Microcapsule Techniques to Emphasize Functional Plant Oil Quality and Their Applications in the Food Industry: A Review
Abstract
1. Introduction
2. Nutrient Compositions and Functional Activities of FPOs
2.1. FPOs Derived from Herbaceous Plants
2.2. FPOs Derived from Woody Plants
Classification | Name | Saturated Fatty Acid | Monounsaturated Fatty Acids | Polyunsaturated Fatty Acids | Other Active Ingredients | Oil Content | Unsaturated Fatty Acid Content | Potential Health Benefits | Reference | |
---|---|---|---|---|---|---|---|---|---|---|
FPOs from herbal plants | flaxseed oil | stearic acid, palmitic acid | OA (15–20%) | ALA (50–55%) | lignans, fiber, phytosterols, vitamin E, β-carotene, flavonoid, polyphenols | >35% | >75% | reduction in cardiovascular disease, atherosclerosis, diabetes, cancer, arthritis, osteoporosis, and autoimmune and neurological disorders | [12,35] | |
chia seed oil | palmitic acid, stearic acid | OA (8.61%) | ALA (65. 91%) LA (18.66%) | vitamin E, squalene, carotenoid, phytosterol, polyphenols | >25% | >80% | supplement nutrition, Improve memory, increase satiety, reduce blood sugar | [36,37] | ||
soybean oil | palmitic acid | OA (22–30%) | LA (50–60%) ALA (7%) | tocopherols, phytosterols, soy isoflavones, vitamin E, phytosterol, vitamin D | >16% | >80% | Prevention of cardiovascular disease, delaying senescence, Metastasis boosting, promote brain development, Prevent vision loss | [38,39] | ||
corn oil | palmitic acid, stearic acid | OA (11.84%) | LA (57.74%) ALA (1%) | phytosterol, squalene, lecithin, vitamin E | >5% | >80% | reduce cholesterol, delaying senescence, Prevention of cardiovascular disease | [38,40] | ||
sesame oil | stearic acid, palmitic acid, arachidic acid | OA (38.84%) | LA (45.23%) ALA (0.61%) | phytosterol, vitamin E, sesame lignans | >35% | >85% | improve anemia, relieve a cough, relaxing bowel, delaying senescence, promote blood circulation | [41,42] | ||
sunflower seed oil | palmitic acid, stearic acid | OA (19.81%) | LA (64.35%) ALA (1%) | vitamin E, vitamin B, flavonoid, folate, niacin | >40% | >90% | delaying senescence, cure for insomnia, improve memory, reduce blood press, prevention of cancer | [38,43,44] | ||
sea buckthorn seed oil | palmitic acid, stearic acid, myristic acid | OA (17.8–23.8%) | LA (33.6–37.8%) ALA (24.1–29.3%) | flavone, carotene, phytosterol, vitamin E | >10% | >80% | cardiovascular protection, delaying senescence, blood lipid reduction, liver protection, vision protection | [45,46] | ||
almond oil | palmitic acid, palmitoleic acid, stearic acid | OA (67.3%) | LA (19.4%) | vitamin E, amygdalin | >40% | >90% | moistening lungs, tonifying spleen, anticancer, delaying senescence | [47] | ||
perilla oil | palmitic acid, stearic acid | OA (9–20%) | ALA (47–64%) LA (10–24%) | vitamin E, flavone, coumarin lactone | >15% | >90% | antiallergic, antimicrobials, anticancer drugs, attenuates immunoglobulin a nephropathy, prevents excessive growth of visceral adipose tissue | [13] | ||
peppermint oils | ND | ND | ND | carvones, menthone, alkaloid, menthol | <5.4% | ND | antioxidant, antibacterial | [48] | ||
vanilla oil | ND | ND | ND | vanillin, tannins, polyphenols | <5.07% | ND | antioxidant, antimutagenic and hypolipidemic activity | [49,50] | ||
FPOs from woody plants | trees | olive oil | palmitic acid, stearic acid | OA (68.94%) | LA (12.22%) ALA (0.79%) | phytosterol, squalene | >20% | >80% | prevention of diabetes, anticancer, heart protection, immune regulation, anti-proliferation, anti-oxidation | [51,52] |
coconut oil | palmitic acid, lauric acid, stearic acid, myristic acid | OA (6.49%) | LA (1.91%) | vitamin E, polyphenol | >20% | >5% | anti-oxidation, anti-polymerization | [53,54] | ||
walnut oil | palmitic acid, stearic acid | OA (13.4%), | LA (55.3%) ALA (10%) | squalene, flavone, polyphenol, vitamin E | >60% | >90% | boost immunity, regulate cholesterol levels, promote brain and nervous system development, relaxing bowel, sleep improvement, promote bone growth, | [38,47] | ||
pine-seed oil | palmitic acid stearic acid | OA (14.6–48.5%) | LA (35.2–58.2%) pinolenic acid (0.2–22.4%) | vitamin A, vitamin E, phytosterol | >70% | >90% | delaying senescence, moistening of the intestine, nourishing the brain | [55,56] | ||
shrubs | hazelnut oil | palmitic acid, stearicacid | OA (80.48%), | LA (12.19%) ALA (0.05%) arachidic acid (0.08%) | vitamin A, vitamin E, squalene, β-sitosterol | >50% | >90% | prevent atherosclerosis, anti-aging, improve immunity, promote cholesterol degradation | [47,57] | |
zanthoxylum oil | palmitic acid | OA (7%) | LA (18%) ALA (15%) | amide, alkaloid | >15% | >90% | supplement nutrition, regulate blood lipids, improve immunity, antiallergic | [58,59] | ||
TTO | palmitic acid stearic acid | OA (16.63–18.84%) | LA (24.51–25.16%) ALA (29.57–31.69%) | phytosterol, squalene, vitamin E, polyphenols | >25% | >90% | lower triglycerides and cholesterol, thereby preventing high blood pressure, heart disease, arteriosclerosis and other diseases | [60,61] | ||
peony seed oil | palmitic acid, stearic acid | OA (22%) | LA (27%) ALA (45%) | squalene, vitamin E, phytosterol, polyphenol | >25% | >90% | relaxing bowel, cure for insomnia, reduce blood press, reduce blood lipid | [62] |
3. The Preparation Process of FPO Microcapsules
3.1. Physical Methods
3.1.1. Freeze Drying
3.1.2. Spray Drying
3.2. Chemical Methods
3.3. Physical–Chemical Methods
3.3.1. Complex Coacervation
3.3.2. Molecular Embedding
3.3.3. In Situ Polymerization
FPOs Name | Microencapsulation Process | Advantage | Wall Material | Encapsulation Efficiency | Reference |
---|---|---|---|---|---|
flaxseed oil | freeze drying | significantly improve antioxidant capacity and the quantities of PUFAs in products | SA-MD-inulin, soy protein concentrate | 97.64% | [104] |
freeze drying | delay oil oxidation and prevent the production of primary oxidation products such as hydroperoxide free radicals | SPI | 55.1% | [105] | |
spray drying | retain volatile substances, the surface of powder particles has very low amount of unencapsulated oil, which improves excellent emulsification stability. | WPC, MD | 86.98% | [106] | |
spray drying | low price, it achieves high microencapsulation efficiency and good oxidation stability under high oil load. | NaCas, isomaltooligosaccharide | 98.22% | [107] | |
chia seed oil | freeze drying | minimize the damage caused by temperature to the product, the oxidation stability of chia oil was significantly improved | NaCas, lactose | 85% | [72] |
spray drying | effectively protects chia seed oil from oxidation processes. | bean protein isolate and peach gum | 96% | [108] | |
