Characterization of an Extensively Drug-Resistant Salmonella Kentucky ST198 Co-Harboring cfr, mcr-1 and tet(A) Variant from Retail Chicken Meat in Shanghai, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates
2.2. Polymerase Chain Reaction and DNA Sequencing of ARGs
2.3. Antimicrobial Susceptibility Testing of CMT Isolates
2.4. Whole Genome Sequencing and Analysis of the CMT Isolate
2.5. Conjugation Transfer Assay
2.6. Phylogenetic Tree Analysis of the S. Kentucky Isolates and IncI2 Plasmids Harboring the mcr-1 Gene
3. Results and Discussion
3.1. Phenotypic Characteristics and Antibiotic Resistance Determinants of Isolate Sal23C1
3.2. Phylogenetic Relationship of mcr-1-Positive S. Kentucky Isolates and IncI2 Plasmids
3.3. Molecular Characteristics of the Multidrug Resistance Region and Salmonella Genomic Island 1
3.4. Genomic Characteristics of cfr-Positive Plasmid p3Sal23C1cfr
3.5. Genomic Characteristics of mcr-1-Positive Plasmid p2Sal23C1mcr
3.6. Conjugation Transfer of Plasmids Carrying mcr-1 and cfr
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zizza, A.; Fallucca, A.; Guido, M.; Restivo, V.; Roveta, M.; Trucchi, C. Foodborne infections and Salmonella: Current primary prevention tools and future perspectives. Vaccines 2024, 13, 29. [Google Scholar] [CrossRef]
- Kumar, G.; Kumar, S.; Jangid, H.; Dutta, J.; Shidiki, A. The rise of non-typhoidal Salmonella: An emerging global public health concern. Front. Microbiol. 2025, 16, 1524287. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Z.; He, S.; Chang, J.; Hu, M.; Zhang, Z.; Cui, Y.; Shi, X. Characterization of novel mutations involved in the development of resistance to colistin in Salmonella isolates from retail pork in Shanghai, China. Int. J. Food Microbiol. 2025, 430, 111027. [Google Scholar] [CrossRef]
- Zhan, Z.; He, S.; Zhang, Z.; Hu, M.; Chang, J.; Cui, Y.; Shi, C.; Shi, X. Contribution of Novel Substitutions in PmrAB to the Development of Resistance to Colistin in mcr-Negative Salmonella Isolates. Food Sci. Hum. Wellness, 2025; in press. [Google Scholar]
- Odey, T.O.J.; Tanimowo, W.O.; Afolabi, K.O.; Jahid, I.K.; Reuben, R.C. Antimicrobial use and resistance in food animal production: Food safety and associated concerns in Sub-Saharan Africa. Int. Microbiol. 2024, 27, 1–23. [Google Scholar] [CrossRef] [PubMed]
- García-Díez, J.; Moura, D.; Grispoldi, L.; Cenci-Goga, B.; Saraiva, S.; Silva, F.; Saraiva, C.; Ausina, J. Salmonella spp. in Domestic Ruminants, Evaluation of Antimicrobial Resistance Based on the One Health Approach—A Systematic Review and Meta-Analysis. Vet. Sci. 2024, 11, 315. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Meng, C.; Wang, Z.; Li, Q.; Xu, C.; Kang, X.; Chen, L.; Wang, F.; Jiao, X.; Pan, Z. Prevalence and transmission of extensively drug-resistant Salmonella enterica serovar Kentucky ST198 based on whole-genome sequence in an intensive laying hen farm in Jiangsu, China. Poult. Sci. 2024, 103, 103608. [Google Scholar] [CrossRef]
- Kong, X.; Wang, J.; Lei, G.; Yang, Y.; Huang, W.; Leng, Y.; Miao, Y.; Li, M.; Yuan, Q.; Zhao, Y. Emergence of extensively drug-resistant Salmonella Kentucky ST198 in Southwest China. J. Glob. Antimicrob. Resist. 2025, 43, 264–270. [Google Scholar] [CrossRef]
- Selim, M.I.; El-banna, T.; Sonbol, F.; Elekhnawy, E. Arthrospira maxima and biosynthesized zinc oxide nanoparticles as antibacterials against carbapenem-resistant Klebsiella pneumoniae and Acinetobacter baumannii: A review article. Microb. Cell Factories 2024, 23, 311. [Google Scholar] [CrossRef]
- Abdelaziz, M.A.; El-Aziz, A.M.A.; El-Sokkary, M.M.; Barwa, R. Characterization and genetic analysis of extensively drug-resistant hospital acquired Pseudomonas aeruginosa isolates. BMC Microbiol. 2024, 24, 225. [Google Scholar] [CrossRef]
