Deep Learning-Driven Intelligent Fluorescent Probes: Advancements in Molecular Design for Accurate Food Safety Detection
Abstract
1. Introduction
2. Deep Learning for Fluorescent Probe Design: From Screening to Generation
2.1. Property-Driven Design: DL-Based QSAR and Virtual Screening
2.2. Structure-Driven Design: Generative Models for On-Demand Probes
3. Intelligent Fluorescent Signal Processing and Feature Extraction
3.1. Matrix Interference Correction: Signal Enhancement and Quantification
3.2. Fluorescent Probe Arrays: Chemical Fingerprinting with Deep Learning
3.3. Kinetic Process Modeling: Nonlinear Quantification with RNNs
4. Core Challenges, Deep Reflections and Future Scenarios
4.1. Current Core Challenges
4.2. Future Development Landscape and Outlook
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Draft WHO Global Strategy for Food Safety 2022–2030. In Towards Stronger Food Safety Systems and Global Cooperation; World Health Organization: Geneva, Switzerland, 2022; Available online: https://www.who.int/publications/i/item/9789240057685 (accessed on 1 June 2025).
- Guo, W.; Pan, B.; Sakkiah, S.; Yavas, G.; Ge, W.; Zou, W.; Tong, W.; Hong, H. Persistent Organic Pollutants in Food: Contamination Sources, Health Effects and Detection Methods. Int. J. Environ. Res. Public Health 2019, 16, 4361. [Google Scholar] [CrossRef]
- Focker, M.; van Asselt, E.; Berendsen, B.; van de Schans, M.; van Leeuwen, S.; Visser, S.; van der Fels-Klerx, H. Review of food safety hazards in circular food systems in Europe. Food Res. Int. 2022, 158, 111505. [Google Scholar] [CrossRef] [PubMed]
- Long, L.; Han, Y.; Yuan, X.; Cao, S.; Liu, W.; Chen, Q.; Wang, K.; Han, Z. A novel ratiometric near-infrared fluorescent probe for monitoring cyanide in food samples. Food Chem. 2020, 331, 127359. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhao, C.; Zhao, Q.; Yang, Y.; Yang, S.; Zhang, R.; Wang, Y.; Wang, K.; Qian, J.; Long, L. Construction of a Colorimetric and Near-Infrared Ratiometric Fluorescent Sensor and Portable Sensing System for On-Site Quantitative Measurement of Sulfite in Food. Foods 2024, 13, 1758. [Google Scholar] [CrossRef]
- Peris-Vicente, J.; Peris-García, E.; Albiol-Chiva, J.; Durgbanshi, A.; Ochoa-Aranda, E.; Carda-Broch, S.; Bose, D.; Esteve-Romero, J. Liquid chromatography, a valuable tool in the determination of antibiotics in biological, food and environmental samples. Microchem. J. 2022, 177, 107309. [Google Scholar] [CrossRef]
- Hu, M.; Ben, Y.; Wong, M.H.; Zheng, C. Trace Analysis of Multiclass Antibiotics in Food Products by Liquid Chromatography-Tandem Mass Spectrometry: Method Development. J. Agric. Food Chem. 2021, 69, 1656–1666. [Google Scholar] [CrossRef]
- Sun, Q.; Dong, Y.; Wen, X.; Zhang, X.; Hou, S.; Zhao, W.; Yin, D. A review on recent advances in mass spectrometry analysis of harmful contaminants in food. Front. Nutr. 2023, 10, 1244459. [Google Scholar] [CrossRef]
- Shan, Y.; Lu, Y.-N.; Yi, W.; Wang, B.; Li, J.; Guo, J.; Li, W.; Yin, Y.; Wang, S.; Liu, F. On-site food safety detection: Opportunities, advancements, and prospects. Biosens. Bioelectron. X 2023, 14, 100350. [Google Scholar] [CrossRef]
- Umapathi, R.; Park, B.; Sonwal, S.; Rani, G.M.; Cho, Y.; Huh, Y.S. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods. Trends Food Sci. Technol. 2022, 119, 69–89. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J.; Lin, T.; Ying, Y. Food and agro-product quality evaluation based on spectroscopy and deep learning: A review. Trends Food Sci. Technol. 2021, 112, 431–441. [Google Scholar] [CrossRef]
- Gupta, R.; Raza, N.; Bhardwaj, S.K.; Vikrant, K.; Kim, K.-H.; Bhardwaj, N. Advances in nanomaterial-based electrochemical biosensors for the detection of microbial toxins, pathogenic bacteria in food matrices. J. Hazard. Mater. 2021, 401, 123379. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Sun, D.-W.; Wu, Z.; Pu, H.; Wei, Q. On-off-on fluorescent nanosensing: Materials, detection strategies and recent food applications. Trends Food Sci. Technol. 2022, 119, 243–256. [Google Scholar] [CrossRef]
- Shen, Y.; Wei, Y.; Zhu, C.; Cao, J.; Han, D.-M. Ratiometric fluorescent signals-driven smartphone-based portable sensors for onsite visual detection of food contaminants. Coord. Chem. Rev. 2022, 458, 214442. [Google Scholar] [CrossRef]
- Ouyang, Q.; Liu, Y.; Chen, Q.; Guo, Z.; Zhao, J.; Li, H.; Hu, W. Rapid and specific sensing of tetracycline in food using a novel upconversion aptasensor. Food Control 2017, 81, 156–163. [Google Scholar] [CrossRef]
- Zhang, B.; Li, H.; Pan, W.; Chen, Q.; Ouyang, Q.; Zhao, J. Dual-Color Upconversion Nanoparticles (UCNPs)-Based Fluorescent Immunoassay Probes for Sensitive Sensing Foodborne Pathogens. Food Anal. Methods 2017, 10, 2036–2045. [Google Scholar] [CrossRef]
- Gu, H.; Huang, X.; Chen, Q.; Sun, Y. Rapid Assessment of Total Polar Material in Used Frying Oils Using Manganese Tetraphenylporphyrin Fluorescent Sensor with Enhanced Sensitivity. Food Anal. Methods 2020, 13, 2080–2086. [Google Scholar] [CrossRef]
- Zhang, W.; Zhong, H.; Zhao, P.; Shen, A.; Li, H.; Liu, X. Carbon quantum dot fluorescent probes for food safety detection: Progress, opportunities and challenges. Food Control 2022, 133, 108591. [Google Scholar] [CrossRef]
- Niu, C.; Yao, Z.; Jiang, S. Synthesis and application of quantum dots in detection of environmental contaminants in food: A comprehensive review. Sci. Total Environ. 2023, 882, 163565. [Google Scholar] [CrossRef]
- Yang, X.; Wang, J.; Zhang, Z.; Zhang, B.; Du, X.; Zhang, J.; Wang, J. BODIPY-based fluorescent probe for cysteine detection and its applications in food analysis, test strips and biological imaging. Food Chem. 2023, 416, 135730. [Google Scholar] [CrossRef]
- Chen, Q.; Li, J.; Wang, Y.; Tian, M.; Liang, T.; Zhong, K.; Yan, X.; Tang, L. A quinolinium-based colorimetric and NIR fluorescent dual-channel sensing platform for specific detection of bisulfite in food, traditional Chinese medicine and living cells. Dye. Pigment. 2025, 239, 112767. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, J.; Sun, D.W. Aggregates-based fluorescence sensing technology for food hazard detection: Principles, improvement strategies, and applications. Compr. Rev. Food Sci. Food Saf. 2023, 22, 2977–3010. [Google Scholar] [CrossRef]
