Rheological Properties and Emulsion Stability of Peach Gum Polysaccharides with Different Molecular Weights
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PGP
2.2.1. Thermal Extraction and Purification
2.2.2. Enzymatic Extraction and Purification
2.3. Physicochemical Characteristics
2.3.1. Chemical Component
2.3.2. Molecular Weight Analysis
2.3.3. Thermogravimetric Analysis (TGA)
2.3.4. FT-IR
2.4. Rheological Analysis
2.4.1. Steady Shear Tests
2.4.2. Creep–Recovery Tests
2.4.3. Dynamic Oscillatory Tests
2.4.4. PGP Gelling Network Analysis
2.5. Effects of Peach Gums on the Emulsion Stability of Whey Protein Isolate
2.5.1. Emulsion Preparation
2.5.2. Centrifuge Stability and Storage Stability
2.6. Statistical Analysis
3. Results
3.1. Physicochemical Characteristics
3.1.1. Chemical and Monosaccharides Composition Analysis, Molecular Weight and Rz of PGPs
3.1.2. FT-IR Spectroscopy
3.1.3. Thermal Stability of PGPs
3.2. Steady Flow Behaviors
3.3. Creep and Recovery Behavior
3.4. Dynamic Rheological Properties
3.5. Gel Microstructure
3.6. Effect of TPGP and EPGP on Emulsion Stability of Whey Protein Isolate (WPI)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PGP | Peach gum polysaccharide |
TGA | Thermogravimetric Analysis |
SEM | Scanning Electron Microscopy |
HPSEC | High-Performance Size-Exclusion Chromatography |
DP | Pressure Viscometer |
RI | Refractive Index |
MALLS | Multi-Angle Laser Light Scattering |
Rha | Rhamnose |
Ara | Arabinose |
Gal | Galactose |
Xyl | Xylose |
Man | Mannose |
Glc-UA | Glucuronic Acid |
Mw | Weight-Average Molecular Weights |
Mn | Number-Average Molecular Weight |
Rz | Z-Average Radius of Gyration |
LVR | Linear Viscoelastic Region |
WPI | Whey Protein Isolate |
GA | Gum Arabic |
AG | Arabinogalactan |
ES | Emulsion Stability |
References
- Wang, Y.T.; Lin, D.B.; Wang, X.L.; Zhu, W.; Ye, J.L.; Li, G.H.; Ma, Z.M.; Deng, X.X. The impact of a novel peach gum-derived polysaccharide on postprandial blood glucose control in streptozotocin-induced diabetic mice. Int. J. Biol. Macromol. 2017, 98, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.C.; Chang, C.F.; Wu, S.J. Effect of peach gum polysaccharides on quality changes of white shrimp. Int. J. Biol. Macromol. 2015, 72, 1076–1080. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, X.; Meng, D.; Zhou, L. Facile synthesis of low-cost magnetic biosorbent from peach gum polysaccharide for selective and efficient removal of cationic dyes. Int. J. Biol. Macromol. 2018, 107, 1871–1878. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.F.; Cui, S.W.; Wang, Q.; Wang, C.; Zhou, H.M. Fractionation and physicochemical characterization of peach gum polysaccharides. Food Hydrocoll. 2011, 25, 1285–1290. [Google Scholar] [CrossRef]
- Zeng, S.; Long, J.; Sun, J.; Wang, G.; Zhou, L. A review on peach gum polysaccharide: Hydrolysis, structure, properties and applications. Carbohyd Polym. 2022, 279, 119015. [Google Scholar] [CrossRef]
- Yao, X.C.; Cao, Y.; Wu, S.J. Antioxidant activity and antibacterial activity of peach gum derived oligosaccharides. Int. J. Biol. Macromol. 2013, 62, 1–3. [Google Scholar] [CrossRef]