- Chowdhury, M.S.R.; Hossain, H.; Rahman, M.N.; Rahman, A.; Ghosh, P.K.; Uddin, M.B.; Nazmul Hoque, M.; Hossain, M.M.; Rahman, M.M. Emergence of highly virulent multidrug and extensively drug resistant Escherichia coli and Klebsiella pneumoniae in buffalo subclinical mastitis cases. Sci. Rep. 2025, 15, 11704. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.; Giske, C.; Harbarth, S.; Hindler, J.; Kahlmeter, G.; Olsson-Liljequist, B. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Jabeen, K.; Saleem, S.; Jahan, S.; Nizamudin, S.; Arshad, F.; Huma, Z.-e.; Raza, S.M.; Mehmood, M.; Roman, M.; Haq, F.U. Molecular characterization of extensively drug resistant Salmonella enterica Serovar Typhi clinical isolates from Lahore, Pakistan. Infect. Drug Resist. 2023, 16, 2987–3001. [Google Scholar] [CrossRef]
- Loconsole, D.; Sallustio, A.; Sacco, D.; Santantonio, M.; Casulli, D.; Gatti, D.; Accogli, M.; Parisi, A.; Zagaria, R.; Colella, V. Genomic surveillance of carbapenem-resistant Klebsiella pneumoniae reveals a prolonged outbreak of extensively drug-resistant ST147 NDM-1 during the COVID-19 pandemic in the Apulia region (Southern Italy). J. Glob. Antimicrob. Resist. 2024, 36, 260–266. [Google Scholar] [CrossRef]
- Abd El-Aziz, N.K.; Tartor, Y.H.; Gharieb, R.M.; Erfan, A.M.; Khalifa, E.; Said, M.A.; Ammar, A.M.; Samir, M. Extensive drug-resistant Salmonella enterica isolated from poultry and humans: Prevalence and molecular determinants behind the co-resistance to ciprofloxacin and tigecycline. Front. Microbiol. 2021, 12, 738784. [Google Scholar] [CrossRef] [PubMed]
- Mondal, A.H.; Khare, K.; Saxena, P.; Debnath, P.; Mukhopadhyay, K.; Yadav, D. A review on colistin resistance: An antibiotic of last resort. Microorganisms 2024, 12, 772. [Google Scholar] [CrossRef] [PubMed]
- Yaghoubi, S.; Zekiy, A.O.; Krutova, M.; Gholami, M.; Kouhsari, E.; Sholeh, M.; Ghafouri, Z.; Maleki, F. Tigecycline antibacterial activity, clinical effectiveness, and mechanisms and epidemiology of resistance: Narrative review. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 1003–1022. [Google Scholar] [CrossRef]
- Korczak, L.; Majewski, P.; Iwaniuk, D.; Sacha, P.; Matulewicz, M.; Wieczorek, P.; Majewska, P.; Wieczorek, A.; Radziwon, P.; Tryniszewska, E. Molecular mechanisms of tigecycline-resistance among Enterobacterales. Front. Cell. Infect. Microbiol. 2024, 14, 1289396. [Google Scholar] [CrossRef]
- Algarni, S.; Ricke, S.C.; Foley, S.L.; Han, J. The dynamics of the antimicrobial resistance mobilome of Salmonella enterica and related enteric bacteria. Front. Microbiol. 2022, 13, 859854. [Google Scholar] [CrossRef]
- Aleksandrova, E.V.; Wu, K.J.; Tresco, B.I.; Syroegin, E.A.; Killeavy, E.E.; Balasanyants, S.M.; Svetlov, M.S.; Gregory, S.T.; Atkinson, G.C.; Myers, A.G. Structural basis of Cfr-mediated antimicrobial resistance and mechanisms to evade it. Nat. Chem. Biol. 2024, 20, 867–876. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, S.; Werckenthin, C.; Kehrenberg, C. Identification of a plasmid-borne chloramphenicol-florfenicol resistance gene in Staphylococcus sciuri. Antimicrob. Agents Chemother. 2000, 44, 2530–2533. [Google Scholar] [CrossRef]
- Schwarz, S.; Zhang, W.; Du, X.-D.; Krüger, H.; Feßler, A.T.; Ma, S.; Zhu, Y.; Wu, C.; Shen, J.; Wang, Y. Mobile oxazolidinone resistance genes in Gram-positive and Gram-negative bacteria. Clin. Microbiol. Rev. 2021, 34, e0018820. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Wang, Y.; Walsh, T.R.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Hussein, N.H.; Al-Kadmy, I.M.; Taha, B.M.; Hussein, J.D. Mobilized colistin resistance (mcr) genes from 1 to 10: A comprehensive review. Mol. Biol. Rep. 2021, 48, 2897–2907. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-H.; Liu, Y.-Y.; Shen, Y.-B.; Yang, J.; Walsh, T.R.; Wang, Y.; Shen, J. Plasmid-mediated colistin-resistance genes: Mcr. Trends Microbiol. 2024, 32, 365–378. [Google Scholar] [CrossRef]