- Skorjanc, T.; Shetty, D.; Valant, M. Covalent organic polymers and frameworks for fluorescence-based sensors. ACS Sens. 2021, 6, 1461–1481. [Google Scholar] [CrossRef] [PubMed]
- Muthusamy, S.; Rajalakshmi, K.; Ahn, D.-H.; Kannan, P.; Zhu, D.; Nam, Y.-S.; Choi, K.Y.; Luo, Z.; Song, J.-W.; Xu, Y. Spontaneous detection of F− and viscosity using a multifunctional tetraphenylethene-lepidine probe: Exploring environmental applications. Food Chem. 2025, 466, 142147. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Gao, L.; Wang, J.; Pan, J.; Yan, Y.; Zhang, X. A precise and efficient detection of Beta-Cyfluthrin via fluorescent molecularly imprinted polymers with ally fluorescein as functional monomer in agricultural products. Food Chem. 2017, 217, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Linghu, X.; Qiu, J.; Wang, S.; Lu, Y. Fluorescence immunoassay based on magnetic separation and ZnCdSe/ZnS quantum dots as a signal marker for intelligent detection of sesame allergen in foods. Talanta 2023, 256, 124323. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, H.; Li, X.; Wang, L.; Huang, H.; Qiu, H.; Cong, W.; Wang, M.; Zhang, J. Synthesis of group I–III–VI semiconductor quantum dots and its application in food safety testing. Rev. Anal. Chem. 2022, 41, 324–336. [Google Scholar] [CrossRef]
- Sun, Y.; Zhai, X.; Zou, X.; Shi, J.; Huang, X.; Li, Z. A Ratiometric Fluorescent Sensor Based on Silicon Quantum Dots and Silver Nanoclusters for Beef Freshness Monitoring. Foods 2023, 12, 1464. [Google Scholar] [CrossRef]
- Liu, L.; Mi, Z.; Huo, X.; Yuan, L.; Bao, Y.; Liu, Z.; Feng, F. A label-free fluorescence nanosensor based on nitrogen and phosphorus co-doped carbon quantum dots for ultra-sensitive detection of new coccine in food samples. Food Chem. 2022, 368, 130829. [Google Scholar] [CrossRef]
- Liu, Y.; Zan, M.; Cao, L.; Peng, J.; Wang, P.; Pang, X.; Zhang, Y.; Li, L.; Mei, Q.; Dong, W.-F. F-doped silicon quantum dots as a novel fluorescence nanosensor for quantitative detection of new coccine and application in food samples. Microchem. J. 2022, 179, 107453. [Google Scholar] [CrossRef]
- Hu, X.; Li, Y.; Xu, Y.; Gan, Z.; Zou, X.; Shi, J.; Huang, X.; Li, Z.; Li, Y. Green one-step synthesis of carbon quantum dots from orange peel for fluorescent detection of Escherichia coli in milk. Food Chem. 2021, 339, 127775. [Google Scholar] [CrossRef]
- Yin, M.; Wang, W.; Wei, J.; Chen, X.; Chen, Q.; Chen, X.; Oyama, M. Novel dual-emissive fluorescent immunoassay for synchronous monitoring of okadaic acid and saxitoxin in shellfish. Food Chem. 2022, 368, 130856. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Li, J.; Bi, X.; Jiang, P.; Li, L.; Qiao, G.; You, T. Engineering “three-in-one” fluorescent nanozyme of Ce-Au NCs for on-site visual detection of Hg2+. J. Hazard. Mater. 2024, 476, 134967. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.; Ma, H.; Mu, X.; Wang, Z.; Wang, Q.; Wang, H.; Zhang, X.-D. Application of gold nanoclusters in fluorescence sensing and biological detection. Anal. Bioanal. Chem. 2024, 416, 5871–5891. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Sun, W.; Li, Z.; Shi, J.; Zhang, N.; Zhang, Y.; Zhai, X.; Hu, X.; Zou, X. Hydrogen sulfide gas sensing toward on-site monitoring of chilled meat spoilage based on ratio-type fluorescent probe. Food Chem. 2022, 396, 133654. [Google Scholar] [CrossRef]
- Li, H.; Wu, Y.; Shoaib, M.; Bei, Q.; Chen, Q. A dual-recognition UCNPs sensor for sensitive detection of tetracycline in food using computer-designed silica-grafted paper microfluidic strategy. Sens. Actuators B Chem. 2025, 438, 137799. [Google Scholar] [CrossRef]
- Bahari, H.R.; Mousavi Khaneghah, A.; Eş, I. Upconversion nanoparticles-modified aptasensors for highly sensitive mycotoxin detection for food quality and safety. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13369. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zhang, D.; Tan, W.; Shi, J.; Li, Z.; Liu, H.; Yu, Y.; Yang, L.; Wang, X.; et al. A fluorescence resonance energy transfer probe based on functionalized graphene oxide and upconversion nanoparticles for sensitive and rapid detection of zearalenone. LWT 2021, 147, 111541. [Google Scholar] [CrossRef]
- Liu, Y.; Ouyang, Q.; Li, H.; Chen, M.; Zhang, Z.-Z.; Chen, Q. Turn-On Fluoresence Sensor for Hg2+ in Food Based on FRET between Aptamers-Functionalized Upconversion Nanoparticles and Gold Nanoparticles. J. Agric. Food Chem. 2018, 66, 6188–6195. [Google Scholar] [CrossRef]
- Zhu, A.; Ali, S.; Jiao, T.; Wang, Z.; Xu, Y.; Ouyang, Q.; Chen, Q. Facile synthesis of fluorescence-SERS dual-probe nanocomposites for ultrasensitive detection of sulfur-containing gases in water and beer samples. Food Chem. 2023, 420, 136095. [Google Scholar] [CrossRef]
- Marimuthu, M.; Arumugam, S.S.; Sabarinathan, D.; Li, H.; Chen, Q. Metal organic framework based fluorescence sensor for detection of antibiotics. Trends Food Sci. Technol. 2021, 116, 1002–1028. [Google Scholar] [CrossRef]
- Liu, R.; Ali, S.; Haruna, S.A.; Ouyang, Q.; Li, H.; Chen, Q. Development of a fluorescence sensing platform for specific and sensitive detection of pathogenic bacteria in food samples. Food Control 2022, 131, 108419. [Google Scholar] [CrossRef]
- Xu, Y.; Kutsanedzie, F.Y.H.; Ali, S.; Wang, P.; Li, C.; Ouyang, Q.; Li, H.; Chen, Q. Cysteamine-mediated upconversion sensor for lead ion detection in food. J. Food Meas. Charact. 2021, 15, 4849–4857. [Google Scholar] [CrossRef]
- Wang, L.; Haruna, S.A.; Ahmad, W.; Wu, J.; Chen, Q.; Ouyang, Q. Tunable multiplexed fluorescence biosensing platform for simultaneous and selective detection of paraquat and carbendazim pesticides. Food Chem. 2022, 388, 132950. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Li, H.; Hassan, M.; Guo, Z.; Zhang, Z.-Z.; Chen, Q. Fabricating an Acetylcholinesterase Modulated UCNPs-Cu2+ Fluorescence Biosensor for Ultrasensitive Detection of Organophosphorus Pesticides-Diazinon in Food. J. Agric. Food Chem. 2019, 67, 4071–4079. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-J.; Huang, A.-J.; Dong, X.-X.; Zhang, Y.-F.; Zhu, L.; Luo, L.; Xu, Z.-L.; Wang, H. A simple and sensitive fluoroimmunoassay based on the nanobody-alkaline phosphatase fusion protein for the rapid detection of fenitrothion. Front. Sustain. Food Syst. 2023, 7, 1320931. [Google Scholar] [CrossRef]
