and gooseberry (Actinidia arguta). J. Korean Soc. Food Sci. Nutr. 2014, 43, 207–215. [Google Scholar] [CrossRef]
- Korhonen, R.; Lahti, A.; Kankaanranta, H.; Moilanen, E. Nitric oxide production and signaling in inflammation. Inflamm. Allergy Drug Targets 2005, 4, 471–479. [Google Scholar] [CrossRef]
- Sautebin, L. Prostaglandins and nitric oxide as molecular targets for anti-inflammatory therapy. Fitoterapia 2000, 71, S48–S57. [Google Scholar] [CrossRef]
- Hobbs, A.J.; Higgs, A.; Moncada, S. Inhibition of nitric oxide synthase as a potential therapeutic target. Annu. Rev. Pharmacol. Toxicol. 1999, 39, 191–220. [Google Scholar] [CrossRef] [PubMed]
- Hart, F.D.; Huskisson, E.C. Non-steroidal anti-inflammatory drugs–Current status and rational therpeutic use. Drugs 1984, 27, 232–255. [Google Scholar] [CrossRef] [PubMed]
- Heo, S.; Lee, D.-Y.; Choi, H.-K.; Lee, J.; Kim, J.-H.; Cho, S.-M.; Lee, H.J.; Auh, J.-H. Metabolite fingerprinting of bokbunja (Rubus coreanus Miquel) by UPLC-qTOF-MS. Food Sci. Biotechnol. 2011, 20, 567–570. [Google Scholar] [CrossRef]
- Lee, D.Y.; Heo, S.; Kim, S.G.; Choi, H.-K.; Lee, H.-J.; Cho, S.-M.; Auh, J.-H. Metabolomic characterization of the region- and maturity-specificity of Rubus coreanus Miquel (Bokbunja). Food Res. Int. 2013, 54, 508–515. [Google Scholar] [CrossRef]
- Katajamaa, M.; Oresic, M. Data processing for mass spectrometry-based metabolomics. J. Chromatogr. A 2007, 1158, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, S.; Namgung, H.; Jo, Y.-H.; Bao, C.; Choi, H.-K.; Auh, J.-H.; Lee, H.J. Ellagic acid identified through metabolomic analysis is an active metabolite in strawberry (‘Seolhyang’) regulating lipopolysaccharide-induced inflammation. J. Agric. Food Chem. 2013, 62, 3954–3962. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.-H.; Park, H.-C.; Choi, S.; Kim, S.; Bao, C.; Kim, H.W.; Choi, H.-K.; Lee, H.J.; Auh, J.-H. Metabolomic analysis reveals cyanidins in black raspberry as candidates for suppression of lipopolysaccharide-induced inflammation in murine macrophages. J. Agric. Food Chem. 2015, 63, 5449–5458. [Google Scholar] [CrossRef]
- Parveen, I.; Winters, A.; Threadgill, M.D.; Hauck, B.; Morris, P. Extraction, structural characterisation and evaluation of hydroxycinnamate esters of orchard grass (Dactylis glomerata) as substrates for polyphenol oxidase. Phytochemistry 2008, 69, 2799–2806. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, Q.; Wang, X.; Yang, J.; Wang, Q. Qualitative analysis and simultaneous quantification of phenolic compounds in the aerial parts of Salvia miltiorrhiza by HPLC-DAD and ESI/MSn. Phytochem. Anal. 2011, 22, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Peev, C.I.; Vlase, L.; Antal, D.S.; Dehelean, C.A.; Szabadai, Z. Determination of some polyphenolic compounds in buds of Alnus and Corylus species by HPLC. Chem. Nat. Comp. 2007, 43, 259–262. [Google Scholar] [CrossRef]
- Donno, D.; Boggia, R.; Zunin, P.; Cerutti, A.K.; Guido, M.; Mellano, M.G.; Prgomet, Z.; Beccaro, G.L. Phytochemical fingerprint and chemometrics for natural food preparation pattern recognition: An innovative technique in food supplement quality control. J. Food Sci. Technol. 2016, 53, 1071–1083. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guo, J.; Qi, Y.; Shao, Q.; Liang, J. The prevention of radiation-induced DNA damage and apoptosis in human intestinal epithelial cells by salvianic acid A. J. Radiat. Res. Appl. Sci. 2014, 7, 274–285. [Google Scholar] [CrossRef]