spray drying | effectively prevent lipid oxidation. | sunflower lecithins, chitosan, chia mucilage, MD | 99.11% | [109] | |
spray drying | prevent lipid oxidation. | SPI, MD, inulin | 88.79% | [110] | |
complex coacervation | high load, high encapsulation efficiency, mild processing conditions. | CPI-CGS | 93.9% | [111] | |
soybean oil | spray drying | a more effective interfacial barrier is generated, which improves the thermal stability and oxidation stability of the microencapsulated oil | MD | 93.41% | [112] |
situ polymerization | provide good adhesion. | urea-formaldehyde | 75% | [113] | |
corn oil | spray drying | protect bioactive compounds that are susceptible to degradation along the human digestive tract, low price. | brea gum, GA, inulin | 91.72% | [114] |
sesame oil | complex coacervation | the oxidative stability was remarkably enhanced | gelatin, GA | 90.25% | [41] |
sunflower seed oil | spray drying | improve oxidative stability. | pea protein isolate | 88% | [115] |
sea buckthorn oil | spray drying | extend the shelf life. | SPI, soybean polysaccharide | 95.30% | [116] |
almond oil | spray drying | protection against oxidation reactions. | taro starch | 56% | [117] |
perilla oil | complex coacervation | better polydispersity index, encapsulation efficiency, and oxidative stability. | OSA-starch | 98.18% | [118] |
peppermint oil | complex coacervation | effectively extend the storage period | fungal chitosan, GA, MD | 29% | [89] |
spray drying | limit loss and degradation of flavors and aromas during processing and storage | bovine serum albumin and GA | 54% | [119] | |
freeze drying | extend the oxidative | GA, MD | 91% | [120] | |
vanilla oil | spray drying | improve product flavor and antioxidant properties | Chitosan, GA | 69.20% | [121] |
olive oil | spray drying | increase oil stability and reduce digestibility. | octenyl succinic anhydride rice starch | 93.14% | [122] |
spray drying | limit the oxidation of grease. | sour cherry protein isolate | 97.71% | [123] | |
complex coacervation | improve thermal stability. | gelatin, SA | 89.37% | [124] | |
coconut oil | interfacial polymerization | improve thermal stability. | SA | 81.1% | [125] |
spray drying | improve antioxidant activity. | inulin | 88.10% | [126] | |
walnut oil | spray drying | improve thermal stability. | SPI, MD | 72.2% | [127] |
freeze drying | the water content and hygroscopicity of microcapsules were reduced. | fructooligosaccharide, SPI | 60% | [128] | |
UME | Improve the oxidation stability of vegetable oil | β-CD and PS | 80.40%, 75.52% | [69] | |
hazelnut oil | spray drying | prolong the shelf life of the nuts. | hydroxypropyl methylcellulose, MD | 81.6% | [129] |
pine-seed oil | complex coacervation, freeze drying | better resistance to high temperature, high humidity and controlled release characteristics. | gelatin, GA, MD | 80.87% | [130] |
spray drying | Enhance the thermal stability and antioxidant activity of the oil, microcapsule can be added to the food substrate as a food preservative | GA, MD | 70.07% | [131] | |
zanthoxylum oil | complex coacervation | improve the thermal stability of microcapsules. | chitosan-gelatin | 60.05% | [132] |
UME | improve encapsulation efficiency, make the microcapsules smaller and more evenly in size, it can also preserve the flavor of the core for alonger period of time and even give the core some new chemical properties. | β-CD | 81.94% | [6] | |
complex coacervation, spray drying | low price, simplicity of operator, high encapsulation efficiency, high temperature resistance and humidity stability. | quinoa protein isolate-GA coacervates, sodium tripolyphosphate | 87.25% | [90] | |
TTO | complex coacervation | simple operation and environmental protection, effectively improve the stability of TTO and prolong its bacteriostatic effect. | alginate, quaternary ammonium salt of chitosan | 66.06% | [85] |
spray drying | good emulsifying property, improved oil stability and concentration in the powder. | chitosan, alginate | 90.4% | [77] | |
spray drying | the oxidation stability and retention of PUFAs were improved. | mung bean protein isolate, alginate | 72.09% | [133] | |
interfacial polymerization | the volatile liquid component is retained to a large extent. | alginate calcium | 97.5% | [134] | |
in situ polymerization | the microcapsules are not agglomerate. | urea-formaldehyde | 45% | [135] | |
freeze drying | oxidation stability is significantly improved. | WPC, MD, SSOS | 95.17% | [136] | |
freeze drying | improved heat resistance, the peroxide value decreased significantly and oxidation stability increased. | chitosan, SPI | 87% | [100] | |
freeze drying | good water solubility, Oxidation stability is significantly improved. | MD | 66.41% | [137] | |
peony seed oil | spray drying | extend the shelf life, enhanced thermal stability. | SSOS, β-CD, Pectin | 92.5% | [138] |
spray drying | high encapsulation efficiency and oxidation stability, less loss of active substance. | whey protein, corn syrup (CS), soya bean lecithin | 80% | [139] | |
spray drying | low price, high encapsulation efficiency, it has excellent film forming ability and emulsifying property. | NaCas, CS | 93.71% | [140] | |
spray drying | high encapsulation efficiency, effectively prevent lipid oxidation, the wall material has high solubility, low viscosity, good emulsifying property. | GA, CS, NaCas | 92.8% | [141] |
4. Applications of FPO Microcapsules in the Food Industry
4.1. Changing the Physical Properties of Foods
4.2. Delaying the Oxidation of Lipids
4.3. Improving Overall Nutrient Retention
4.4. Natural Preservatives
4.5. Enriching the Flavor of Foods
5. Conclusions and Future Trends for FPOs Microcapsules
- (a)
- Increased availability of wall materials: The selection of wall materials plays a crucial role in encapsulation efficiency of FPO microcapsules. Researchers should actively seek low-cost, excellent emulsification properties, and superior oil encapsulation capabilities materials. Notably, natural wall materials with enhanced embedding effects and greater health benefits are an important area of research focus;
- (b)
- Advanced techniques for microcapsule preparation: The integration of multiple preparation techniques, such as complex coacervation in combination with interfacial polymerization and freeze drying coupled with spray drying, has the potential to enhance the performance of microcapsule products;
- (c)
- Broader spectrum of microcapsule dimensions: Currently, the size distribution of FPO microcapsules typically ranges from 1 to 1000 μm, following a normal distribution (Figure 3) [103]. In fact, as advancements are made in emulsification techniques, FPO microcapsules will exhibit more uniformity in size and regular shapes;
- (d)
- Application for supplementary fields: Microcapsules could offer a novel avenue for FPO development, such as enhancing the flavor and quality of prepared dishes or vegetarian meats. Additionally, microencapsulated FPOs exhibit resistance to oxidation and serve as an important natural source for cosmeceuticals.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kotecka-Majchrzak, K.; Sumara, A.; Fornal, E.; Montowska, M. Oilseed Proteins—Properties and Application as a Food Ingredient. Trends Food Sci. Technol. 2020, 106, 160–170. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Smith, B. Legume Proteins Are Smart Carriers to Encapsulate Hydrophilic and Hydrophobic Bioactive Compounds and Probiotic Bacteria: A Review. Comp. Rev. Food Sci. Food Saf. 2021, 20, 1250–1279. [Google Scholar] [CrossRef] [PubMed]
- Janik, M.; Hanula, M.; Khachatryan, K.; Khachatryan, G. Nano-/Microcapsules, Liposomes, and Micelles in Polysaccharide Carriers: Applications in Food Technology. Appl. Sci. 2023, 13, 11610. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, Y.; Tian, J.; Chu, Z. Effect of a New Shell Material—Jackfruit Seed Starch on Novel Flavor Microcapsules Containing Vanilla Oil. Ind. Crops Prod. 2018, 112, 47–52. [Google Scholar] [CrossRef]
- He, R.; Ye, J.; Wang, L.; Sun, P. Preparation and Evaluation of Microcapsules Encapsulating Royal Jelly Sieve Residue: Flavor and Release Profile. Appl. Sci. 2020, 10, 8126. [Google Scholar] [CrossRef]
- Li, J.; Hou, X.; Jiang, L.; Xia, D.; Chen, A.; Li, S.; Li, Q.; Gu, X.; Mo, X.; Zhang, Z. Optimization and Characterization of Sichuan Pepper (Zanthoxylum bungeanum Maxim) Resin Microcapsule Encapsulated with β-Cyclodextrin. LWT 2022, 171, 114120. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, D.; Liu, L.; Jiang, W.; Xiang, W.; Zhang, Q.; Tang, J. Microencapsulation of Zanthoxylum Schinifolium Essential Oil through Emulsification Followed by Spray Drying: Microcapsule Characterization and Functional Evaluation. Colloids Surf. A Physicochem. Eng. Asp. 2024, 687, 133484. [Google Scholar] [CrossRef]
- Pattnaik, M.; Mishra, H.N. Amelioration of the Stability of Polyunsaturated Fatty Acids and Bioactive Enriched Vegetable Oil: Blending, Encapsulation, and Its Application. Crit. Rev. Food Sci. Nutr. 2022, 62, 6253–6276. [Google Scholar] [CrossRef] [PubMed]
- Timilsena, Y.P.; Akanbi, T.O.; Khalid, N.; Adhikari, B.; Barrow, C.J. Complex Coacervation: Principles, Mechanisms and Applications in Microencapsulation. Int. J. Biol. Macromol. 2019, 121, 1276–1286. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.X. Virgin Avocado Oil: An Emerging Source of Functional Fruit Oil. J. Funct. Foods 2019, 54, 381–392. [Google Scholar] [CrossRef]
- Deng, L.; Yuan, H.; Xie, J.; Ge, L.; Chen, Y. Herbaceous Plants Are Better than Woody Plants for Carbon Sequestration. Resour. Conserv. Recycl. 2022, 184, 106431. [Google Scholar] [CrossRef]
- Čeh, B.; Štraus, S.; Hladnik, A.; Kušar, A. Impact of Linseed Variety, Location and Production Year on Seed Yield, Oil Content and Its Composition. Agronomy 2020, 10, 1770. [Google Scholar] [CrossRef]
- Kim, H.U.; Lee, K.-R.; Jeon, I.; Jung, H.E.; Heo, J.B.; Kim, T.-Y.; Chen, G.Q. Fatty Acid Composition and Oil Content of Seeds from Perilla (Perilla frutescens (L.) var. frutescens) Germplasm of Republic of Korea. Genet. Resour. Crop Evol. 2019, 66, 1615–1624. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Vongsvivut, J.; Adhikari, R.; Adhikari, B. Physicochemical and Thermal Characteristics of Australian Chia Seed Oil. Food Chem. 2017, 228, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Romanić, R.S.; Lužaić, T.Z.; Radić, B.Đ. Enriched Sunflower Oil with Omega 3 Fatty Acids from Flaxseed Oil: Prediction of the Nutritive Characteristics. LWT 2021, 150, 112064. [Google Scholar] [CrossRef]
- Abdullah, S.; Asif, M.; Ali, H.; Ali, R.; Saleem, M. Characterization of Corn Oil Using Fluorescence Spectroscopy. J. Fluoresc. 2022, 32, 1977–1989. [Google Scholar] [CrossRef] [PubMed]
- Gabay, O.; Sanchez, C.; Salvat, C.; Chevy, F.; Breton, M.; Nourissat, G.; Wolf, C.; Jacques, C.; Berenbaum, F. Stigmasterol: A Phytosterol with Potential Anti-Osteoarthritic Properties. Osteoarthr. Cartil. 2010, 18, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Aksoz, E.; Korkut, O.; Aksit, D.; Gokbulut, C. Vitamin E (A-, β + Γ- and Δ-tocopherol) Levels in Plant Oils. Flavour Fragr. J. 2020, 35, 504–510. [Google Scholar] [CrossRef]
- Wu, H.; Xu, L.; Ballantyne, C.M. Dietary and Pharmacological Fatty Acids and Cardiovascular Health. J. Clin. Endocrinol. Metab. 2020, 105, 1030–1045. [Google Scholar] [CrossRef] [PubMed]
- Psota, T.L.; Gebauer, S.K.; Kris-Etherton, P. Dietary Omega-3 Fatty Acid Intake and Cardiovascular Risk. Am. J. Cardiol. 2006, 98, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Alessandri, C.; Pignatelli, P.; Loffredo, L.; Lenti, L.; Del Ben, M.; Carnevale, R.; Perrone, A.; Ferro, D.; Angelico, F.; Violi, F. Alpha-Linolenic Acid–Rich Wheat Germ Oil Decreases Oxidative Stress and CD40 Ligand in Patients with Mild Hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 2577–2578. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, L.; Yang, X.; Shi, H.; Zhang, L. α-Linolenic Acid Prevents Endoplasmic Reticulum Stress-Mediated Apoptosis of Stearic Acid Lipotoxicity on Primary Rat Hepatocytes. Lipids Health Dis. 2011, 10, 81. [Google Scholar] [CrossRef]
- Upadhyay, R.; Mishra, H.N. Predictive Modeling for Shelf Life Estimation of Sunflower Oil Blended with Oleoresin Rosemary (Rosmarinus officinalis L.) and Ascorbyl Palmitate at Low and High Temperatures. LWT-Food Sci. Technol. 2015, 60, 42–49. [Google Scholar] [CrossRef]
- Alencar, S.A.D.S.; Kiefer, C.; Nascimento, K.M.R.D.S.; Viana, L.H.; Corassa, A.; Gomes, M.D.N.B.; Marçal, D.A.; Farias, T.V.A. Dietary Soybean Oil Modulates Fatty Acid Composition of Pork. Trop. Anim. Health Prod. 2021, 53, 357. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk, K.; Górnicka, M. Dietary Vitamin E Isoforms Intake: Development of a New Tool to Assess Tocopherols and Tocotrienols Intake in Adults. Nutrients 2023, 15, 3759. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, Y.; Zhang, Z.; Li, H. Advances in Controllable Release Essential Oil Microcapsules and Their Promising Applications. Molecules 2023, 28, 4979. [Google Scholar] [CrossRef] [PubMed]
- Flakelar, C.L.; Adjonu, R.; Doran, G.; Howitt, J.A.; Luckett, D.J.; Prenzler, P.D. Phytosterol, Tocopherol and Carotenoid Retention during Commercial Processing of Brassica napus (Canola) Oil. Processes 2022, 10, 580. [Google Scholar] [CrossRef]
- Yu, J.; Yan, H.; Wu, Y.; Wang, Y.; Xia, P. Quality Evaluation of the Oil of Camellia spp. Foods 2022, 11, 2221. [Google Scholar] [CrossRef] [PubMed]
- Drehmer, E.; Navarro-Moreno, M.Á.; Carrera-Juliá, S.; Moreno, M.L. A Comparative Study between Olive Oil and Corn Oil on Oxidative Metabolism. Food Funct. 2022, 13, 7157–7167. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-P.; Shih, P.-H.; Hsu, C.-L.; Yen, G.-C. Hepatoprotection of Tea Seed Oil (Camellia oleifera Abel.) against CCl4-Induced Oxidative Damage in Rats. Food Chem. Toxicol. 2007, 45, 888–895. [Google Scholar] [CrossRef] [PubMed]
- de Paiva Azevedo, E.P.; dos Santos Alves, E.M.; de Souza, J.R.B.; de Araújo, K.S.; de Santana Khan, S.; de Mendonça, C.E.A.; Maciel, M.I.S. Fatty Acid in Raw and Heated Coconut Oil in Eleven Coconut Oil Food Preparations Analysed by Gas Chromatography. Int. J. Gastron. Food Sci. 2021, 24, 100329. [Google Scholar] [CrossRef]
- Hernández, M.L.; Muñoz-Ocaña, C.; Posada, P.; Sicardo, M.D.; Hornero-Méndez, D.; Gómez-Coca, R.B.; Belaj, A.; Moreda, W.; Martínez-Rivas, J.M. Functional Characterization of Four Olive Squalene Synthases with Respect to the Squalene Content of the Virgin Olive Oil. J. Agric. Food Chem. 2023, 71, 15701–15712. [Google Scholar] [CrossRef] [PubMed]
- Amarowicz, R. Squalene: A Natural Antioxidant? Eur. J. Lipid Sci. Technol. 2009, 111, 411–412. [Google Scholar] [CrossRef]
- Zhang, Y.-Y.; Zhang, F.; Thakur, K.; Ci, A.-T.; Wang, H.; Zhang, J.-G.; Wei, Z.-J. Effect of Natural Polyphenol on the Oxidative Stability of Pecan Oil. Food Chem. Toxicol. 2018, 119, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Al-Madhagy, S.; Ashmawy, N.S.; Mamdouh, A.; Eldahshan, O.A.; Farag, M.A. A Comprehensive Review of the Health Benefits of Flaxseed Oil in Relation to Its Chemical Composition and Comparison with Other Omega-3-Rich Oils. Eur. J. Med. Res. 2023, 28, 240. [Google Scholar] [CrossRef]
- Dąbrowski, G.; Konopka, I.; Czaplicki, S. Variation in Oil Quality and Content of Low Molecular Lipophilic Compounds in Chia Seed Oils. Int. J. Food Prop. 2018, 21, 2016–2029. [Google Scholar] [CrossRef]
- Gopalam, R.; Manasa, V.; Vaishnav, S.R.; Daga, P.; Tumaney, A.W. Profiling of Lipids, Nutraceuticals, and Bioactive Compounds Extracted from an Oilseed Rich in PUFA. Plant Foods Hum. Nutr. 2022, 77, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-B.; Nam, Y.A.; Kim, H.S.; Hayes, A.W.; Lee, B.-M. α-Linolenic Acid: Nutraceutical, Pharmacological and Toxicological Evaluation. Food Chem. Toxicol. 2014, 70, 163–178. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Sun, B.; Zhu, Y.; Liu, L.; Huang, Y.; Lu, M.; Zhu, X.; Gao, Y. Effect of Maltodextrin on the Oxidative Stability of Ultrasonically Induced Soybean Oil Bodies Microcapsules. Front. Nutr. 2022, 9, 1071462. [Google Scholar] [CrossRef] [PubMed]
- Jumina, J.; Lavendi, W.; Singgih, T.; Triono, S.; Steven Kurniawan, Y.; Koketsu, M. Preparation of Monoacylglycerol Derivatives from Indonesian Edible Oil and Their Antimicrobial Assay against Staphylococcus aureus and Escherichia coli. Sci. Rep. 2019, 9, 10941. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.-H.; Li, X.-D.; Wei, A.-C.; Wang, X.-D.; Wang, D.-Y. Characterization and Oxidative Stability of Cold-Pressed Sesame Oil Microcapsules Prepared by Complex Coacervation. J. Oleo Sci. 2020, 69, 685–692. [Google Scholar] [CrossRef]
- Parsaeian, M.; Shahabi, M.; Hassanpour, H. The Integration of Image Processing and Artificial Neural Network to Estimate Four Fatty Acid Contents of Sesame Oil. LWT 2020, 129, 109476. [Google Scholar] [CrossRef]
- Pérez-Vich, B.; Garcés, R.; Fernández-Martínez, J.M. Epistatic Interaction among Loci Controlling the Palmitic and the Stearic Acid Levels in the Seed Oil of Sunflower. Theor. Appl. Genet. 2000, 100, 105–111. [Google Scholar] [CrossRef]
- Petraru, A.; Ursachi, F.; Amariei, S. Nutritional Characteristics Assessment of Sunflower Seeds, Oil and Cake. Perspective of Using Sunflower Oilcakes as a Functional Ingredient. Plants 2021, 10, 2487. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Xiong, Y.; Li, Z.; Feng, S. The Determination of the Fatty Acid Content of Sea Buckthorn Seed Oil Using near Infrared Spectroscopy and Variable Selection Methods for Multivariate Calibration. Vib. Spectrosc. 2016, 84, 24–29. [Google Scholar] [CrossRef]
- Górnaś, P.; Rudzińska, M. Seeds Recovered from Industry By-Products of Nine Fruit Species with a High Potential Utility as a Source of Unconventional Oil for Biodiesel and Cosmetic and Pharmaceutical Sectors. Ind. Crops Prod. 2016, 83, 329–338. [Google Scholar] [CrossRef]
- Kesen, S.; Amanpour, A.; Selli, S. Comparative Evaluation of the Fatty Acids and Aroma Compounds in Selected Iranian Nut Oils. Eur. J. Lipid Sci. Technol. 2018, 120, 1800152. [Google Scholar] [CrossRef]
- Domingues, P.M.; Santos, L. Essential Oil of Pennyroyal (Mentha pulegium): Composition and Applications as Alternatives to Pesticides—New Tendencies. Ind. Crops Prod. 2019, 139, 111534. [Google Scholar] [CrossRef]
- Sinha, A.K.; Sharma, U.K.; Sharma, N. A Comprehensive Review on Vanilla Flavor: Extraction, Isolation and Quantification of Vanillin and Others Constituents. Int. J. Food Sci. Nutr. 2008, 59, 299–326. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, B.; Zhu, L.; Wang, P.; Xu, F.; Zhang, Y. Octenyl Succinic Acid Starch-Stabilized Vanilla Essential Oil Pickering Emulsion: Preparation, Characterization, Antioxidant Activity, and Storage Stability. Foods 2022, 11, 987. [Google Scholar] [CrossRef]
- Gunduz, G.; Konuskan, D.B. Fatty Acid and Sterol Compositions of Turkish Monovarietal Olive Oils with Regard to Olive Ripening. J. Oleo Sci. 2023, 72, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Al-Bachir, M.; Sahloul, H. Fatty Acid Profile of Olive Oil Extracted from Irradiated and Non-Irradiated Olive Fruits. Int. J. Food Prop. 2017, 20, 2550–2558. [Google Scholar] [CrossRef]
- Devi, A.; Khatkar, B.S. Effects of Fatty Acids Composition and Microstructure Properties of Fats and Oils on Textural Properties of Dough and Cookie Quality. J. Food Sci. Technol. 2018, 55, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Eyres, L.; Eyres, M.F.; Chisholm, A.; Brown, R.C. Coconut Oil Consumption and Cardiovascular Risk Factors in Humans. Nutr. Rev. 2016, 74, 267–280. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, P.; Zhu, X.-M.; Gautam, A.; Shin, J.-A.; Hu, J.-N.; Lee, J.-H.; Akoh, C.C.; Lee, K.-T. Scaled-up Production of Zero-Trans Margarine Fat Using Pine Nut Oil and Palm Stearin. Food Chem. 2010, 119, 1332–1338. [Google Scholar] [CrossRef]
- Matthäus, B.; Li, P.; Ma, F.; Zhou, H.; Jiang, J.; Özcan, M.M. Is the Profile of Fatty Acids, Tocopherols, and Amino Acids Suitable to Differentiate Pinus armandii Suspicious to Be Responsible for the Pine Nut Syndrome from Other Pinus Species? Chem. Biodivers. 2018, 15, e1700323. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.X.; Hanna, M.A. Evaluation of Nebraska Hybrid Hazelnuts: Nut/Kernel Characteristics, Kernel Proximate Composition, and Oil and Protein Properties. Ind. Crops Prod. 2010, 31, 84–91. [Google Scholar] [CrossRef]
- Zhang, B.; Luo, S.; Wu, S.; Li, J.; He, F.; Luo, R.; Wu, Y.; Pan, M.; Pei, X.; Yong, L. Anti-Inflammatory and Anti-Osteoclastogenesis Activities of Different Kinds of Zanthoxylum bungeanum Seed Oil in Vitro. Chem. Biodivers. 2023, 20, e202201157. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.; Ma, Y.; Hu, H.; Wei, A. Transcriptome Analysis and GC-MS Profiling of Key Genes in Fatty Acid Synthesis of Zanthoxylum bungeanum Seeds. Ind. Crops Prod. 2020, 156, 112870. [Google Scholar] [CrossRef]
- Shi, T.; Wu, G.; Jin, Q.; Wang, X. Camellia Oil Authentication: A Comparative Analysis and Recent Analytical Techniques Developed for Its Assessment. A Review. Trends Food Sci. Technol. 2020, 97, 88–99. [Google Scholar] [CrossRef]
- Kurt, O.; Göre, M. Effects Of Sowing Date and Genotype on Oil Content and Main Fatty Acid Composition in Camelina [Camelina sativa L. (Crantz)]. Turk. J. Field Crops 2020, 25, 227–235. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, X.; Zan, M.; Wang, Z.; Dang, L. The Insight into Separation of Oleic, Linoleic, and α-Linolenic Acid in Peony Seed Oil from Eutectic Behaviors, Polymorphic Transition and Solid-Liquid Phase Equilibrium. LWT 2021, 138, 110738. [Google Scholar] [CrossRef]
- Liu, H.; Wang, L.; Yang, T.; Zhang, G.; Huang, J.; Sun, J.; Huo, J. Optimization and Evaluation of Fish Oil Microcapsules. Particuology 2016, 29, 162–168. [Google Scholar] [CrossRef]
- Ozkan, G.; Franco, P.; De Marco, I.; Xiao, J.; Capanoglu, E. A Review of Microencapsulation Methods for Food Antioxidants: Principles, Advantages, Drawbacks and Applications. Food Chem. 2019, 272, 494–506. [Google Scholar] [CrossRef]
- Muhoza, B.; Yuyang, H.; Uriho, A.; Harindintwali, J.D.; Liu, Q.; Li, Y. Spray-and Freeze-Drying of Microcapsules Prepared by Complex Coacervation Method: A Review. Food Hydrocoll. 2023, 140, 108650. [Google Scholar] [CrossRef]
- Yakdhane, A.; Labidi, S.; Chaabane, D.; Tolnay, A.; Nath, A.; Koris, A.; Vatai, G. Microencapsulation of Flaxseed Oil—State of Art. Processes 2021, 9, 295. [Google Scholar] [CrossRef]
- Choi, M.-J.; Hong, G.-P.; Briançon, S.; Fessi, H.; Lee, M.-Y.; Min, S.-G. Effect of a High-Pressure-Induced Freezing Process on the Stability of Freeze-Dried Nanocapsules. Dry. Technol. 2008, 26, 1199–1207. [Google Scholar] [CrossRef]
- Bejrapha, P.; Min, S.-G.; Surassmo, S.; Choi, M.-J. Physicothermal Properties of Freeze-Dried Fish Oil Nanocapsules Frozen under Different Conditions. Dry. Technol. 2010, 28, 481–489. [Google Scholar] [CrossRef]
- Li, Q.; Wang, L.; Zheng, M.; Lu, H.; Liu, Y.; Wang, Y.; Lu, S. Microencapsulation with Different Starch-Based Polymers for Improving Oxidative Stability of Cold-Pressed Hickory (Carya cathayensis Sarg). Oil. Foods 2023, 12, 953. [Google Scholar] [CrossRef]
- Gökkaya Erdem, B.; Kaya, S. Edible Film Fabrication Modified by Freeze Drying from Whey Protein Isolate and Sunflower Oil: Functional Property Evaluation. Food Packag. Shelf Life 2022, 33, 100887. [Google Scholar] [CrossRef]
- Elik, A.; Koçak Yanık, D.; Göğüş, F. A Comparative Study of Encapsulation of Carotenoid Enriched-Flaxseed Oil and Flaxseed Oil by Spray Freeze-Drying and Spray Drying Techniques. LWT 2021, 143, 111153. [Google Scholar] [CrossRef]
- Rodriguez, E.S.; Julio, L.M.; Henning, C.; Diehl, B.W.; Tomás, M.C.; Ixtaina, V.Y. Effect of Natural Antioxidants on the Physicochemical Properties and Stability of Freeze-Dried Microencapsulated Chia Seed Oil: Freeze-Dried Microparticles with Chia Seed Oil and Natural Antioxidants. J. Sci. Food Agric. 2019, 99, 1682–1690. [Google Scholar] [CrossRef] [PubMed]
- Silva, K.A.; Coelho, M.A.Z.; Calado, V.M.A.; Rocha-Leão, M.H.M. Olive Oil and Lemon Salad Dressing Microencapsulated by Freeze-Drying. LWT-Food Sci. Technol. 2013, 50, 569–574. [Google Scholar] [CrossRef]
- Díaz-Maroto, M.; Pérez-Coello, M.; Cabezudo, M. Effect of Different Drying Methods on the Volatile Components of Parsley (Petroselinum crispum L.). Eur. Food Res. Technol. 2002, 215, 227–230. [Google Scholar] [CrossRef]
- Maroof, K.; Lee, R.F.S.; Siow, L.F.; Gan, S.H. Microencapsulation of Propolis by Spray Drying: A Review. Dry. Technol. 2022, 40, 1083–1102. [Google Scholar] [CrossRef]
- Kaushik, P.; Dowling, K.; McKnight, S.; Barrow, C.J.; Adhikari, B. Microencapsulation of Flaxseed Oil in Flaxseed Protein and Flaxseed Gum Complex Coacervates. Food Res. Int. 2016, 86, 1–8. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, J.; Yin, X.; Wang, X.; Qiu, B.; Zhu, L.; Lin, Q. Microencapsulation of Tea Tree Oil by Spray-Drying with Methyl Cellulose as the Emulsifier and Wall Material Together with Chitosan/Alginate: ARTICLE. J. Appl. Polym. Sci. 2017, 134, 44662. [Google Scholar] [CrossRef]
- Bartella, L.; Di Donna, L.; Napoli, A.; Sindona, G.; Mazzotti, F. High-Throughput Determination of Vitamin E in Extra Virgin Olive Oil by Paper Spray Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2019, 411, 2885–2890. [Google Scholar] [CrossRef] [PubMed]
- Yashin, V.V.; Balazs, A.C. Theoretical Model of Interfacial Polymerization. J. Chem. Phys. 2004, 121, 11440. [Google Scholar] [CrossRef]
- Xiao, Y.; Wu, B.; Fu, X.; Wang, R.; Lei, J. Preparation of Biodegradable Microcapsules through an Organic Solvent-Free Interfacial Polymerization Method. Polym. Adv. Technol. 2019, 30, 483–488. [Google Scholar] [CrossRef]
- Wei, Z.; Ma, X.; Wang, P.; Pan, J. Interfacial Imide Polymerization of Functionalized Filled Microcapsule Templates by the Pickering Emulsion Method for the Rapid Removal of 3,4,5-Trichlorophenol from Wastewater. Nanomaterials 2022, 12, 3439. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Xue, D.; Li, H.; Shi, L. Fragrance-Containing Microcapsules Based on Interfacial Thiol-Ene Polymerization. J. Appl. Polym. Sci. 2016, 133, 36. [Google Scholar] [CrossRef]
- Podshivalov, A.V.; Bronnikov, S.; Zuev, V.V.; Jiamrungraksa, T.; Charuchinda, S. Synthesis and Characterization of Polyurethane–Urea Microcapsules Containing Galangal Essential Oil: Statistical Analysis of Encapsulation. J. Microencapsul. 2013, 30, 198–203. [Google Scholar] [CrossRef]
- Glomm, W.R.; Molesworth, P.P.; Yesiltas, B.; Jacobsen, C.; Johnsen, H. Encapsulation of Salmon Oil Using Complex Coacervation: Probing the Effect of Gum Acacia on Interfacial Tension, Coacervation and Oxidative Stability. Food Hydrocoll. 2023, 140, 108598. [Google Scholar] [CrossRef]
- Chen, M.; Hu, Y.; Zhou, J.; Xie, Y.; Wu, H.; Yuan, T.; Yang, Z. Facile Fabrication of Tea Tree Oil-Loaded Antibacterial Microcapsules by Complex Coacervation of Sodium Alginate/Quaternary Ammonium Salt of Chitosan. RSC Adv. 2016, 6, 13032–13039. [Google Scholar] [CrossRef]
- Mei, L.; Ji, Q.; Jin, Z.; Guo, T.; Yu, K.; Ding, W.; Liu, C.; Wu, Y.; Zhang, N. Nano-Microencapsulation of Tea Seed Oil via Modified Complex Coacervation with Propolis and Phosphatidylcholine for Improving Antioxidant Activity. LWT 2022, 163, 113550. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Chen, M.; Chen, Z.; Wu, H.; Zhang, P.; Yuan, T.; Yang, Z.; Hu, Y. Fabrication of Sustained-Release and Antibacterial Citronella Oil-Loaded Composite Microcapsules Based on Pickering Emulsion Templates. J. Appl. Polym. Sci. 2018, 135, 46386. [Google Scholar] [CrossRef]
- Akbari, N.; Assadpour, E.; Kharazmi, M.S.; Jafari, S.M. Encapsulation of Vitamin B12 by Complex Coacervation of Whey Protein Concentrate–Pectin; Optimization and Characterization. Molecules 2022, 27, 6130. [Google Scholar] [CrossRef] [PubMed]
- Baiocco, D.; Preece, J.A.; Zhang, Z. Microcapsules with a Fungal Chitosan-Gum Arabic-Maltodextrin Shell to Encapsulate Health-Beneficial Peppermint Oil. Food Hydrocoll. Health 2021, 1, 100016. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, M.; Mujumdar, A.S.; Wang, M. Quinoa Protein Isolate-Gum Arabic Coacervates Cross-Linked with Sodium Tripolyphosphate: Characterization, Environmental Stability, and Sichuan Pepper Essential Oil Microencapsulation. Food Chem. 2023, 404, 134536. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, L.; Zeng, X. Research Progress on the Utilisation of Embedding Technology and Suitable Delivery Systems for Improving the Bioavailability of Nattokinase: A Review. Food Struct. 2021, 30, 100219. [Google Scholar] [CrossRef]
- Martínez-Ramos, T.; Benedito-Fort, J.; Watson, N.J.; Ruiz-López, I.I.; Che-Galicia, G.; Corona-Jiménez, E. Effect of Solvent Composition and Its Interaction with Ultrasonic Energy on the Ultrasound-Assisted Extraction of Phenolic Compounds from Mango Peels (Mangifera indica L.). Food Bioprod. Process. 2020, 122, 41–54. [Google Scholar] [CrossRef]
- Ouyang, X.; Zhou, L.; Xu, X.; Yang, Z.; Wang, L.; Lu, L.; Liu, G.; Zhang, G. Preparation and Properties of Poly(MMA-Co-TMPTA)/Fragrance Microcapsules. Colloids Surf. A Physicochem. Eng. Asp. 2021, 614, 126103. [Google Scholar] [CrossRef]
- Jeoh, T.; Wong, D.E.; Strobel, S.A.; Hudnall, K.; Pereira, N.R.; Williams, K.A.; Arbaugh, B.M.; Cunniffe, J.C.; Scher, H.B. How Alginate Properties Influence in Situ Internal Gelation in Crosslinked Alginate Microcapsules (CLAMs) Formed by Spray Drying. PLoS ONE 2021, 16, e0247171. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Liu, S.; Li, X.; Yuan, T.; Zou, X.; He, Y.; Dong, X.; Zhou, W.; Yang, Z. Facile Preparation of Biocompatible Poly(l-Lactic Acid)-Modified Halloysite Nanotubes/Poly(ε-Caprolactone) Porous Scaffolds by Solvent Evaporation of Pickering Emulsion Templates. J. Mater. Sci. 2018, 53, 14774–14788. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Y.; Bai, R.; Ma, H.; Wang, W.; Sun, H.; Dong, Y.; Qu, F.; Tang, Q.; Guo, T.; et al. Pickering Emulsion-Enhanced Interfacial Biocatalysis: Tailored Alginate Microparticles Act as Particulate Emulsifier and Enzyme Carrier. Green Chem. 2019, 21, 2229–2233. [Google Scholar] [CrossRef]
- Yu, L.; Yang, J.F.; Guan, B.Y.; Lu, Y.; Lou, X.W.D. Cover Picture: Hierarchical Hollow Nanoprisms Based on Ultrathin Ni-Fe Layered Double Hydroxide Nanosheets with Enhanced Electrocatalytic Activity towards Oxygen Evolution (Angew. Chem. Int. Ed. 1/2018). Angew. Chem. Int. Ed. 2018, 57, 1. [Google Scholar] [CrossRef]
- Huang, X.-N.; Zhu, J.-J.; Xi, Y.-K.; Yin, S.-W.; Ngai, T.; Yang, X.-Q. Protein-Based Pickering High Internal Phase Emulsions as Nutraceutical Vehicles of and the Template for Advanced Materials: A Perspective Paper. J. Agric. Food Chem. 2019, 67, 9719–9726. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, J.; He, X.; Kong, D.; Zhou, C.; Wu, H.; Yang, Z.; Yang, Z.; Hu, Y. Preparation of Cinnamon Oil-Loaded Antibacterial Composite Microcapsules by In Situ Polymerization of Pickering Emulsion Templates. Macromol. Mater. Eng. 2020, 305, 1900851. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Y.; Cui, Y.; Zhang, T.; Zhang, D.; Ma, C.; Chen, S.; Li, H. Microencapsulation of Camellia Oil to Maintain Thermal and Oxidative Stability with Focus on Protective Mechanism. Int. J. Food Sci. Technol. 2021, 56, 4780–4788. [Google Scholar] [CrossRef]
- Castejón, N.; Luna, P.; Señoráns, F.J. Microencapsulation by Spray Drying of Omega-3 Lipids Extracted from Oilseeds and Microalgae: Effect on Polyunsaturated Fatty Acid Composition. LWT 2021, 148, 111789. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, W.; Wang, J.; Zhang, L.; Yang, Y.; Liu, M.; Wang, H.; Wang, S. Preparation and Characterization of Perilla Essential Oil Composite Microcapsule Based on the Complex Coacervation and Interface Polymerization. J. Food Sci. 2022, 87, 5017–5028. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, R.; Qi, C.; Li, W.; Rifky, M.; Zhang, M.; Xiao, P.; Wu, T.; Sui, W. Mixing Oil-Based Microencapsulation of Garlic Essential Oil: Impact of Incorporating Three Commercial Vegetable Oils on the Stability of Emulsions. Foods 2021, 10, 1637. [Google Scholar] [CrossRef] [PubMed]
- Kouamé, K.J.E.-P.; Bora, A.F.M.; Liu, Y.; Yu, X.; Sun, Y.; Hussain, M.; Md, M.; Coulibaly, I.; Li, X.; Liu, L. Development and Characterization of Omega-3-Rich Flaxseed Oil Microcapsules and Evaluation of Its Stability and Release Behavior in Probiotic Millet Yogurt. Powder Technol. 2023, 427, 118739. [Google Scholar] [CrossRef]
- González, A.; Bordón, M.G.; Bustos, M.C.; Córdova Salazar, K.L.; Ribotta, P.D.; Martínez, M.L. Study of the Incorporation of Native and Microencapsulated Chia Seed Oil on Pasta Properties. Int. J. Food Sci. Technol. 2021, 56, 233–241. [Google Scholar] [CrossRef]
- Hakanen, S.A.; Damerau, A.; Ogrodowska, D.; Seubert, A.; Brandt, W.; Laaksonen, O.; Tańska, M.; Linderborg, K.M. Sensory Profiles and Oxidative Stability of Linseed Oil Microencapsulated with Pea, Soy, and Whey Proteins in High-Fat Food Models. LWT 2025, 216, 117305. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, Z.; Yang, R.; Hua, X.; Zhao, W.; Guan, S. Application of Caseinate Modified with Maillard Reaction for Improving Physicochemical Properties of High Load Flaxseed Oil Microcapsules. Eur. J. Lipid Sci. Technol. 2021, 123, 2000172. [Google Scholar] [CrossRef]
- Siddiquy, M.; Al-Maqtari, Q.A.; Ghamry, M.; Othman, N.; Li, J.; Hlaing, K.S.S.; Zhang, L. Microencapsulation Using a Novel Wall Material Prepared via Maillard Reaction-Derived Mung Bean Protein-Peach Gum Conjugates to Enhance Stability and Functionality of Chia Seed Oil. Int. J. Biol. Macromol. 2025, 298, 139959. [Google Scholar] [CrossRef] [PubMed]
- Copado, C.N.; Julio, L.M.; Diehl, B.W.K.; Ixtaina, V.Y.; Tomás, M.C. Multilayer Microencapsulation of Chia Seed Oil by Spray-Drying Using Electrostatic Deposition Technology. LWT 2021, 152, 112206. [Google Scholar] [CrossRef]
- Razavizadeh, B.M.; Shahidi Noghabi, M.; Molaveisi, M. A Ternary Blending of Soy Protein Isolate/Maltodexterin/Inulin for Encapsulation Bioactive Oils: Optimization of Wall Material and Release Studies. Food Process. Preserv. 2022, 46, e16734. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Adhikari, R.; Barrow, C.J.; Adhikari, B. Microencapsulation of Chia Seed Oil Using Chia Seed Protein Isolate chia Seed Gum Complex Coacervates. Int. J. Biol. Macromol. 2016, 91, 347–357. [Google Scholar] [CrossRef]
- Zhu, J.; Li, X.; Liu, L.; Li, Y.; Qi, B.; Jiang, L. Preparation of Spray-Dried Soybean Oil Body Microcapsules Using Maltodextrin: Effects of Dextrose Equivalence. LWT 2022, 154, 112874. [Google Scholar] [CrossRef]
- Shisode, P.S.; Patil, C.B.; Mahulikar, P.P. Preparation and Characterization of Microcapsules Containing Soybean Oil and Their Application in Self-Healing Anticorrosive Coatings. Polym.-Plast. Technol. Eng. 2018, 57, 1334–1343. [Google Scholar] [CrossRef]
- Castel, V.; Rubiolo, A.C.; Carrara, C.R. Brea Gum as Wall Material in the Microencapsulation of Corn Oil by Spray Drying: Effect of Inulin Addition. Food Res. Int. 2018, 103, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Le Priol, L.; Dagmey, A.; Morandat, S.; Saleh, K.; El Kirat, K.; Nesterenko, A. Comparative Study of Plant Protein Extracts as Wall Materials for the Improvement of the Oxidative Stability of Sunflower Oil by Microencapsulation. Food Hydrocoll. 2019, 95, 105–115. [Google Scholar] [CrossRef]
- Zhang, H.; Song, G.; Ma, W.; Guo, M.; Ling, X.; Yu, D.; Zhou, W.; Li, L. Microencapsulation Protects the Biological Activity of Sea Buckthorn Seed Oil. Front. Nutr. 2023, 9, 1043879. [Google Scholar] [CrossRef] [PubMed]
- Hoyos-Leyva, J.D.; Bello-Perez, L.A.; Agama-Acevedo, J.E.; Alvarez-Ramirez, J.; Jaramillo-Echeverry, L.M. Characterization of Spray Drying Microencapsulation of Almond Oil into Taro Starch Spherical Aggregates. LWT 2019, 101, 526–533. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, W.; Xiang, J.; Chen, H.; Quek, S.Y. Fabrication, Characterization, and Oxidative Stability of Perilla Seed Oil Emulsions and Microcapsules Stabilized by Protein and Polysaccharides. Food Process. Preserv. 2022, 46, e16950. [Google Scholar] [CrossRef]
- Glomm, W.R.; Molesworth, P.P.; Sandru, E.M.; Truong, L.T.; Brunsvik, A.; Johnsen, H. Microencapsulation of Peppermint Oil by Complex Coacervation and Subsequent Spray Drying Using Bovine Serum Albumin/Gum Acacia and an Oxidized Starch Crosslinker. Appl. Sci. 2021, 11, 3956. [Google Scholar] [CrossRef]
- Javaid, A.; Imran, A.; Arshad, M.U.; Afzaal, M.; Asif Shah, M. Formulation and Characterization of Micro-Emulsions of Peppermint and Coriander Oils Extracted by Using a Supercritical Fluid System. Int. J. Food Prop. 2023, 26, 2379–2387. [Google Scholar] [CrossRef]
- Hernández-Fernández, M.Á.; García-Pinilla, S.; Ocampo-Salinas, O.I.; Gutiérrez-López, G.F.; Hernández-Sánchez, H.; Cornejo-Mazón, M.; Perea-Flores, M.D.J.; Dávila-Ortiz, G. Microencapsulation of Vanilla Oleoresin (V. planifolia Andrews) by Complex. Coacervation and Spray. Drying: Physicochemical and Microstructural Characterization. Foods 2020, 9, 1375. [Google Scholar] [CrossRef]
- Espinosa-Solís, V.; García-Tejeda, Y.V.; Portilla-Rivera, O.M.; Barrera-Figueroa, V. Tailoring Olive Oil Microcapsules via Microfluidization of Pickering o/w Emulsions. Food Bioprocess. Technol. 2021, 14, 1835–1843. [Google Scholar] [CrossRef]
- Başyiğit, B.; Yücetepe, M.; Karaaslan, A.; Karaaslan, M. High Efficiency Microencapsulation of Extra Virgin Olive Oil (EVOO) with Novel Carrier Agents: Fruit Proteins. Mater. Today Commun. 2021, 28, 102618. [Google Scholar] [CrossRef]
- Devi, N.; Hazarika, D.; Deka, C.; Kakati, D.K. Study of Complex Coacervation of Gelatin A and Sodium Alginate for Microencapsulation of Olive Oil. J. Macromol. Sci. Part A 2012, 49, 936–945. [Google Scholar] [CrossRef]
- Németh, B.; Németh, Á.S.; Ujhidy, A.; Tóth, J.; Trif, L.; Gyenis, J.; Feczkó, T. Fully Bio-Originated Latent Heat Storing Calcium Alginate Microcapsules with High Coconut Oil Loading. Sol. Energy 2018, 170, 314–322. [Google Scholar] [CrossRef]
- Sapei, L.; Mustika, P.C.B.W.; Sutrisna, P.D.; Agustriyanto, R.; Setyopratomo, P.; Santoso, G.V.; Utama, J.P.; Indrawanto, R. Inulin-Coated Virgin Coconut Oil (VCO) Powder Produced by Spray Drying. Appl. Food Res. 2025, 5, 100721. [Google Scholar] [CrossRef]
- Zhou, D.; Pan, Y.; Ye, J.; Jia, J.; Ma, J.; Ge, F. Preparation of Walnut Oil Microcapsules Employing Soybean Protein Isolate and Maltodextrin with Enhanced Oxidation Stability of Walnut Oil. LWT-Food Sci. Technol. 2017, 83, 292–297. [Google Scholar] [CrossRef]
- Lin, D.; Xiao, L.; Li, S.; Qin, W.; Loy, D.A.; Chen, H.; Zhang, Q. Effects of Fructooligosaccharide and Soybean Protein Isolate in the Microencapsulation of Walnut Oil. Ind. Crops Prod. 2022, 177, 114431. [Google Scholar] [CrossRef]
- Kalkan, F.; Vanga, S.K.; Murugesan, R.; Orsat, V.; Raghavan, V. Microencapsulation of Hazelnut Oil through Spray Drying. Dry. Technol. 2017, 35, 527–533. [Google Scholar] [CrossRef]
- Guo, Y.; Bao, Y.; Chai, Y. Preparation of Microcapsule Antioxidative Wall Materials of Pine Nut Oil by the Maillard Reaction. J. Sci. Food Agric. 2019, 99, 2793–2801. [Google Scholar] [CrossRef] [PubMed]
- Bajac, J.; Nikolovski, B.; Lončarević, I.; Petrović, J.; Bajac, B.; Đurović, S.; Petrović, L. Microencapsulation of Juniper Berry Essential Oil (Juniperus communis L.) by Spray Drying: Microcapsule Characterization and Release Kinetics of the Oil. Food Hydrocoll. 2022, 125, 107430. [Google Scholar] [CrossRef]
- Maji, T.K.; Hussain, M.R. Microencapsulation of Zanthoxylum limonella Oil (ZLO) in Genipin Crosslinked Chitosan-Gelatin Complex for Mosquito Repellent Application. J. Appl. Polym. Sci. 2009, 111, 779–785. [Google Scholar] [CrossRef]
- Gulzar, S.; Nilsuwan, K.; Raju, N.; Benjakul, S. Whole Wheat Crackers Fortified with Mixed Shrimp Oil and Tea Seed Oil Microcapsules Prepared from Mung Bean Protein Isolate and Sodium Alginate. Foods 2022, 11, 202. [Google Scholar] [CrossRef] [PubMed]
- Yeh, K.-W.; Chang, C.P.; Yamamoto, T.; Dobashi, T. Release Model of Alginate Microcapsules Containing Volatile Tea-Tree Oil. Colloids Surf. A Physicochem. Eng. Asp. 2011, 380, 152–155. [Google Scholar] [CrossRef]
- Huang, Q.; Gong, S.; Han, W.; Chen, Y.; Shu, X. Preparation of TTO/UF Resin Microcapsule via in Situ Polymerisation and Modelling of Its Slow Release. J. Microencapsul. 2020, 37, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Li, Y.; Wang, B.; Shen, X.; Wang, H.; Li, R.; Xia, Q. Effect of Drying Method and Wall Material Composition on the Characteristics of Camellia Seed Oil Microcapsule Powder. J. Am. Oil Chem. Soc. 2022, 99, 353–364. [Google Scholar] [CrossRef]
- Xu, W.; Sun, H.; Li, H.; Li, Z.; Zheng, S.; Luo, D.; Ning, Y.; Wang, Y.; Shah, B.R. Preparation and Characterization of Tea Oil Powder with High Water Solubility Using Pickering Emulsion Template and Vacuum Freeze-Drying. LWT 2022, 160, 113330. [Google Scholar] [CrossRef]
- Yang, P.; Du, M.; Cao, L.; Yu, Z.; Jiang, S. Preparation and Characterization of Emulsion-Based Peony Seed Oil Microcapsule. J. Oleo Sci. 2020, 69, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Shi, Y.; Han, L. Development and Evaluation of Microencapsulated Peony Seed Oil Prepared by Spray Drying: Oxidative Stability and Its Release Behavior during in-Vitro Digestion. J. Food Eng. 2018, 231, 1–9. [Google Scholar] [CrossRef]
- Charve, J.; Reineccius, G.A. Encapsulation Performance of Proteins and Traditional Materials for Spray Dried Flavors. J. Agric. Food Chem. 2009, 57, 2486–2492. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, S.; Tu, Z.; Wang, H.; Li, R.; Zhang, L.; Huang, T.; Su, T.; Li, C. Quality Evaluation of Peony Seed Oil Spray-Dried in Different Combinations of Wall Materials during Encapsulation and Storage. J. Food Sci. Technol. 2016, 53, 2597–2605. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-R.; Kim, E.-H.; Kim, K.-H.; Park, J.-S.; Kim, H.U. Vegetable Oil Production in Vegetative Plant Tissues. Plant Biotechnol. Rep. 2017, 11, 385–395. [Google Scholar] [CrossRef]
- Razavizadeh, B.M.; Tabrizi, P. Characterization of Fortified Compound Milk Chocolate with Microcapsulated Chia Seed Oil. LWT 2021, 150, 111993. [Google Scholar] [CrossRef]
- Yu, F.; Li, Z.; Zhang, T.; Wei, Y.; Xue, Y.; Xue, C. Influence of Encapsulation Techniques on the Structure, Physical Properties, and Thermal Stability of Fish Oil Microcapsules by Spray Drying. J. Food Process Eng. 2017, 40, e12576. [Google Scholar] [CrossRef]
- Kairam, N.; Kandi, S.; Sharma, M. Effects on Bread and Oil Quality after Functionalization with Microencapsulated Chia Oil: Effects on Bread and Oil Quality after Functionalization with Microencapsulated Chia Oil. LWT 2021, 136, 110300. [Google Scholar] [CrossRef]
- Wang, Z.; He, Z.; Zhang, D.; Chen, X.; Li, H. Effect of Pepper (Zanthoxylum bungeanum Maxim.) Essential Oil on Quality Changes in Rabbit Meat Patty during Chilled Storage. J. Food Sci. Technol. 2022, 59, 179–191. [Google Scholar] [CrossRef]
- Linke, A.; Hinrichs, J.; Kohlus, R. Impact of the Powder Particle Size on the Oxidative Stability of Microencapsulated Oil. Powder Technol. 2020, 364, 115–122. [Google Scholar] [CrossRef]
- Verkempinck, S.H.E.; Salvia-Trujillo, L.; Moens, L.G.; Charleer, L.; Van Loey, A.M.; Hendrickx, M.E.; Grauwet, T. Emulsion Stability during Gastrointestinal Conditions Effects Lipid Digestion Kinetics. Food Chem. 2018, 246, 179–191. [Google Scholar] [CrossRef]
- Hernández-Hernández, E.; Lira-Moreno, C.Y.; Guerrero-Legarreta, I.; Wild-Padua, G.; Di Pierro, P.; García-Almendárez, B.E.; Regalado-González, C. Effect of Nanoemulsified and Microencapsulated Mexican Oregano (Lippia graveolens Kunth) Essential Oil Coatings on Quality of Fresh Pork Meat: Mexican Oregano Essential Oil Coatings on Quality of Fresh Pork Meat. J. Food Sci. 2017, 82, 1423–1432. [Google Scholar] [CrossRef] [PubMed]
- Bolger, Z.; Brunton, N.P.; Monahan, F.J. Impact of Inclusion of Flaxseed Oil (Pre-Emulsified or Encapsulated) on the Physical Characteristics of Chicken Sausages. J. Food Eng. 2018, 230, 39–48. [Google Scholar] [CrossRef]
- de Conto, L.C.; Porto Oliveira, R.S.; Pereira Martin, L.G.; Chang, Y.K.; Steel, C.J. Effects of the Addition of Microencapsulated Omega-3 and Rosemary Extract on the Technological and Sensory Quality of White Pan Bread. LWT-Food Sci. Technol. 2012, 45, 103–109. [Google Scholar] [CrossRef]
- Cittadini, A.; Munekata, P.E.S.; Pateiro, M.; Sarriés, M.V.; Domínguez, R.; Lorenzo, J.M. Microencapsulated Healthy Oil Mixtures to Enhance the Quality of Foal Pâtés. Foods 2022, 11, 3342. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Yu, R.; Li, J.; Wang, N.; Wang, Y.; Niu, L.; Zhang, Y. Application of Several Novel Natural Antioxidants to Inhibit Oxidation of Tree Peony Seed Oil. CyTA-J. Food 2018, 16, 1071–1078. [Google Scholar] [CrossRef]
- Locali-Pereira, A.R.; Lopes, N.A.; Menis-Henrique, M.E.C.; Janzantti, N.S.; Nicoletti, V.R. Modulation of Volatile Release and Antimicrobial Properties of Pink Pepper Essential Oil by Microencapsulation in Single- and Double-Layer Structured Matrices. Int. J. Food Microbiol. 2020, 335, 108890. [Google Scholar] [CrossRef] [PubMed]
- Luna-Guevara, J.J.; Ochoa-Velasco, C.E.; Hernández-Carranza, P.; Guerrero-Beltrán, J.A. Microencapsulation of Walnut, Peanut and Pecan Oils by Spray Drying. Food Struct. 2017, 12, 26–32. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Li, F.; Zhang, Z.; Muhmood, A.; Li, S.; Liu, M.; Zhou, S.; Du, Z.; Ruan, C.; Sun, J. Microcapsule Techniques to Emphasize Functional Plant Oil Quality and Their Applications in the Food Industry: A Review. Foods 2025, 14, 677. https://doi.org/10.3390/foods14040677
Zhang Z, Li F, Zhang Z, Muhmood A, Li S, Liu M, Zhou S, Du Z, Ruan C, Sun J. Microcapsule Techniques to Emphasize Functional Plant Oil Quality and Their Applications in the Food Industry: A Review. Foods. 2025; 14(4):677. https://doi.org/10.3390/foods14040677
Chicago/Turabian StyleZhang, Zhiran, Fei Li, Ziyan Zhang, Atif Muhmood, Shengxin Li, Mengkai Liu, Sen Zhou, Zubo Du, Chongchong Ruan, and Jie Sun. 2025. "Microcapsule Techniques to Emphasize Functional Plant Oil Quality and Their Applications in the Food Industry: A Review" Foods 14, no. 4: 677. https://doi.org/10.3390/foods14040677
APA StyleZhang, Z., Li, F., Zhang, Z., Muhmood, A., Li, S., Liu, M., Zhou, S., Du, Z., Ruan, C., & Sun, J. (2025). Microcapsule Techniques to Emphasize Functional Plant Oil Quality and Their Applications in the Food Industry: A Review. Foods, 14(4), 677. https://doi.org/10.3390/foods14040677