- Wu, W.; Ahmad, W.; Hassan, M.; Wu, J.; Ouyang, Q.; Chen, Q. An upconversion biosensor based on inner filter effect for dual-role recognition of sulfadimethoxine in aquatic samples. Food Chem. 2024, 437, 137832. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Li, L.; Luo, L.; Liu, X.; Li, J.; You, T. A ratiometric fluorescence aptasensor based on photoinduced electron transfer from CdTe QDs to WS2 NTs for the sensitive detection of zearalenone in cereal crops. Food Chem. 2022, 385, 132657. [Google Scholar] [CrossRef]
- Ding, X.; Ahmad, W.; Wu, J.; Rong, Y.; Ouyang, Q.; Chen, Q. Bipyridine-mediated fluorescence charge transfer process based on copper ion grafted upconversion nanoparticle platform for ciprofloxacin sensing in aquatic products. Food Chem. 2023, 404, 134761. [Google Scholar] [CrossRef]
- Fang, X.; Liu, T.; Xue, C.; Xue, G.; Wu, M.; Liu, P.; Hammock, B.D.; Lai, W.; Peng, J.; Zhang, C. Competitive ratiometric fluorescent lateral flow immunoassay based on dual emission signal for sensitive detection of chlorothalonil. Food Chem. 2024, 433, 137200. [Google Scholar] [CrossRef]
- Marimuthu, M.; Xu, K.; Song, W.; Chen, Q.; Wen, H. Safeguarding food safety: Nanomaterials-based fluorescent sensors for pesticide tracing. Food Chem. 2025, 463, 141288. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J.; Qiu, Y.; Li, P.; Liu, B.; Yang, L.; Barnych, B.; Hammock, B.D.; Zhang, C. Highly Specific Monoclonal Antibody and Sensitive Quantum Dot Beads-Based Fluorescence Immunochromatographic Test Strip for Tebuconazole Assay in Agricultural Products. J. Agric. Food Chem. 2019, 67, 9096–9103. [Google Scholar] [CrossRef]
- Xu, Y.; Hassan, M.; Sharma, A.S.; Li, H.; Chen, Q. Recent advancement in nano-optical strategies for detection of pathogenic bacteria and their metabolites in food safety. Crit. Rev. Food Sci. Nutr. 2023, 63, 486–504. [Google Scholar] [CrossRef]
- Gan, Z.; Hu, X.; Xu, X.; Zhang, W.; Zou, X.; Shi, J.; Zheng, K.; Arslan, M. A portable test strip based on fluorescent europium-based metal–organic framework for rapid and visual detection of tetracycline in food samples. Food Chem. 2021, 354, 129501. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, W.; Shen, Z.; Xu, W.; Zhao, J.; Li, H.; He, Q.; Fu, Y.; Cheng, J. Tailoring Super-Performed Chemo-Sensor via Simulation-Modeling and MEMS-Screening. Adv. Sci. 2025, 12, e2412937. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.S.; Marimuthu, M.; Varghese, A.W.; Wu, J.; Xu, J.; Xiaofeng, L.; Devaraj, S.; Lan, Y.; Li, H.; Chen, Q. A review of biomolecules conjugated lanthanide up-conversion nanoparticles-based fluorescence probes in food safety and quality monitoring applications. Crit. Rev. Food Sci. Nutr. 2024, 64, 6129–6159. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Peng, Z.; Zeng, Y.; Liu, G. Recent application of near-infrared fluorescence probes in food safety detection. J. Innov. Opt. Heal Sci. 2024, 18, 25300034. [Google Scholar] [CrossRef]
- Cai, Y.; Cao, L.; Cai, H.; Yang, W.; Lu, H.; Adila, A.; Zhang, B.; Cao, Y.; Huang, W.; Xu, W.; et al. A rapid microfluidic paper-based chip sensor using ratiometric fluorescence and molecularly imprinted polymers for visual detection of sulfadiazine in actual samples. J. Food Compos. Anal. 2024, 139, 107108. [Google Scholar] [CrossRef]
- Radotić, K.; Stanković, M.; Bartolić, D.; Natić, M. Intrinsic Fluorescence Markers for Food Characteristics, Shelf Life, and Safety Estimation: Advanced Analytical Approach. Foods 2023, 12, 3023. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, H.; Sui, J.; Lin, H.; Cao, L. Rapid and Sensitive Fluorescence Detection of Staphylococcus aureus Based on Polyethyleneimine-Enhanced Boronate Affinity Isolation. Foods 2023, 12, 1366. [Google Scholar] [CrossRef]
- Wang, Y.; Li, W.; Hu, X.; Zhang, X.; Huang, X.; Li, Z.; Li, M.; Zou, X.; Shi, J. Efficient preparation of dual-emission ratiometric fluorescence sensor system based on aptamer-composite and detection of bis(2-ethylhexyl) phthalate in pork. Food Chem. 2021, 352, 129352. [Google Scholar] [CrossRef]
- Shi, B.; Zhang, X.; Li, W.; Liang, N.; Hu, X.; Xiao, J.; Wang, D.; Zou, X.; Shi, J. An intrinsic dual-emitting fluorescence sensing toward tetracycline with self-calibration model based on luminescent lanthanide-functionalized metal-organic frameworks. Food Chem. 2023, 400, 133995. [Google Scholar] [CrossRef]
- Chen, X.; Xu, J.; Li, Y.; Zhang, L.; Bi, N.; Gou, J.; Zhu, T.; Jia, L. A novel intelligently integrated MOF-based ratio fluorescence sensor for ultra-sensitive monitoring of TC in water and food samples. Food Chem. 2023, 405, 134899. [Google Scholar] [CrossRef]
- Lai, L.; Yan, F.; Chen, G.; Huang, Y.; Huang, L.; Li, D. Recent Progress on Fluorescent Probes in Heavy Metal Determinations for Food Safety: A Review. Molecules 2023, 28, 5689. [Google Scholar] [CrossRef]
- Tian, X.; Murfin, L.C.; Wu, L.; Lewis, S.E.; James, T.D. Fluorescent small organic probes for biosensing. Chem. Sci. 2021, 12, 3406–3426. [Google Scholar] [CrossRef] [PubMed]
- Kakkar, S.; Gupta, P.; Kumar, N.; Kant, K. Progress in Fluorescence Biosensing and Food Safety towards Point-of-Detection (PoD) System. Biosensors 2023, 13, 249. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhao, C.; Sun, J.; Cao, Y.; Yao, K.; Xu, M. A deep learning method for predicting lead content in oilseed rape leaves using fluorescence hyperspectral imaging. Food Chem. 2023, 409, 135251. [Google Scholar] [CrossRef]
- You, J.; Li, D.; Wang, Z.; Chen, Q.; Ouyang, Q. Prediction and visualization of moisture content in Tencha drying processes by computer vision and deep learning. J. Sci. Food Agric. 2024, 104, 5486–5494. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, K.; Adade, S.Y.S.; Lin, J.; Lin, H.; Chen, Q. Tea grading, blending, and matching based on computer vision and deep learning. J. Sci. Food Agric. 2025, 105, 3239–3251. [Google Scholar] [CrossRef]
- Ji, W.; Gao, X.; Xu, B.; Pan, Y.; Zhang, Z.; Zhao, D. Apple target recognition method in complex environment based on improved YOLOv4. J. Food Process. Eng. 2021, 44, e13866. [Google Scholar] [CrossRef]