- Yang, H.Y.; Wang, D.W.; Deng, J.; Yang, J.; Shi, C.; Zhou, F.L.; Shi, Z.J. Activity and Structural Characteristics of Peach Gum Exudates. Int. J. Polym. Sci. 2018, 1, 4593735. [Google Scholar] [CrossRef]
- Yin, N.; Shen, Q. Comparison of the properties of peach gum and Arabic gum. Sci. Tech. Food Ind. 2006, 8, 146–148. [Google Scholar]
- Wei, C.; Zhang, Y.; He, L.; Cheng, J.; Li, J.; Tao, W.; Mao, G.; Zhang, H.; Linhardt, R.J.; Ye, X.; et al. Structural characterization and anti-proliferative activities of partially degraded polysaccharides from peach gum. Carbohyd Polym. 2019, 203, 193–202. [Google Scholar] [CrossRef]
- Wei, C.; Zhang, Y.; Zhang, H.; Li, J.; Tao, W.; Linhardt, R.J.; Chen, S.; Ye, X. Physicochemical properties and conformations of water-soluble peach gums via different preparation methods. Food Hydrocoll. 2019, 95, 571–579. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, M.; Liu, M.; Bi, J. Physicochemical, rheological properties and in vitro hypoglycemic activities of polysaccharide fractions from peach gum. Carbohyd Polym. 2022, 296, 119954. [Google Scholar] [CrossRef] [PubMed]
- Safdar, B.; Pang, Z.; Liu, X.; Jatoi, M.A.; Mehmood, A.; Rashid, M.T.; Ali, N.; Naveed, M. Flaxseed gum: Extraction, bioactive composition, structural characterization, and its potential antioxidant activity. J. Food Biochem. 2019, 43, e13014. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, L.; Liu, Y.; Chen, B.; Wang, C.; Gong, K.; Wang, F.; Qiao, Y. Acidic polysaccharide from corn silk: Structural & conformational properties and hepatoprotective activity. Int. J. Biol. Macromol. 2023, 236, 123851. [Google Scholar] [CrossRef]
- Naji Tabasi, S.; Razavi, S.M.A. New studies on basil (Ocimum bacilicum L.) seed gum: Part II—Emulsifying and foaming characterization. Carbohyd Polym. 2016, 149, 140–150. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar]
- Zhang, H.; Li, C.; Ding, J.; Lai, P.F.H.; Xia, Y.; Ai, L. Structural features and emulsifying stability of a highly branched arabinogalactan from immature peach (Prunus persica) exudates. Food Hydrocoll. 2020, 104, 105721. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, H.; Tian, Y.; Lai, P.F.H.; Xu, H.; Ai, L. Rheological properties of Prunus persica exudate: Potential effects of proteins and polyphenols. Int. J. Biol. Macromol. 2019, 133, 831–838. [Google Scholar] [CrossRef]
- Hao, H.; Cui, C.; Xing, Y.; Jia, X.; Ma, B.; Kang, W.; Li, T.; Gao, M.; Xu, C. Sulfation of the extracellular polysaccharide from the edible fungus Stropharia rugosoannulata with its antioxidant activity. J. Future Foods 2023, 3, 37–42. [Google Scholar] [CrossRef]
- Zhao, L.; Tong, Q.; Wang, H.; Liu, Y.; Xu, J.; Rehman, A. Emulsifying properties and structure characteristics of octenyl succinic anhydride-modified pullulans with different degree of substitution. Carbohyd Polym. 2020, 250, 116844. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Cai, W.; Zhen, T.; Ji, N.; Dai, L.; Xiong, L.; Sun, Q. Preparation of debranched starch nanoparticles by ionic gelation for encapsulation of epigallocatechin gallate. Int. J. Biol. Macromol. 2020, 161, 481–491. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Al Wraikat, M.; Niu, L.; Zhou, F.; Zhang, Y.; Wang, M.; Ren, J.; Fan, J.; Zhang, B.; Wang, L. Degradation enhances the anticoagulant and antiplatelet activities of polysaccharides from Lycium barbarum L. leaves. Int. J. Biological Macromol. 2019, 133, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, X.; Liu, D.; Ding, T.; Ye, X. Effect of degradation methods on the structural properties of citrus pectin. LWT 2015, 61, 630–637. [Google Scholar] [CrossRef]