- Mmatli, M.; Mbelle, N.M.; Osei Sekyere, J. Global epidemiology, genetic environment, risk factors and therapeutic prospects of mcr genes: A current and emerging update. Front. Cell. Infect. Microbiol. 2022, 12, 941358. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, Y.; Ji, R.-Y.; Wang, Z.-Y.; Lu, M.-J.; Wu, H.; Mei, C.-Y.; Li, Q.-C.; Jiao, X. Colistin-and tigecycline-resistant CTX-M-14-producing Salmonella enterica serovar Kentucky ST198 from retail chicken meat, China. Int. J. Antimicrob. Agents 2022, 59, 106504. [Google Scholar] [CrossRef]
- Xu, Q.; Sheng, Z.; Hao, M.; Jiang, J.; Ye, M.; Chen, Y.; Xu, X.; Guo, Q.; Wang, M. RamA upregulates multidrug resistance efflux pumps AcrAB and OqxAB in Klebsiella pneumoniae. Int. J. Antimicrob. Agents 2021, 57, 106251. [Google Scholar] [CrossRef]
- Sheng, H.; Suo, J.; Dai, J.; Wang, S.; Li, M.; Su, L.; Cao, M.; Cao, Y.; Chen, J.; Cui, S.; et al. Prevalence, antibiotic susceptibility and genomic analysis of Salmonella from retail meats in Shaanxi, China. Int. J. Food Microbiol. 2023, 403, 110305. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Z.; He, S.; Hu, M.; Cui, Y.; Tai, C.; Shi, X. High Prevalence of Multidrug-resistant Salmonella from Retail Meat in Shanghai and the Molecular Characterization of blaNDM-9-carrying Plasmid. J. Future Foods, 2025; in press. [Google Scholar]
- Lubbers, B.; Diaz-Campos, D.; Schwarz, S. Clinical and Laboratory Standards Institute. In Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals, 5th ed.; CLSI supplement VET01S; Clinical and Laboratory Standards Institute: Berwyn, PA, USA, 2020. [Google Scholar]
- Zhang, S.; Den Bakker, H.C.; Li, S.; Chen, J.; Dinsmore, B.A.; Lane, C.; Lauer, A.; Fields, P.I.; Deng, X. SeqSero2: Rapid and improved Salmonella serotype determination using whole-genome sequencing data. Appl. Environ. Microbiol. 2019, 85, e01746-19. [Google Scholar] [CrossRef]
- Hall, B.G.; Nisbet, J. Building phylogenetic trees from genome sequences With kSNP4. Mol. Biol. Evol. 2023, 40, msad235. [Google Scholar] [CrossRef]
- Bisola Bello, A.; Olamilekan Adesola, R.; Idris, I.; Yawson Scott, G.; Alfa, S.; Akinfemi Ajibade, F. Combatting extensively drug-resistant Salmonella: A global perspective on outbreaks, impacts, and control strategies. Pathog. Glob. Health 2024, 118, 559–573. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, Y.; Xu, H.; Jiao, X.; Wang, J.; Li, Q. Poultry production as the main reservoir of ciprofloxacin-and tigecycline-resistant extended-spectrum β-lactamase (ESBL)-producing Salmonella enterica serovar Kentucky ST198. 2-2 causing human infections in China. Appl. Environ. Microbiol. 2023, 89, e0094423. [Google Scholar] [CrossRef]
- Liu, L.; Yi, S.; Xu, X.; Zheng, L.; Liu, H.; Zhou, X. Prevalence and Characteristics of Plasmid-Mediated Fosfomycin Resistance Gene fosA3 among Salmonella Enteritidis Isolates from Retail Chickens and Children with Gastroenteritis in China. Pathogens 2024, 13, 816. [Google Scholar] [CrossRef] [PubMed]
- Theuretzbacher, U.; Bush, K.; Harbarth, S.; Paul, M.; Rex, J.H.; Tacconelli, E.; Thwaites, G.E. Critical analysis of antibacterial agents in clinical development. Nat. Rev. Microbiol. 2020, 18, 286–298. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, B.; Mawad, A.M.; Saleh, M.; Kelley, W.G.; Harrington, P.J.; Lovestad, C.W.; Amezcua, J.; Sarhan, M.M.; El Zowalaty, M.E.; Ramadan, H. Salmonellosis: An overview of epidemiology, pathogenesis, and innovative approaches to mitigate the antimicrobial resistant infections. Antibiotics 2024, 13, 76. [Google Scholar] [CrossRef]