- Shlezinger, N.; Eldar, Y.C. Model-Based Deep Learning. In Foundations and Trends® in Signal Processing; Stanford University: Stanford, CA, USA, 2023; Volume 17, pp. 291–416. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Kadam, G.V.; Dubey, G.P. Survey on One-Shot Learning for Image Recognition using Machine Learning and Deep Learning Techniques. In Proceedings of the 2024 5th International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 18–20 September 2024; pp. 1055–1062. [Google Scholar]
- Tian, Y.; Sun, J.; Zhou, X.; Yao, K.; Tang, N. Detection of soluble solid content in apples based on hyperspectral technology combined with deep learning algorithm. J. Food Process. Preserv. 2022, 46, e16414. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, L.; Li, J.; Zhou, Q.; Yang, H.; Shan, Y.; Chen, Y.; Li, K.; Yu, X. Recent advances in reactive small-molecule fluorescent probes for food safety. Coord. Chem. Rev. 2025, 530, 216480. [Google Scholar] [CrossRef]
- Duan, N.; Wang, H.; Li, Y.; Yang, S.; Tian, H.; Sun, B. The research progress of organic fluorescent probe applied in food and drinking water detection. Coord. Chem. Rev. 2021, 427, 213557. [Google Scholar] [CrossRef]
- Sharma, A.S.; Ali, S.; Sabarinathan, D.; Murugavelu, M.; Li, H.; Chen, Q. Recent progress on graphene quantum dots-based fluorescence sensors for food safety and quality assessment applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5765–5801. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Ji, Z.; Fan, Y.; Xu, Q.; Shi, C.; Lyu, J.; Ertbjerg, P. Deep learning-assisted fluorescence spectroscopy for food quality and safety analysis. Trends Food Sci. Technol. 2025, 156, 104821. [Google Scholar] [CrossRef]
- Deshmukh, M.T.; Wankhede, P.; Chakole, N.; Kale, P.D.; Jadhav, M.R.; Kulkarni, M.B.; Bhaiyya, M. Towards intelligent food safety: Machine learning approaches for aflatoxin detection and risk prediction. Trends Food Sci. Technol. 2025, 161, 105055. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Cui, Z.; Shi, L.; Shang, Y.; Ji, Y.; Wang, J. Machine learning-assisted nanosensor arrays: An efficiently high-throughput food detection analysis. Trends Food Sci. Technol. 2024, 149, 104564. [Google Scholar] [CrossRef]
- Saini, N.; Kriti; Thakur, A.; Saini, S.; Kaur, N.; Singh, N. Synergizing Machine Learning and fluorescent biomolecules: A new era in sensing platforms. TrAC Trends Anal. Chem. 2025, 187, 118196. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Y.; Zhang, B.; Upadhyay, A.; Xiao, Z.; Luo, Y. Machine learning-supported sensor array for multiplexed foodborne pathogenic bacteria detection and identification. Trends Food Sci. Technol. 2024, 154, 104787. [Google Scholar] [CrossRef]
- Liang, Y.; Lin, H.; Kang, W.; Shao, X.; Cai, J.; Li, H.; Chen, Q. Application of colorimetric sensor array coupled with machine-learning approaches for the discrimination of grains based on freshness. J. Sci. Food Agric. 2023, 103, 6790–6799. [Google Scholar] [CrossRef]
- Shi, J.; Luan, F.; Zhang, H.; Liu, M.; Guo, Q.; Hu, Z.; Fan, B. QSPR Study of Fluorescence Wavelengths (λex/λem) Based on the Heuristic Method and Radial Basis Function Neural Networks. QSAR Comb. Sci. 2006, 25, 147–155. [Google Scholar] [CrossRef]
- Boczar, D.; Michalska, K. A Review of Machine Learning and QSAR/QSPR Predictions for Complexes of Organic Molecules with Cyclodextrins. Molecules 2024, 29, 3159. [Google Scholar] [CrossRef] [PubMed]
- Maji, D.; Ghosh, A.; Barman, D.; Sarkar, P. Accelerating Molecular Dynamics with a Graph Neural Network: A Scalable Approach through E(q)C-GNN. J. Phys. Chem. Lett. 2025, 16, 2254–2264. [Google Scholar] [CrossRef]
- Tang, R.; Yang, J.; Shao, C.; Shen, N.; Chen, B.; Gu, Y.; Li, C.; Xu, D.; Guo, C. Two-dimensional nanomaterials-based optical biosensors empowered by machine learning for intelligent diagnosis. TrAC Trends Anal. Chem. 2025, 185, 118162. [Google Scholar] [CrossRef]
- Tang, B.; Kramer, S.T.; Fang, M.; Qiu, Y.; Wu, Z.; Xu, D. A self-attention based message passing neural network for predicting molecular lipophilicity and aqueous solubility. J. Cheminformatics 2020, 12, 15. [Google Scholar] [CrossRef]
- Singh, K.; Münchmeyer, J.; Weber, L.; Leser, U.; Bande, A. Graph Neural Networks for Learning Molecular Excitation Spectra. J. Chem. Theory Comput. 2022, 18, 4408–4417. [Google Scholar] [CrossRef]
- Jo, J.; Kwak, B.; Choi, H.-S.; Yoon, S. The message passing neural networks for chemical property prediction on SMILES. Methods 2020, 179, 65–72. [Google Scholar] [CrossRef]
- Schütt, K.T.; Sauceda, H.E.; Kindermans, P.-J.; Tkatchenko, A.; Müller, K.-R. A deep learning architecture for molecules and materials. J. Chem. Phys. 2018, 148, 241722. [Google Scholar] [CrossRef]
- Zhu, F.W.; Futrega, M.; Bao, H.; Eryilmaz, S.B.; Kong, F.; Jouanneaux, M.; Stadler, M.; Marcinkiewicz, M.; Duan, K.F.; Zheng, X.N.A.; et al. FastDimeNet plus plus: Training DimeNet++ in 22 minutes. In Proceedings of the 52nd International Conference on Parallel Processing (ICPP), Salt Lake City, UT, USA, 7–10 August 2023; pp. 274–284. [Google Scholar]
- Nandi, S.; Vegge, T.; Bhowmik, A. MultiXC-QM9: Large dataset of molecular and reaction energies from multi-level quantum chemical methods. Sci. Data 2023, 10, 783. [Google Scholar] [CrossRef]
- Bobrowski, T.M.; Korn, D.R.; Muratov, E.N.; Tropsha, A. ZINC Express: A Virtual Assistant for Purchasing Compounds Annotated in the ZINC Database. J. Chem. Inf. Model. 2021, 61, 1033–1036. [Google Scholar] [CrossRef]
- Zhu, Y.; Fang, J.; Ahmed, S.A.H.; Zhang, T.; Zeng, S.; Liao, J.-Y.; Ma, Z.; Qian, L. A modular artificial intelligence framework to facilitate fluorophore design. Nat. Commun. 2025, 16, 3598. [Google Scholar] [CrossRef]
- Ibrahim, A.; Ataca, C. Prediction of Frequency-Dependent Optical Spectrum for Solid Materials: A Multi-Output & Multi-Fidelity Machine Learning Approach. ACS Appl. Mater. Interfaces 2024, 16, 41145–41156. [Google Scholar]
- Joung, J.F.; Han, M.; Hwang, J.; Jeong, M.; Choi, D.H.; Park, S. Deep Learning Optical Spectroscopy Based on Experimental Database: Potential Applications to Molecular Design. JACS Au 2021, 1, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Ju, C.-W.; Bai, H.; Li, B.; Liu, R. Machine Learning Enables Highly Accurate Predictions of Photophysical Properties of Organic Fluorescent Materials: Emission Wavelengths and Quantum Yields. J. Chem. Inf. Model. 2021, 61, 1053–1065. [Google Scholar] [CrossRef] [PubMed]