- Zhao, G.R.; Zhang, H.M.; Ye, T.X.; Xiang, Z.J.; Yuan, Y.J.; Guo, Z.X.; Zhao, L.B. Characterization of the radical scavenging and antioxidant activities of danshensu and salvianolic acid B. Food Chem. Toxicol. 2008, 46, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Teng, M.-C.; Wu, P.C.; Lin, S.-P.; Wu, C.-Y.; Wang, P.-H.; Chen, C.-T.; Chen, B.-Y. Danshensu decreases UVB-induced corneal inflammation in an experimental mouse model via oral administration. Curr. Eye. Res. 2018, 43, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Yao, J.H.; Zhou, Q.; Hu, X.W.; Chu, L.; Tian, X.F. Anti-inflammatory Activity of Salvianic acid A through the Inhibition of Nuclear Factor-kappaB Activation in Peritoneal Macrophage. In Proceedings of the 2009 3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing, China, 11–13 June 2009; pp. 1–4. [Google Scholar]
- Castelluccio, C.; Paganga, G.; Melikian, N.; Paul Bolwell, G.; Pridham, J.; Sampson, J.; Rice-Evans, C. Antioxidant potential of intermediates in phenylpropanoid metabolism in higher plants. FEBS Lett. 1995, 368, 188–192. [Google Scholar] [CrossRef]
- Nardini, M.; Pisu, P.; Gentili, V.; Natella, F.; Di, M.; Piccolella, F.; Scaccini, C. Effect of caffeic acid on tert-butyl hydroperoxide-induced oxidative stress in U937. Free Radic. Biol. Med. 1998, 25, 1098–1105. [Google Scholar] [CrossRef]
- Shin, K.-M.; Kim, I.-T.; Park, Y.-M.; Ha, J.; Choi, J.-W.; Park, H.-J.; Lee, Y.S.; Lee, K.-T. Anti-inflammatory effect of caffeic acid methyl ester and its mode of action through the inhibition of prostaglandin E2, nitric oxide and tumor necrosis factor-α production. Biochem. Pharmacol. 2004, 68, 2327–2336. [Google Scholar] [CrossRef]
- Song, Y.S.; Park, E.-H.; Hur, G.M.; Ryu, Y.S.; Lee, Y.S.; Lee, J.Y.; Kim, Y.M.; Jin, C. Caffeic acid phenethyl ester inhibits nitric oxide synthase gene expression and enzyme activity. Cancer Lett. 2002, 175, 53–61. [Google Scholar] [CrossRef]
- da Cunha, F.M.; Duma, D.; Assreuy, J.; Buzzi, F.C.; Niero, R.; Campos, M.M.; Calixto, J.B. Caffeic acid derivatives: In vitro and in vivo anti-inflammatory properties. Free Radic. Res. 2004, 38, 1241–1253. [Google Scholar] [CrossRef]
m/z [M − H]− | UV λmax (nm) | MS2 (MS3) | Tentative Identification | References |
---|---|---|---|---|
595.08 | 218, 303, 324 | 297.04 (178.97, 134.97, 116.96) | Caffeoylthreonic acid dimer | Parveen et al. (2008) |
395.08 | 224, 286 | 197.03 (179.02, 153.05, 135.03, 73.03), 179.05, 153.11, 135.02 | Danshensu (Salvianic acid A) dimer | Chen et al. (2011) |
309.08 | 219, 285, 319 | 179.00 (134.95), 161.02, 135.03 | Caffeic acid derivative | Metlin |
297.06 | 219, 298, 324 | 178.99, 134.97, 117.03 | Caffeoylthreonic acid | Parveen et al. (2008) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, G.-D.; Lee, J.Y.; Auh, J.-H. Metabolomic Screening of Anti-Inflammatory Compounds from the Leaves of Actinidia arguta (Hardy Kiwi). Foods 2019, 8, 47. https://doi.org/10.3390/foods8020047
Kim G-D, Lee JY, Auh J-H. Metabolomic Screening of Anti-Inflammatory Compounds from the Leaves of Actinidia arguta (Hardy Kiwi). Foods. 2019; 8(2):47. https://doi.org/10.3390/foods8020047
Chicago/Turabian StyleKim, Gyoung-Deuck, Jin Young Lee, and Joong-Hyuck Auh. 2019. "Metabolomic Screening of Anti-Inflammatory Compounds from the Leaves of Actinidia arguta (Hardy Kiwi)" Foods 8, no. 2: 47. https://doi.org/10.3390/foods8020047
APA StyleKim, G.-D., Lee, J. Y., & Auh, J.-H. (2019). Metabolomic Screening of Anti-Inflammatory Compounds from the Leaves of Actinidia arguta (Hardy Kiwi). Foods, 8(2), 47. https://doi.org/10.3390/foods8020047