- Kačuráková, M.; Capek, P.; Sasinková, V.; Wellner, N.; Ebringerová, A. FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohyd Polym. 2000, 43, 195–203. [Google Scholar] [CrossRef]
- Munir, H.; Shahid, M.; Anjum, F.; Mudgil, D. Structural, thermal and rheological characterization of modified Dalbergia sissoo gum—A medicinal gum. Int. J. Biol. Macromol. 2016, 84, 236–245. [Google Scholar] [CrossRef]
- Guo, Q.; Zhu, X.; Zhen, W.; Li, Z.; Kang, J.; Sun, X.; Wang, S.; Cui, S.W. Rheological properties and stabilizing effects of high-temperature extracted flaxseed gum on oil/water emulsion systems. Food Hydrocoll. 2021, 112, 106289. [Google Scholar] [CrossRef]
- Xiao, W.; Shen, M.; Ren, Y.; Wen, H.; Li, J.; Rong, L.; Liu, W.; Xie, J. Controlling the pasting, rheological, gel, and structural properties of corn starch by incorporation of debranched waxy corn starch. Food Hydrocoll. 2022, 123, 107136. [Google Scholar] [CrossRef]
- Lai, L.S.; Tung, J.; Lin, P.S. Solution properties of hsian-tsao (Mesona procumbens Hemsl) leaf gum. Food Hydrocoll. 2000, 14, 287–294. [Google Scholar] [CrossRef]
- Kale, M.S.; Yadav, M.P.; Chau, H.K.; Hotchkiss, A.T. Molecular and functional properties of a xylanase hydrolysate of corn bran arabinoxylan. Carbohyd Polym. 2018, 181, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Sims, I.M.; Gane, A.M.; Dunstan, D.; Allan, G.C.; Boger, D.V.; Melton, L.D.; Bacic, A. Rheological properties of xyloglucans from different plant species. Carbohyd Polym. 1998, 37, 61–69. [Google Scholar] [CrossRef]
- Simas Tosin, F.F.; Barraza, R.R.; Petkowicz, C.L.O.; Silveira, J.L.M.; Sassaki, G.L.; Santos, E.M.R.; Gorin, P.A.J.; Iacomini, M. Rheological and structural characteristics of peach tree gum exudate. Food Hydrocoll. 2010, 24, 486–493. [Google Scholar] [CrossRef]
- Ahmed, J. Effect of particle size and temperature on rheology and creep behavior of barley β-d-glucan concentrate dough. Carbohyd Polym. 2014, 111, 89–100. [Google Scholar] [CrossRef]
- Wang, Y.; Li, D.; Wang, L.-J.; Adhikari, B. The effect of addition of flaxseed gum on the emulsion properties of soybean protein isolate (SPI). J. Food Eng. 2011, 104, 56–62. [Google Scholar] [CrossRef]
- Ould Eleya, M.M.; Ko, S.; Gunasekaran, S. Scaling and fractal analysis of viscoelastic properties of heat-induced protein gels. Food Hydrocoll. 2004, 18, 315–323. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.J.; Li, D.; Özkan, N.; Chen, X.D.; Mao, Z.H. Effect of flaxseed gum addition on rheological properties of native maize starch. J. Food Eng. 2008, 89, 87–92. [Google Scholar] [CrossRef]
- Hahn, A.U.; Mittal, K.L. Mechanism of demulsification of oil-in-water emulsion in the centrifuge. Colloid. Polym. Sci. 1979, 257, 959–967. [Google Scholar] [CrossRef]