- Voznyy, O.; Levina, L.; Fan, J.Z.; Askerka, M.; Jain, A.; Choi, M.-J.; Ouellette, O.; Todorović, P.; Sagar, L.K.; Sargent, E.H. Machine Learning Accelerates Discovery of Optimal Colloidal Quantum Dot Synthesis. ACS Nano 2019, 13, 11122–11128. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-N.; Liang, H.-P.; Zhang, X.; Lin, Z.; Wei, S.-H. Graph deep learning accelerated efficient crystal structure search and feature extraction. npj Comput. Mater. 2023, 9, 176. [Google Scholar] [CrossRef]
- Bühlmann, S.; Reymond, J.-L. ChEMBL-Likeness Score and Database GDBChEMBL. Front. Chem. 2020, 8, 46. [Google Scholar] [CrossRef]
- Zheng, L.; Fan, J.; Mu, Y. OnionNet: A Multiple-Layer Intermolecular-Contact-Based Convolutional Neural Network for Protein–Ligand Binding Affinity Prediction. ACS Omega 2019, 4, 15956–15965. [Google Scholar] [CrossRef]
- Zheng, L.; Meng, J.; Jiang, K.; Lan, H.; Wang, Z.; Lin, M.; Li, W.; Guo, H.; Wei, Y.; Mu, Y. Improving protein-ligand docking and screening accuracies by incorporating a scoring function correction term. Briefings Bioinform. 2022, 23, bbac051. [Google Scholar] [CrossRef]
- Dong, J.; Qian, J.; Yu, K.; Huang, S.; Cheng, X.; Chen, F.; Jiang, H.; Zeng, W. Rational Design of Organelle-Targeted Fluorescent Probes: Insights from Artificial Intelligence. Research 2023, 6, 0075. [Google Scholar] [CrossRef]
- Bang, K.; Kim, J.; Hong, D.; Kim, D.; Han, S.S. Inverse design for materials discovery from the multidimensional electronic density of states. J. Mater. Chem. A 2024, 12, 6004–6013. [Google Scholar] [CrossRef]
- Cheng, M.; Fu, C.-L.; Okabe, R.; Chotrattanapituk, A.; Boonkird, A.; Hung, N.T.; Li, M. AI-driven materials design: A mini-review. arXiv 2025, arXiv:2502.02905. [Google Scholar]
- Ma, T.; Chen, J.; Xiao, C. Constrained generation of semantically valid graphs via regularizing variational autoencoders. Adv. Neural Inf. Process. Syst. 2018, 31, 23–28. [Google Scholar]
- Bresson, X.; Laurent, T. A two-step graph convolutional decoder for molecule generation. arXiv 2019, arXiv:1906.03412. [Google Scholar]
- Wang, Y.; Li, Z.; Barati Farimani, A. Graph Neural Networks for Molecules. In Machine Learning in Molecular Sciences; Qu, C., Liu, H., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 21–66. [Google Scholar]
- Gómez-Bombarelli, R.; Wei, J.N.; Duvenaud, D.; Hernández-Lobato, J.M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T.D.; Adams, R.P.; Aspuru-Guzik, A. Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS Central Sci. 2018, 4, 268–276. [Google Scholar] [CrossRef]
- Tan, Z.; Li, Y.; Wu, X.; Zhang, Z.; Shi, W.; Yang, S.; Zhang, W. De novo creation of fluorescent molecules via adversarial generative modeling. RSC Adv. 2023, 13, 1031–1040. [Google Scholar] [CrossRef]
- Prykhodko, O.; Johansson, S.V.; Kotsias, P.-C.; Arús-Pous, J.; Bjerrum, E.J.; Engkvist, O.; Chen, H. A de novo molecular generation method using latent vector based generative adversarial network. J. Chemin. 2019, 11, 74. [Google Scholar] [CrossRef]
- Ghosh, K.; Stuke, A.; Todorović, M.; Jørgensen, P.B.; Schmidt, M.N.; Vehtari, A.; Rinke, P. Deep Learning Spectroscopy: Neural Networks for Molecular Excitation Spectra. Adv. Sci. 2019, 6, 1801367. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- De Cao, N.; Kipf, T. MolGAN: An implicit generative model for small molecular graphs. arXiv 2018, arXiv:1805.11973. [Google Scholar]
- Popova, M.; Isayev, O.; Tropsha, A. Deep reinforcement learning for de novo drug design. Sci. Adv. 2018, 4, eaap7885. [Google Scholar] [CrossRef]
- Li, C.; Tang, H.; Zhu, Y.; Yamanishi, Y. A Reinforcement Learning-Driven Transformer GAN for Molecular Generation. arXiv 2025, arXiv:2503.12796. [Google Scholar]
- Goel, M.; Raghunathan, S.; Laghuvarapu, S.; Priyakumar, U.D. MoleGuLAR: Molecule Generation Using Reinforcement Learning with Alternating Rewards. J. Chem. Inf. Model. 2021, 61, 5815–5826. [Google Scholar] [CrossRef] [PubMed]
- Zang, C.; Wang, F. Moflow: An invertible flow model for generating molecular graphs. In Proceedings of the KDD ‘20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, 6–10 July 2020; pp. 617–626. [Google Scholar]
- Luo, Y.; Fang, J.; Li, S.; Liu, Z.; Wu, J.; Zhang, A.; Du, W.; Wang, X. Text-guided small molecule generation via diffusion model. iScience 2024, 27, 110992. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Wang, F.; Luo, Y.; Kang, S.-G.; Tang, J.; Lightstone, F.C.; Fang, E.F.; Cornell, W.; Nussinov, R.; Cheng, F. Deep generative molecular design reshapes drug discovery. Cell Rep. Med. 2022, 3, 100794. [Google Scholar] [CrossRef] [PubMed]
- Aernouts, B.; Van Beers, R.; Watté, R.; Huybrechts, T.; Lammertyn, J.; Saeys, W. Visible and near-infrared bulk optical properties of raw milk. J. Dairy Sci. 2015, 98, 6727–6738. [Google Scholar] [CrossRef]
- Russell, J.D.; Scalf, M.; Book, A.J.; Ladror, D.T.; Vierstra, R.D.; Smith, L.M.; Coon, J.J.; Hess, S. Characterization and quantification of intact 26S proteasome proteins by real-time measurement of intrinsic fluorescence prior to top-down mass spectrometry. PLoS ONE 2013, 8, e58157. [Google Scholar] [CrossRef]
- Venturini, F.; Sperti, M.; Michelucci, U.; Gucciardi, A.; Martos, V.M.; Deriu, M.A. Extraction of physicochemical properties from the fluorescence spectrum with 1D convolutional neural networks: Application to olive oil. J. Food Eng. 2023, 336, 111198. [Google Scholar] [CrossRef]
- Ouyang, Q.; Fan, Z.; Chang, H.; Shoaib, M.; Chen, Q. Analyzing TVB-N in snakehead by Bayesian-optimized 1D-CNN using molecular vibrational spectroscopic techniques: Near-infrared and Raman spectroscopy. Food Chem. 2025, 464, 141701. [Google Scholar] [CrossRef]
- Wang, B.; Deng, J.; Jiang, H. Markov Transition Field Combined with Convolutional Neural Network Improved the Predictive Performance of Near-Infrared Spectroscopy Models for Determination of Aflatoxin B1 in Maize. Foods 2022, 11, 2210. [Google Scholar] [CrossRef]
- Venturini, F.; Michelucci, U.; Sperti, M.; Gucciardi, A.; Deriu, M.A.; Berghmans, F.; Zergioti, I. One-dimensional convolutional neural networks design for fluorescence spectroscopy with prior knowledge: Explainability techniques applied to olive oil fluorescence spectra. In Proceedings of the Optical Sensing and Detection VII, Strasbourg, France, 3 April–23 May 2022; Volume 12139, pp. 323–333. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, Z.; Tian, R.; Gao, S.; Niu, Y.; Liu, H. Exploration of total synchronous fluorescence spectroscopy combined with pre-trained convolutional neural network in the identification and quantification of vegetable oil. Food Chem. 2021, 335, 127640. [Google Scholar] [CrossRef]
- Lin, Y.; Ma, J.; Sun, D.-W.; Cheng, J.-H.; Zhou, C. Fast real-time monitoring of meat freshness based on fluorescent sensing array and deep learning: From development to deployment. Food Chem. 2024, 448, 139078. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Feng, X.; Li, Y.; Lin, X.; Cai, F. Compact three-dimensional fluorescence spectroscopy and its application in food safety. LWT 2024, 202, 116324. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, H.-W.; Yin, X.-L.; Geng, T.; Long, W.; Fu, H.; She, Y. Deep leaning in food safety and authenticity detection: An integrative review and future prospects. Trends Food Sci. Technol. 2024, 146, 104396. [Google Scholar] [CrossRef]
- Nazir, A.; Hussain, A.; Assad, A. CNN in Food Industry: Current Practices and Future Trends. In Artificial Intelligence in the Food Industry; CRC Press: Boca Raton, FL, USA, 2025; pp. 329–354. [Google Scholar] [CrossRef]
- Seltmann, A.; Carravilla, P.; Reglinski, K.; Eggeling, C.; Waithe, D. Neural network informed photon filtering reduces fluorescence correlation spectroscopy artifacts. Biophys. J. 2024, 123, 745–755. [Google Scholar] [CrossRef]
- Deng, J.; Chen, Z.; Jiang, H.; Chen, Q. High-precision detection of dibutyl hydroxytoluene in edible oil via convolutional autoencoder compressed Fourier-transform near-infrared spectroscopy. Food Control 2025, 167, 110808. [Google Scholar] [CrossRef]
- Ren, P.; Zhou, R.-G.; Li, Y. A Self-supervised Learning Method for Raman Spectroscopy based on Masked Autoencoders. Expert Syst. Appl. 2025, 292, 128576. [Google Scholar] [CrossRef]
- Pode, Z.; Peri-Naor, R.; Georgeson, J.M.; Ilani, T.; Kiss, V.; Unger, T.; Markus, B.; Barr, H.M.; Motiei, L.; Margulies, D. Protein recognition by a pattern-generating fluorescent molecular probe. Nat. Nanotechnol. 2017, 12, 1161–1168. [Google Scholar] [CrossRef]
- Han, X.; Che, L.; Zhao, Y.; Chen, Y.; Zhou, S.; Wang, J.; Yin, M.; Wang, S.; Deng, Q. Fluorescence sensor array of a multiplexing probe with three/four excitations/emissions for rapid and highly sensitive discrimination of foodborne pathogenic bacteria. Sens. Actuators B Chem. 2023, 388, 133847. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, T.; Tian, J.; An, R.; Shen, Y.; Liu, M.; Yao, Z. A General Strategy for Food Traceability and Authentication Based on Assembly-Tunable Fluorescence Sensor Arrays. Adv. Sci. 2024, 11, e2309259. [Google Scholar] [CrossRef]
- Xu, X.; Wang, X.; Ding, Y.; Zhou, X.; Ding, Y. Integration of lanthanide MOFs/methylcellulose-based fluorescent sensor arrays and deep learning for fish freshness monitoring. Int. J. Biol. Macromol. 2024, 265, 131011. [Google Scholar] [CrossRef] [PubMed]
- Noreldeen, H.A.A.; Huang, K.-Y.; Wu, G.-W.; Peng, H.-P.; Deng, H.-H.; Chen, W. Deep Learning-Based Sensor Array: 3D Fluorescence Spectra of Gold Nanoclusters for Qualitative and Quantitative Analysis of Vitamin B6 Derivatives. Anal. Chem. 2022, 94, 9287–9296. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Paul, D.; Saha, S.; Das, P. Deep learning assisted detection of toxic heavy metal ions based on visual fluorescence responses from a carbon nanoparticle array. Environ. Sci. Nano 2022, 9, 2596–2606. [Google Scholar] [CrossRef]
- Wang, X.; Lin, W.; Chen, C.; Kong, L.; Huang, Z.; Kirsanov, D.; Legin, A.; Wan, H.; Wang, P. Neural networks based fluorescence and electrochemistry dual-modal sensor for sensitive and precise detection of cadmium and lead simultaneously. Sens. Actuators B Chem. 2022, 366, 131922. [Google Scholar] [CrossRef]
- Tian, C.; Lee, Y.; Song, Y.; Elmasry, M.R.; Yoon, M.; Kim, D.-H.; Cho, S.-Y. Machine-Learning-Enhanced Fluorescent Nanosensor Based on Carbon Quantum Dots for Heavy Metal Detection. ACS Appl. Nano Mater. 2024, 7, 5576–5586. [Google Scholar] [CrossRef]
- Sarmanova, O.; Laptinskiy, K.; Burikov, S.; Chugreeva, G.; Dolenko, T. Implementing neural network approach to create carbon-based optical nanosensor of heavy metal ions in liquid media. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 286, 122003. [Google Scholar] [CrossRef]
- Li, M.; Pan, Q.; Wang, J.; Wang, Z.; Peng, C. Machine learning-assisted fluorescence sensor array for qualitative and quantitative analysis of pyrethroid pesticides. Food Chem. 2024, 433, 137368. [Google Scholar] [CrossRef]
- Yun, P.; Jinorose, M.; Devahastin, S. Rapid smartphone-based assays for pesticides inspection in foods: Current status, limitations, and future directions. Crit. Rev. Food Sci. Nutr. 2024, 64, 6251–6271. [Google Scholar] [CrossRef]
- Tan, X.; Liang, Y.; Ye, Y.; Liu, Z.; Meng, J.; Li, F. Explainable Deep Learning-Assisted Fluorescence Discrimination for Aminoglycoside Antibiotic Identification. Anal. Chem. 2022, 94, 829–836. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, M.; Shao, C.; Liu, T.; Sun, M.; Wu, C.; Su, G.; Wang, Y.; Ye, J.; Hu, H.; et al. Nanozyme-induced deep learning-assisted smartphone integrated colorimetric and fluorometric dual-mode for detection of tetracycline analogs. Anal. Chim. Acta 2024, 1297, 342373. [Google Scholar] [CrossRef]
- Wu, L.; Li, Y.; Xiang, X.; Qin, H.; Zhao, J.; Zhai, X.; Li, P.; Li, Z. Machine learning-enabled flexible luminescent sensor for non-destructive mapping antibiotics distribution on seafood. Chem. Eng. J. 2025, 510, 161376. [Google Scholar] [CrossRef]
- Li, Z.; Jin, K.; Chen, H.; Zhang, L.; Zhang, G.; Jiang, Y.; Zou, H.; Wang, W.; Qi, G.; Qu, X. A machine learning approach-based array sensor for rapidly predicting the mechanisms of action of antibacterial compounds. Nanoscale 2022, 14, 3087–3096. [Google Scholar] [CrossRef]
- Li, M.; Xu, J.; Peng, C.; Wang, Z. Deep learning-assisted flavonoid-based fluorescent sensor array for the nondestructive detection of meat freshness. Food Chem. 2024, 447, 138931. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, M.; Zhu, Q.; Adhikari, B. Intelligent vegetable freshness monitoring system developed by integrating eco-friendly fluorescent sensor arrays with deep convolutional neural networks. Chem. Eng. J. 2024, 488, 150739. [Google Scholar] [CrossRef]