- Subedi, P.; Paxman, J.J.; Wang, G.; Hor, L.; Hong, Y.; Verderosa, A.D.; Whitten, A.E.; Panjikar, S.; Santos-Martin, C.F.; Martin, J.L. Salmonella enterica BcfH is a trimeric thioredoxin-like bifunctional enzyme with both thiol oxidase and disulfide isomerase activities. Antioxid. Redox Signal. 2021, 35, 21–39. [Google Scholar] [CrossRef]
- Ledeboer, N.A.; Frye, J.G.; McClelland, M.; Jones, B.D. Salmonella enterica serovar Typhimurium requires the Lpf, Pef, and Tafi fimbriae for biofilm formation on HEp-2 tissue culture cells and chicken intestinal epithelium. Infect. Immun. 2006, 74, 3156–3169. [Google Scholar] [CrossRef]
- She, Y.; Jiang, Y.; Luo, M.; Duan, X.; Xie, L.; Yang, C.; Xu, L.; Fu, Y.; Lv, Z.; Cai, R. Emergence of chromosomally located blaCTX-M-14b and qnrS1 in Salmonella enterica serotype Kentucky ST198 in China. Int. J. Antimicrob. Agents 2023, 62, 106896. [Google Scholar] [CrossRef] [PubMed]
- Nazari Moghadam, M.; Rahimi, E.; Shakerian, A.; Momtaz, H. Prevalence of Salmonella Typhimurium and Salmonella Enteritidis isolated from poultry meat: Virulence and antimicrobial-resistant genes. BMC Microbiol. 2023, 23, 168. [Google Scholar] [CrossRef]
- Humphries, A.D.; Raffatellu, M.; Winter, S.; Weening, E.H.; Kingsley, R.A.; Droleskey, R.; Zhang, S.; Figueiredo, J.; Khare, S.; Nunes, J. The use of flow cytometry to detect expression of subunits encoded by 11 Salmonella enterica serotype Typhimurium fimbrial operons. Mol. Microbiol. 2003, 48, 1357–1376. [Google Scholar] [CrossRef]
- Clayton, D.J.; Bowen, A.J.; Hulme, S.D.; Buckley, A.M.; Deacon, V.L.; Thomson, N.R.; Barrow, P.A.; Morgan, E.; Jones, M.A.; Watson, M. Analysis of the role of 13 major fimbrial subunits in colonisation of the chicken intestines by Salmonella enterica serovar Enteritidis reveals a role for a novel locus. BMC Microbiol. 2008, 8, 228. [Google Scholar] [CrossRef]
- Hamidian, M.; Holt, K.E.; Hall, R.M. The complete sequence of Salmonella genomic island SGI1-K. J. Antimicrob. Chemother. 2015, 70, 305–306. [Google Scholar] [CrossRef]
- Hall, R.M. Salmonella genomic islands and antibiotic resistance in Salmonella enterica. Future Microbiol. 2010, 5, 1525–1538. [Google Scholar] [CrossRef]
- Toh, S.M.; Xiong, L.; Arias, C.A.; Villegas, M.V.; Lolans, K.; Quinn, J.; Mankin, A.S. Acquisition of a natural resistance gene renders a clinical strain of methicillin-resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid. Mol. Microbiol. 2007, 64, 1506–1514. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Z.; Fu, J.; Cai, J.; Ma, T.; Xie, N.; Fan, R.; Zhai, W.; Feßler, A.T.; Sun, C. Spreading of cfr-carrying plasmids among staphylococci from humans and animals. Microbiol. Spectr. 2022, 10, e02461-22. [Google Scholar] [CrossRef]
- Shen, W.; Chen, J.; Zhang, R.; Cai, J. An 11-year linezolid-resistant Staphylococcus capitis clone dissemination with a similar cfr-carrying plasmid in China. Iscience 2022, 25, 105644. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Yu, H.; Xie, M.; Chen, K.; Dong, N.; Lin, D.; Chan, E.W.-C.; Chen, S. Genetic basis of chromosomally-encoded mcr-1 gene. Int. J. Antimicrob. Agents 2018, 51, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Snesrud, E.; McGann, P.; Chandler, M. The birth and demise of the IS Apl1-mcr-1-IS Apl1 composite transposon: The vehicle for transferable colistin resistance. MBio 2018, 9, e02381-17. [Google Scholar] [CrossRef] [PubMed]
- Snesrud, E.; He, S.; Chandler, M.; Dekker, J.P.; Hickman, A.B.; McGann, P.; Dyda, F. A model for transposition of the colistin resistance gene mcr-1 by IS Apl1. Antimicrob. Agents Chemother. 2016, 60, 6973–6976. [Google Scholar] [CrossRef]
- Li, X.; Xie, Y.; Liu, M.; Tai, C.; Sun, J.; