Flavonoid-Rich Extracts from Lemon and Orange By-Products: Microencapsulation and Application in Functional Cookies
Abstract
1. Introduction
2. Methodology
2.1. Plant Materials (Lemon and Orange By-Products)
2.2. Lemon and Orange Flavonoids-Rich Extracts Development
2.3. Characterization of Flavonoids-Rich Extracts by HPLC-DAD
2.4. Total Flavonoids Quantification (Spectrophotometric Method)
2.5. Microbeads: Development and Characterization
Production Cost Estimation
2.6. Development of Functional Cookies with Flavonoids-Rich Extracts
2.7. Sensory Analysis—Triangular Test
2.8. Statistical Analysis
3. Results and Discussion
3.1. Flavonoids-Rich Extraction
3.2. Micro-Encapsulation Tests
- Beads of Na-alginate: Sodium alginate at 1% resulted in the most efficient formulation. Concentrations of 0.5–0.8% produced beads that were too soft and showed lower compound retention, while concentrations higher than 1% did not flow well through the nozzles and formed beads that were too hard. Confirming these observations, data from the literature [47] state that for a low alginate concentration (<1.0%), the viscous and surface tension forces are lower than the minimum ones required to counteract the effect of impact and drag, and almost no spherical particles are formed, probably due to the lack of enough carboxyl groups for gelation. This probably leads to higher diffusion rates from the beads to the external media.
- Beads of Na-alginate with starch: The beads produced with 1.36% corn starch had the desired spherical shape and retained the compounds more effectively.
- Beads with PVA (0.5, 0.8, and 1%): These beads collapsed to varying degrees, especially upon dehydration.
- Beads of alginate with chitosan: In this case, chitosan was added to the gelling bath (CaCl2 0.2 M + 0.5% chitosan). These beads exhibited the highest retention of active substances during gelation; however, upon recovery from the gelling solution, they lost their spherical shape and tended to stick together.
Production Cost Estimation
3.3. Flavonoids-Enriched Cookies Production and Evaluation
3.4. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vilas-boas, A.A.; Magalhães, D.; Campos, D.A.; Porretta, S.; Dellapina, G.; Poli, G.; Istanbullu, Y.; Demir, S.; Mart, Á.; Mart, S.; et al. Innovative Processing Technologies to Develop a New Segment of Functional Citrus-Based Beverages: Current and Future Trends. Foods 2022, 11, 3859. [Google Scholar] [CrossRef]
- Magalhães, D.; Vilas-Boas, A.A.; Teixeira, P.; Pintado, M. Functional Ingredients and Additives from Lemon By-Products and Their Applications in Food Preservation: A Review. Foods 2023, 12, 1095. [Google Scholar] [CrossRef]
- Visvanathan, R.; Williamson, G. Review of Factors Affecting Citrus Polyphenol Bioavailability and Their Importance in Designing in Vitro, Animal, and Intervention Studies. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4509–4545. [Google Scholar] [CrossRef] [PubMed]
- Pieracci, Y.; Pistelli, L.; Cecchi, M.; Pistelli, L.; De Leo, M. Phytochemical Characterization of Citrus-Based Products Supporting Their Antioxidant Effect and Sensory Quality. Foods 2022, 11, 1550. [Google Scholar] [CrossRef] [PubMed]
- Anticona, M.; Blesa, J.; Frigola, A.; Esteve, M.J. High Biological Value Compounds Extraction from Citruswaste with Non-Conventional Methods. Foods 2020, 9, 811. [Google Scholar] [CrossRef]
- Putnik, P.; Bursać Kovačević, D.; Režek Jambrak, A.; Barba, F.J.; Cravotto, G.; Binello, A.; Lorenzo, J.M.; Shpigelman, A. Innovative “Green” and Novel Strategies for the Extraction of Bioactive Added Value Compounds from Citruswastes—A Review. Molecules 2017, 22, 680. [Google Scholar] [CrossRef]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [PubMed]
- Williamson, G.; Holst, B. Dietary Reference Intake (DRI) Value for Dietary Polyphenols: Are We Heading in the Right Direction? Br. J. Nutr. 2008, 99, S55–S58. [Google Scholar] [CrossRef]
- Bjelakovic, G.; Nikolova, D.; Simonetti, R.G.; Gluud, C. Antioxidant Supplements for Prevention of Gastrointestinal Cancers: A Systematic Review and Meta-Analysis. Lancet 2004, 364, 1219–1228. [Google Scholar] [CrossRef]
- Osakabe, N.; Shimizu, T.; Fujii, Y.; Fushimi, T.; Calabrese, V. Sensory Nutrition and Bitterness and Astringency of Polyphenols. Biomolecules 2024, 14, 234. [Google Scholar] [CrossRef]
- Dabas, D. Polyphenols as Colorants. Adv. Food Technol. Nutr. Sci. Open J. 2018, S1–S6. [Google Scholar] [CrossRef]
- De Rossi, L.; Rocchetti, G.; Lucini, L.; Rebecchi, A. Antimicrobial Potential of Polyphenols: Mechanisms of Action and Microbial Responses—A Narrative Review. Antioxidants 2025, 14, 200. [Google Scholar] [CrossRef] [PubMed]
- Speisky, H.; Shahidi, F.; Costa de Camargo, A.; Fuentes, J. Revisiting the Oxidation of Flavonoids: Loss, Conservation or Enhancement of Their Antioxidant Properties. Antioxidants 2022, 11, 133. [Google Scholar] [CrossRef]
- Szente, L.; Sohajda, T.; Fenyvesi, É. Encapsulation for Masking Off-Flavor and Off-Tasting in Food Production. In Functionality of Cyclodextrins in Encapsulation for Food Applications; Springer International Publishing: Cham, Switzerland, 2021; pp. 223–253. [Google Scholar]
- Behrens, M. The Growing Complexity of Human Bitter Taste Perception. J. Agric. Food Chem. 2024, 72, 14530–14534. [Google Scholar] [CrossRef] [PubMed]
- Lesschaeve, I.; Noble, A.C. Polyphenols: Factors Influencing Their Sensory Properties and Their Effects on Food and Beverage Preferences. Am. J. Clin. Nutr. 2005, 81, 330S–335S. [Google Scholar] [CrossRef]
- Ramos-Hernández, J.A.; Cruz-Salas, C.N.; González-Gutiérrez, K.N.; González-Cruz, E.M.; Prieto López, C. Encapsulation of Plant Secondary Metabolites of Industrial Interest. In Advances in Plant Biotechnology; CRC Press: Boca Raton, FL, USA, 2023; ISBN 9781003166535. [Google Scholar]
- Tekin, İ.; Özcan, K.; Ersus, S. Optimization of Ionic Gelling Encapsulation of Red Beet (Beta Vulgaris L.) Juice Concentrate and Stability of Betalains. Biocatal. Agric. Biotechnol. 2023, 51, 102774. [Google Scholar] [CrossRef]
- Flamminii, F.; Paciulli, M.; Di Michele, A.; Littardi, P.; Carini, E.; Chiavaro, E.; Pittia, P.; Di Mattia, C.D. Alginate-Based Microparticles Structured with Different Biopolymers and Enriched with a Phenolic-Rich Olive Leaves Extract: A Physico-Chemical Characterization. Curr. Res. Food Sci. 2021, 4, 698–706. [Google Scholar] [CrossRef]
- Kurozawa, L.E.; Hubinger, M.D. Hydrophilic Food Compounds Encapsulation by Ionic Gelation. Curr. Opin. Food Sci. 2017, 15, 50–55. [Google Scholar] [CrossRef]
- Castro, N.; Durrieu, V.; Raynaud, C.; Rouilly, A.; Rigal, L.; Quellet, C. Melt Extrusion Encapsulation of Flavors: A Review. Polym. Rev. 2016, 56, 137–186. [Google Scholar] [CrossRef]
- Román, S.; Sánchez-Siles, L.M.; Siegrist, M. The Importance of Food Naturalness for Consumers: Results of a Systematic Review. Trends Food Sci. Technol. 2017, 67, 44–57. [Google Scholar] [CrossRef]
- Dias, R.; Oliveira, H.; Fernandes, I.; Simal-Gandara, J.; Perez-Gregorio, R. Recent Advances in Extracting Phenolic Compounds from Food and Their Use in Disease Prevention and as Cosmetics. Crit. Rev. Food Sci. Nutr. 2021, 61, 1130–1151. [Google Scholar] [CrossRef]
- European Parliament Council of the European Union. Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on Food Additives; European Parliament Council of the European Union: Brussels, Belgium, 2008.
- Vilas-boas, A.A.; Campos, D.A.; Nunes, C.; Ribeiro, S. Polyphenol Extraction by Different Techniques for Valorisation of Non-Compliant Portuguese Sweet Cherries towards a Novel Antioxidant Extract. Sustainability 2020, 12, 5556. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Iswandana, R.; Amangkoe, E.; Isnaini, R. Tetrandrine Beads Using Alginate/Polyvinyl Alcohol and Alginate-Carboxymethyl Cellulose: Not Ideal as Colon-Targeted Dosage Form. J. Pharm. Negat. Results 2018, 9, 14. [Google Scholar] [CrossRef]
- López-Córdoba, A.; Deladino, L.; Martino, M. Corn Starch-Calcium Alginate Matrices for the Simultaneous Carrying of Zinc and Yerba Mate Antioxidants. LWT—Food Sci. Technol. 2014, 59, 641–648. [Google Scholar] [CrossRef]
- Kanokpanont, S.; Yamdech, R.; Aramwit, P. Stability Enhancement of Mulberry-Extracted Anthocyanin Using Alginate/Chitosan Microencapsulation for Food Supplement Application. Artif. Cells Nanomed. Biotechnol. 2018, 46, 773–782. [Google Scholar] [CrossRef] [PubMed]
- Macías-Cortés, E.; Gallegos-Infante, J.A.; Rocha-Guzmán, N.E.; Moreno-Jiménez, M.R.; Medina-Torres, L.; González-Laredo, R.F. Microencapsulation of Phenolic Compounds: Technologies and Novel Polymers. Rev. Mex. Ing. Quim. 2019, 19, 491–521. [Google Scholar] [CrossRef]
- Gao, Y.; Xia, W.; Shao, P.; Wu, W.; Chen, H.; Fang, X.; Mu, H.; Xiao, J.; Gao, H. Impact of Thermal Processing on Dietary Flavonoids. Curr. Opin. Food Sci. 2022, 48, 100915. [Google Scholar] [CrossRef]
- Green, D.W.; Southard, M.Z. Perry’s Chemical Engineers’ Handbook; McGraw Hill Education: Columbus, OH, USA, 2019; ISBN 9780071834087. [Google Scholar]
- Eurostat. Electricity Prices for Non-Household Consumers—Bi-Annual Data (from 2007 Onwards); Eurostat: Luxembourg, 2025. [Google Scholar] [CrossRef]
- ISO 4120:2021; Sensory Analysis-Methodology-Triangle Test. International Organization for Standardization: Geneva, Switzerland, 2021.
- UNI EN ISO 8589:2014; Guida Generale per La Progettazione Di Locali Di Prova. International Organization for Standardization: Geneva, Switzerland, 2014.
- M’hiri, N.; Ioannou, I.; Ghoul, M.; Boudhrioua, N.M. Extraction Methods of Citrus Peel Phenolic Compounds. Food Rev. Int. 2014, 30, 265–290. [Google Scholar] [CrossRef]
- M’hiri, N.; Ioannou, I.; Ghoul, M.; Mihoubi Boudhrioua, N. Phytochemical Characteristics of Citrus Peel and Effect of Conventional and Nonconventional Processing on Phenolic Compounds: A Review. Food Rev. Int. 2017, 33, 587–619. [Google Scholar] [CrossRef]
- Bağdatlı, İ.; Khalily, R. Effects of Different Solvent Extractions on the Total Phenolic Content and Antioxidant Activity of Lemon and Orange Peels. Eurasian J. Food Sci. Technol. 2022, 6, 23–28. [Google Scholar]
- Özcan, M.M.; Ghafoor, K.; Al Juhaimi, F.; Uslu, N.; Babiker, E.E.; Mohamed Ahmed, I.A.; Almusallam, I.A. Influence of Drying Techniques on Bioactive Properties, Phenolic Compounds and Fatty Acid Compositions of Dried Lemon and Orange Peel Powders. J. Food Sci. Technol. 2021, 58, 147–158. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic Composition, Antioxidant Potential and Health Benefits of Citrus Peel. Food Res. Int. 2020, 132, 109114. [Google Scholar] [CrossRef]
- Andrade, M.A.; Barbosa, C.H.; Shah, M.A.; Ahmad, N.; Vilarinho, F.; Khwaldia, K.; Silva, A.S.; Ramos, F. Citrus By-Products: Valuable Source of Bioactive Compounds for Food Applications. Antioxidants 2022, 12, 38. [Google Scholar] [CrossRef] [PubMed]
- Mateus, A.R.S.; Mariño-Cortegoso, S.; Barros, S.C.; Sendón, R.; Barbosa, L.; Pena, A.; Sanches-Silva, A. Citrus By-Products: A Dual Assessment of Antioxidant Properties and Food Contaminants towards Circular Economy. Innov. Food Sci. Emerg. Technol. 2024, 95, 103737. [Google Scholar] [CrossRef]
- Nanditha, B.; Prabhasankar, P. Antioxidants in Bakery Products: A Review. Crit. Rev. Food Sci. Nutr. 2008, 49, 1–27. [Google Scholar] [CrossRef]
- Melini, V.; Melini, F.; Luziatelli, F.; Ruzzi, M. Functional Ingredients from Agri-Food Waste: Effect of Inclusion Thereof on Phenolic Compound Content and Bioaccessibility in Bakery Products. Antioxidants 2020, 9, 1216. [Google Scholar] [CrossRef] [PubMed]
- Imeneo, V.; Romeo, R.; Gattuso, A.; De Bruno, A.; Piscopo, A. Functionalized Biscuits with Bioactive Ingredients Obtained by Citrus Lemon Pomace. Foods 2021, 10, 2460. [Google Scholar] [CrossRef]
- de Castro, L.A.; Lizi, J.M.; das Chagas, E.G.L.; Carvalho, R.A.d.; Vanin, F.M. From Orange Juice By-Product in the Food Industry to a Functional Ingredient: Application in the Circular Economy. Foods 2020, 9, 593. [Google Scholar] [CrossRef]
- Aguirre-Calvo, T.R.; Aguirre-Calvo, D.; Perullini, M.; Santagapita, P.R. A Detailed Microstructural and Multiple Responses Analysis through Blocking Design to Produce Ca(II)-Alginate Beads Loaded with Bioactive Compounds Extracted from by-Products. Food Hydrocoll. Health 2021, 1, 100030. [Google Scholar] [CrossRef]
- Restrepo-Serna, D.L.; Cardona-Alzate, C.A. Pre-Feasibility Assessment to Obtain an Extract Rich in Hesperidin from Orange Peel: A Comparison of Extraction Technologies Conventional and Non-Conventional. Sustain. Chem. Pharm. 2024, 38, 101466. [Google Scholar] [CrossRef]
- Ortiz-Sanchez, M.; Solarte-Toro, J.C.; Orrego-Alzate, C.E.; Acosta-Medina, C.D.; Cardona-Alzate, C.A. Integral Use of Orange Peel Waste through the Biorefinery Concept: An Experimental, Technical, Energy, and Economic Assessment. Biomass Convers. Biorefin. 2021, 11, 645–659. [Google Scholar] [CrossRef]
- Adeyi, O.; Oke, E.O.; Okolo, B.I.; Adeyi, A.J.; Otolorin, J.A.; Nwosu-Obieogu, K.; Adeyanju, J.A.; Dzarma, G.W.; Okhale, S.; Ogu, D.; et al. Process Optimization, Scale-up Studies, Economic Analysis and Risk Assessment of Phenolic Rich Bioactive Extracts Production from Carica Papaya L. Leaves via Heat-Assisted Extraction Technology. Heliyon 2022, 8, e09216. [Google Scholar] [CrossRef]
- Abreu, J.; Quintino, I.; Pascoal, G.; Postingher, B.; Cadena, R.; Teodoro, A. Antioxidant Capacity, Phenolic Compound Content and Sensory Properties of Cookies Produced from Organic Grape Peel (Vitis Labrusca) Flour. Int. J. Food Sci. Technol. 2019, 54, 1215–1224. [Google Scholar] [CrossRef]
- Al-Saab, A.H.; Gadallah, M.G.E. Phytochemicals, Antioxidant Activity and Quality Properties of Fibre Enriched Cookies Incorporated with Orange Peel Powder. Food Res. 2021, 5, 72–79. [Google Scholar] [CrossRef]
- Kausar, T.; Saeed, E.; Hussain, A.; Firdous, N.; Bibi, B.; Kabir, K.; Ul An, Q.; Ali, M.Q.; Najam, A.; Ahmed, A.; et al. Development and Quality Evaluation of Cookies Enriched with Various Levels of Grapefruit Pomace Powder. Discov. Food 2024, 4, 65. [Google Scholar] [CrossRef]
- Chernenko, S. Encapsulation of Polyphenols in Baked Goods: A Strategy for Enhancing Stability and Antioxidant Activity. Technol. Audit. Prod. Reserves 2025, 4, 45–51. [Google Scholar] [CrossRef]
- Kaderides, K.; Mourtzinos, I.; Goula, A.M. Stability of Pomegranate Peel Polyphenols Encapsulated in Orange Juice Industry By-Product and Their Incorporation in Cookies. Food Chem. 2020, 310, 125849. [Google Scholar] [CrossRef] [PubMed]
Nozzle (μm) | Air Pressure (mbar) | Optimal Frequency Range (Hz) | Electrode (V) | Size Range of Produced Beads (μm) |
---|---|---|---|---|
80 | 500–1000 | 1300–3000 | 1000–2500 | 120–200 |
120 | 500–1000 | 950–2500 | 1000–2500 | 200–300 |
150 | 400–700 | 800–1800 | 1000–2500 | 260–350 |
200 | 400–700 | 600–1200 | 1000–2500 | 350–450 |
300 | 250–550 | 400–1000 | 1000–2500 | 550–700 |
450 | 250–550 | 200–900 | 1000–2500 | 700–1150 |
750 | 200–500 | 40–800 | 1000–2500 | 1150–1800 |
1000 | 200–500 | 40–650 | 1000–2500 | 1600–2400 |
Parameter | Flavonoid-Rich Extract Production | Microbeads Production | ||
---|---|---|---|---|
Price | Quantity | Price (€/kW) | Quantity | |
Energy | 0.11 €/kW 1 | 1.67 kW | 0.17 €/kW 2 | 12.11 kW |
Citrus raw material | Not considered | 300.00 g | - | - |
Ethanol | 14.00 €/kg | 1.62 kg | - | - |
Ultrapure water | 0.51 €/kg | 1.08 kg | - | - |
Alginate | - | - | 120.00 €/kg | 9.00 g |
Calcium chloride | - | - | 1.60 €/kg | 12.49 g |
Overheads | 80% of chemicals and energy costs |
Control Cookies (CC) | Orange Polyphenols Cookies (OPCs) | Lemon Polyphenols Cookies (LPCs) | |
---|---|---|---|
Buckwheat flour | 28.21 | 22.49 | 22.49 |
Oat flour and flakes | 21.16 | 15.44 | 15.44 |
Cane sugar | 16.93 | 16.93 | 16.93 |
Water | 18.34 | 18.34 | 18.34 |
Corn seed oil | 13.40 | 13.40 | 13.40 |
Chocolate chips | 1.41 | 1.41 | 1.41 |
Baking powder | 0.56 | 0.56 | 0.56 |
Dried beads with citrus extract | - | 11.43 | 11.43 |
Compounds | Orange Extract | Lemon Extract |
---|---|---|
Hesperidin | 454.00 ± 16.00 | 100.98 ± 2.00 |
Narirutin | 189.25 ± 7.01 | - |
Neoeriocitrin | 223.88 ± 12.16 | 47.13 ± 2.71 |
Eriocitrin | 62.40 ± 2.73 | 357.30 ± 2.45 |
Chlorogenic Acid | 3.06 ± 0.36 | - |
Caffeic Acid | 10.29 ± 0.75 | - |
Sinensetin | 24.21 ± 0.77 | - |
Nobiletin | 235.57 ± 6.19 | - |
Luteolin-7-O-glucoside | - | 30.57 ± 0.27 |
Apigenin-7-O-glucoside | - | 20.79 ± 0.35 |
Total Quantified (mg/L) | 1206.66 ± 45.97 | 556.77 ± 7.78 |
Orange Extract | Lemon Extract | |
---|---|---|
Total flavonoid content (mg/L) | 1960.1 ± 123.33 | 845.7 ± 58.61 |
Lemon Extract | Lemon Dried Microbeads | Orange Extract | Orange Dried Microbeads | |
---|---|---|---|---|
Before oven test | 845.7 ± 58.61 a | 12,047.25 ± 1036.87 a | 1960.1 ± 123.33 a | 11,917.11 ± 996.60 a |
After 30′ 180 °C | 448.10 ± 23.79 b | 10,398.70 ± 800.25 a | 1034.38 ± 113.82 b | 10,289.09 ± 817.38 ab |
After 30′ 230 °C | - | 11,234.37 ± 1073.24 a | - | 10,094.70 ± 720.53 b |
p-value | 0.0004 | 0.1996 | 0.0007 | 0.0744 |
Flavonoids Extract Production (€/kg Product) | Microbeads Production (€/kg Product) | |
---|---|---|
Energy | ||
Stirrer + Centrifuge + Reverse Osmosis | 0.19 | - |
Buchii encapsulator + drying incubator | - | 2.01 |
Chemicals | ||
Ethanol | 22.68 | - |
Ultrapure water | 0.55 | - |
Alginate | - | 1.08 |
Calcium chloride | - | 0.02 |
Overheads | 18.72 | 2.49 |
Total cost per stage (€) | 42.16 | 5.60 |
Total cost for production (€) | 47.73 |
Control Cookies (CCs) | Orange Polyphenols Cookies (OPCs) | Lemon Polyphenols Cookies (LPCs) | |
---|---|---|---|
Total flavonoids (mg/100 g) | - | 166.11 ± 37.36 | 177.13 ± 24.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dellapina, G.; Poli, G.; Moscatelli, V.; Magalhães, D.; Vilas-Boas, A.A.; Pintado, M. Flavonoid-Rich Extracts from Lemon and Orange By-Products: Microencapsulation and Application in Functional Cookies. Foods 2025, 14, 3346. https://doi.org/10.3390/foods14193346
Dellapina G, Poli G, Moscatelli V, Magalhães D, Vilas-Boas AA, Pintado M. Flavonoid-Rich Extracts from Lemon and Orange By-Products: Microencapsulation and Application in Functional Cookies. Foods. 2025; 14(19):3346. https://doi.org/10.3390/foods14193346
Chicago/Turabian StyleDellapina, Giovanna, Giovanna Poli, Vanna Moscatelli, Daniela Magalhães, Ana A. Vilas-Boas, and Manuela Pintado. 2025. "Flavonoid-Rich Extracts from Lemon and Orange By-Products: Microencapsulation and Application in Functional Cookies" Foods 14, no. 19: 3346. https://doi.org/10.3390/foods14193346
APA StyleDellapina, G., Poli, G., Moscatelli, V., Magalhães, D., Vilas-Boas, A. A., & Pintado, M. (2025). Flavonoid-Rich Extracts from Lemon and Orange By-Products: Microencapsulation and Application in Functional Cookies. Foods, 14(19), 3346. https://doi.org/10.3390/foods14193346