- Tan, X.; Ye, Y.; Liu, H.; Meng, J.; Yang, L.; Li, F. Deep Learning-Assisted Visualized Fluorometric Sensor Array for Biogenic Amines Detection. Chin. J. Chem. 2022, 40, 609–616. [Google Scholar] [CrossRef]
- Fan, L.; Chen, Y.; Zeng, Y.; Yu, Z.; Dong, Y.; Li, D.; Zhang, C.; Ye, C. Application of visual intelligent labels in the assessment of meat freshness. Food Chem. 2024, 460, 140562. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, B. Convolution Neural Network-Assisted Smart Fluorescent-Tongue Based on Lanthanide Ion-Induced Forming MOF/HOF Composite for Differentiation of Flavor Compounds and Wine Identification. ACS Sens. 2023, 8, 3585–3594. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, Z.; Tian, R.; Shang, Z.; Liu, H. Identification and quantification of counterfeit sesame oil by 3D fluorescence spectroscopy and convolutional neural network. Food Chem. 2020, 311, 125882. [Google Scholar] [CrossRef]
- Laliwala, A.; Svechkarev, D.; Sadykov, M.R.; Endres, J.; Bayles, K.W.; Mohs, A.M. Simpler Procedure and Improved Performance for Pathogenic Bacteria Analysis with a Paper-Based Ratiometric Fluorescent Sensor Array. Anal. Chem. 2022, 94, 2615–2624. [Google Scholar] [CrossRef]
- Aggarwal, M.; Sahoo, P.; Saha, S.; Das, P. Machine Learning-Mediated Ultrasensitive Detection of Citrinin and Associated Mycotoxins in Real Food Samples Discerned from a Photoluminescent Carbon Dot Barcode Array. J. Agric. Food Chem. 2023, 71, 12849–12858. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Z.; He, H.; Liu, J.; Deng, J.; Jiang, L.; Liu, X. Ratiometric fluorescence sensor based on deep learning for rapid and user-friendly detection of tetracycline antibiotics. Food Chem. 2024, 450, 138961. [Google Scholar] [CrossRef]
- Lu, Z.; Li, J.; Ruan, K.; Sun, M.; Zhang, S.; Liu, T.; Yin, J.; Wang, X.; Chen, H.; Wang, Y.; et al. Deep learning-assisted smartphone-based ratio fluorescence for “on–off-on” sensing of Hg2+ and thiram. Chem. Eng. J. 2022, 435, 134979. [Google Scholar] [CrossRef]
- Wu, C.; Chang, H.; Chen, X.; Yang, S.; Dai, Y.; Tan, P.; Chen, Y.; Shen, C.; Lu, Z.; Sun, M.; et al. Deep Learning-Assisted Rapid Assessment of Food Freshness Using an Anti-interfering Triple-Emission Ratiometric Fluorescent Sensor. ACS Sustain. Chem. Eng. 2024, 12, 2465–2475. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, K.; Zhang, M.; Wang, T.; Du, X.; Gao, Z.; Hu, S.; Ren, X.; Feng, H. Machine learning assisted dual-emission fluorescence/colorimetric sensor array detection of multiple antibiotics under stepwise prediction strategy. Sens. Actuators B Chem. 2022, 359, 131590. [Google Scholar] [CrossRef]
- Upadhyay, L.S.B.; Verma, N. Enzyme Inhibition Based Biosensors: A Review. Anal. Lett. 2013, 46, 225–241. [Google Scholar] [CrossRef]
- Wang, C.; Gu, C.; Zhao, X.; Yu, S.; Zhang, X.; Xu, F.; Ding, L.; Huang, X.; Qian, J. Self-designed portable dual-mode fluorescence device with custom python-based analysis software for rapid detection via dual-color FRET aptasensor with IoT capabilities. Food Chem. 2024, 457, 140190. [Google Scholar] [CrossRef] [PubMed]
- Perez-Gonzalez, C.; Lafontaine, D.A.; Penedo, J.C. Fluorescence-Based Strategies to Investigate the Structure and Dynamics of Aptamer-Ligand Complexes. Front. Chem. 2016, 4, 33. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, X.; Ren, X.; Li, W.; Sun, J.; Wang, X.; Huang, Y.; Guo, Y.; Zeng, H. Novel fluorescence immunoassay for the detection of zearalenone using HRP-mediated fluorescence quenching of gold-silver bimetallic nanoclusters. Food Chem. 2021, 355, 129633. [Google Scholar] [CrossRef]
- Ouyang, Q.; Wang, L.; Ahmad, W.; Yang, Y.; Chen, Q. Upconversion Nanoprobes Based on a Horseradish Peroxidase-Regulated Dual-Mode Strategy for the Ultrasensitive Detection of Staphylococcus aureus in Meat. J. Agric. Food Chem. 2021, 69, 9947–9956. [Google Scholar] [CrossRef]
- McCann, B.; Tipper, B.; Shahbeigi, S.; Soleimani, M.; Jabbari, M.; Esfahani, M.N. A Review on Perception of Binding Kinetics in Affinity Biosensors: Challenges and Opportunities. ACS Omega 2025, 10, 4197–4216. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Nunekpeku, X.; Zhang, W.; Gao, J.; Adade, S.Y.-S.S.; Li, H.; Chen, Q. Gel strength prediction in ultrasonicated chicken mince: Fusing near-infrared and Raman spectroscopy coupled with deep learning LSTM algorithm. Food Control 2025, 168, 110916. [Google Scholar] [CrossRef]
- Wang, Y.; Li, T.; Chen, T.; Zhang, X.; Taha, M.F.; Yang, N.; Mao, H.; Shi, Q. Cucumber Downy Mildew Disease Prediction Using a CNN-LSTM Approach. Agriculture 2024, 14, 1155. [Google Scholar] [CrossRef]
- Gao, Y.; Glowacka, D. Deep gate recurrent neural network. In Proceedings of the Asian Conference on Machine Learning, PMLR, Hamilton, New Zealand, 16–18 November 2016; pp. 350–365. [Google Scholar]
- Gouzou, D.; Taimori, A.; Haloubi, T.; Finlayson, N.; Wang, Q.; Hopgood, J.R.; Vallejo, M. Applications of machine learning in time-domain fluorescence lifetime imaging: A Review. Methods Appl. Fluoresc. 2024, 12, 022001. [Google Scholar] [CrossRef]
- Fan, Y.; Dong, R.; Luo, Y.; Tan, Y.; Hong, H.; Ji, Z.; Shi, C. Deep learning models with optimized fluorescence spectroscopy to advance freshness of rainbow trout predicting under nonisothermal storage conditions. Food Chem. 2024, 454, 139774. [Google Scholar] [CrossRef] [PubMed]
- Xi, Z.; Nicolas, R.; Wei, J. An Edge-Deployable Multi-Modal Nano-Sensor Array Coupled with Deep Learning for Real-Time, Multi-Pollutant Water-Quality Monitoring. Water 2025, 17, 2065. [Google Scholar] [CrossRef]
- Saltepe, B.; Bozkurt, E.U.; Güngen, M.A.; Çiçek, A.E.; Şeker, U.Ö.Ş. Genetic circuits combined with machine learning provides fast responding living sensors. Biosens. Bioelectron. 2021, 178, 113028. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Chen, W.; Chen, S.; Wu, P.; Lv, Z.; Wu, J.; Chen, Z.; Li, Z.; Luo, F.; Liu, X. Research on Malodor Component Identification Based on Sensor Array. Sensors 2025, 25, 3857. [Google Scholar] [CrossRef]
- Li, H.; Xu, H.; Li, Y.; Li, X. Application of artificial intelligence (AI)-enhanced biochemical sensing in molecular diagnosis and imaging analysis: Advancing and challenges. TrAC Trends Anal. Chem. 2024, 174, 117700. [Google Scholar] [CrossRef]
- Zeng, L.; Fu, Y.; Guo, J.; Guo, J. Technology, Combination of fluorescence sensor and artificial intelligence—A new method of quantitative ketamine detection. Meas. Sci. Technol. 2023, 34, 125701. [Google Scholar] [CrossRef]
- Dehimi, N.E.H.; Tolba, Z. Attention mechanisms in deep learning: Towards explainable artificial intelligence. In Proceedings of the 2024 6th International Conference on Pattern Analysis and Intelligent Systems (PAIS), El Oued, Algeria, 24–25 April 2024; pp. 1–7. [Google Scholar]
- Wang, W.; Chen, K.; Ma, X.; Guo, J. Artificial intelligence reinforced upconversion nanoparticle-based lateral flow assay via transfer learning. Fundam. Res. 2023, 3, 544–556. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Sun, J.; Cheng, J.; Fu, L.; Wang, S.; Xu, M. Detection of starch in minced chicken meat based on hyperspectral imaging technique and transfer learning. J. Food Process. Eng. 2023, 46, e14304. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Willard, J.; Jia, X.; Xu, S.; Steinbach, M.; Kumar, V. Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems. ACM Comput. Surv. 2022, 55, 66. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, J.; Xie, H.; He, Y. Physics-informed deep learning for stochastic particle dynamics estimation. Proc. Natl. Acad. Sci. USA 2025, 122, e2418643122. [Google Scholar] [CrossRef]
- Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A survey on vision transformer. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 87–110. [Google Scholar] [CrossRef]
- Ji, W.; Zhai, K.; Xu, B.; Wu, J. Green Apple Detection Method Based on Multidimensional Feature Extraction Network Model and Transformer Module. J. Food Prot. 2025, 88, 100397. [Google Scholar] [CrossRef]
- Gou, J.; Yu, B.; Maybank, S.J.; Tao, D. Knowledge distillation: A survey. Int. J. Comput. Vis. 2021, 129, 1789–1819. [Google Scholar] [CrossRef]
- Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016, 3, 637–646. [Google Scholar] [CrossRef]
Model Architecture | Key Advantages | Key Challenges | Controllability/Goal Orientation | Seminal Paper |
---|---|---|---|---|
Variational Autoencoder (VAE) | Smooth latent space, facilitating gradient-based property optimization and interpolation. | Sometimes low validity of reconstructed molecules; tends to generate training set-similar molecules. | Good, via joint training with property predictors or latent space optimization. | [111] |
Generative Adversarial Network (GAN) | Generates high-quality, novel, and diverse molecules. | Unstable training, prone to mode collapse. | Moderate, typically combined with RL or conditional GAN. | [115] |
Reinforcement Learning (RL)-Guided Model | Directly optimizes complex, non-differentiable rewards (e.g., synthetic accessibility); strong goal orientation. | Difficult reward function design; hard to balance exploration/exploitation. | Very high, enables multi-objective optimization via well-designed rewards. | [117] |
Diffusion Model | Capable of generating extremely high-quality samples, exhibiting good diversity, stable training dynamics. | Slow sampling (due to iterative denoising process), large model size requirements, high computational cost per sample. | Good, achievable via guidance or conditional input. | [121] |
Flow-based Model | Exact and efficient likelihood calculation, enabling precise probability density estimation; invertible transformations, stable training. | Strong architectural constraints (e.g., requiring bijective transformations), potentially high computational cost during training/inference. | Moderate, achievable via conditional flow models. | [122] |
Sensor Array Composition/ Probe Material | Food Matrix | Target Analyte(s) | Machine Learning/ Deep learning Model | Key Performance Metrics | Reference |
---|---|---|---|---|---|
Copper nanoclusters (CuNCs) & fluorescent dyes | Pork | Meat freshness (Ammonia, dimethylamine, trimethylamine) | SqueezeNet (CNN), Grad-CAM, UMAP | Limit of detection (LOD): 131.56 ppb. Accuracy: 98.17%. | Lin et al. [130] |
EuMOF-FITC | Fish products | Fish freshness | ResNext-101 | LOD: 3.94 ppm (NH3). Accuracy: 98.97%. | Xu et al. [140] |
Cys/NAC–AuNC&3D fluorescence spectra | Foods | Vitamin B6 derivatives | DNN, CNN | Accuracy: 97.77–100%. R2 = 97.01% | Noreldeen et al. [141] |
Flavonoid-based fluorescent sensor array | Packaged meat | Meat freshness | DCNN | Accuracy: 97.1%. | Li et al. [152] |
Rhodamine B-CD@Au, rhodamine 6G-CD@Au, & coumarin 6-CD@Au | Vegetables and fruits | Pyrethroid pesticides (PPs) | HCA, SVM, BPNN | LOD: magnitude of ppm. Recovery: 94.7–105%. | Li et al. [146] |
Carbon dot & europium-doped calcium fluoride | Milk, egg | Tetracycline antibiotics (TCs) | Resnet18 | LOD: 0.05 μM. Accuracy: 99.0%. | Chen et al. [160] |
Au NCs@ Fe-MIL-88NH2 | Water samples | Hg2+ and thiram | Yolov3 | LOD: 7 nM (Hg2+). Precision: 97.1%. | Lu et al. [161] |
Carbon dots (CDs) &Ru-MOFs | Shrimp and pork | Food freshness | YOLO | Recovery: 98.63–106.64%, RSD < 1.56%. | Wu et al. [162] |
Carbon dots & CdTe quantum dots | Foods | Nine antibiotics | SX-model | Accuracy: 95%. average concentration error for unknown samples: 4.93% | Xu et al. [163] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Yang, S.; Li, W.; Wu, Y.; Luo, W. Deep Learning-Driven Intelligent Fluorescent Probes: Advancements in Molecular Design for Accurate Food Safety Detection. Foods 2025, 14, 3114. https://doi.org/10.3390/foods14173114
Shi Y, Yang S, Li W, Wu Y, Luo W. Deep Learning-Driven Intelligent Fluorescent Probes: Advancements in Molecular Design for Accurate Food Safety Detection. Foods. 2025; 14(17):3114. https://doi.org/10.3390/foods14173114
Chicago/Turabian StyleShi, Yongqiang, Sisi Yang, Wenting Li, Yuqing Wu, and Weiran Luo. 2025. "Deep Learning-Driven Intelligent Fluorescent Probes: Advancements in Molecular Design for Accurate Food Safety Detection" Foods 14, no. 17: 3114. https://doi.org/10.3390/foods14173114
APA StyleShi, Y., Yang, S., Li, W., Wu, Y., & Luo, W. (2025). Deep Learning-Driven Intelligent Fluorescent Probes: Advancements in Molecular Design for Accurate Food Safety Detection. Foods, 14(17), 3114. https://doi.org/10.3390/foods14173114