- Klein, M.; Aserin, A.; Svitov, I.; Garti, N. Enhanced stabilization of cloudy emulsions with gum Arabic and whey protein isolate. Colloid. Surface B. 2010, 77, 75–81. [Google Scholar] [CrossRef]
- Prasad, N.; Thombare, N.; Sharma, S.C.; Kumar, S. Production, processing, properties and applications of karaya (Sterculia species) gum. Ind. Crop Prod. 2022, 177, 114467. [Google Scholar] [CrossRef]
- Keivanfard, N.; Nasirpour, A.; Barekat, S.; Keramat, J. Effects of heat and high-pressure homogenization processes on rheological and functional properties of gum tragacanth. Food Hydrocoll. 2022, 128, 107593. [Google Scholar] [CrossRef]
- Dickinson, E. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocoll. 2003, 17, 25–39. [Google Scholar] [CrossRef]
- Yue, Y.K.; Yang, Z.; Xing, J.J.; Guo, X.N.; Zhu, K.X. Fabrication and stabilization mechanisms of Pickering emulsions based on gliadin/arabinoxylan complexes. Food Chem. 2022, 393, 133458. [Google Scholar] [CrossRef] [PubMed]
- Salminen, H.; Weiss, J. Effect of pectin type on association and pH stability of whey protein—Pectin complexes. Food Biophys. 2014, 9, 29–38. [Google Scholar] [CrossRef]
- Dickinson, E. Hydrocolloids acting as emulsifying agents—How do they do it? Food Hydrocoll. 2018, 78, 2–14. [Google Scholar] [CrossRef]
- McClements, D.J.; Gumus, C.E. Natural emulsifiers—Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance. Adv. Colloid Interface Sci. 2016, 234, 3–26. [Google Scholar] [CrossRef] [PubMed]
Samples | TPGP | EPGP |
---|---|---|
Yield % (w/w) | 52.3 ± 2.10 | 46.8 ± 1.64 |
Total sugars % (w/w) | 70.62 ± 1.38 | 72.13 ± 2.07 |
Uronic acid % (w/w) | 4.34 ± 0.09 | 2.13 ± 0.06 |
Monosaccharide compositions % (molar ratio) | ||
Rha | 0.78 | 0.69 |
Ara | 51.20 | 50.64 |
Gal | 29.93 | 30.96 |
Xyl | 10.27 | 9.68 |
Man | 4.59 | 4.49 |
Glc-UA | 3.23 | 3.53 |
Samples | TPGP | EPGP |
---|---|---|
Mn (g mol−1) | 6.491 ± 0.03 × 106 | 2.763 ± 0.02 × 106 |
Mw (g mol−1) | 1.295 ± 0.05 × 107 | 5.718 ± 0.02 × 106 |
Mw/Mn | 1.994 ± 0.06 | 2.070 ± 0.03 |
Rz (nm) | 240.7 ± 0.02 | 147.9 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, H.; Zhang, D.; Xie, F.; Wu, S.; Chen, B.; Wang, X.; Sun, D.; Lin, Z.; Qiao, Y.; Zhang, Y. Rheological Properties and Emulsion Stability of Peach Gum Polysaccharides with Different Molecular Weights. Foods 2025, 14, 3341. https://doi.org/10.3390/foods14193341
Si H, Zhang D, Xie F, Wu S, Chen B, Wang X, Sun D, Lin Z, Qiao Y, Zhang Y. Rheological Properties and Emulsion Stability of Peach Gum Polysaccharides with Different Molecular Weights. Foods. 2025; 14(19):3341. https://doi.org/10.3390/foods14193341
Chicago/Turabian StyleSi, Haoyu, Dongmei Zhang, Fan Xie, Songheng Wu, Bingjie Chen, Xiao Wang, Dapeng Sun, Zhan Lin, Yongjin Qiao, and Yi Zhang. 2025. "Rheological Properties and Emulsion Stability of Peach Gum Polysaccharides with Different Molecular Weights" Foods 14, no. 19: 3341. https://doi.org/10.3390/foods14193341
APA StyleSi, H., Zhang, D., Xie, F., Wu, S., Chen, B., Wang, X., Sun, D., Lin, Z., Qiao, Y., & Zhang, Y. (2025). Rheological Properties and Emulsion Stability of Peach Gum Polysaccharides with Different Molecular Weights. Foods, 14(19), 3341. https://doi.org/10.3390/foods14193341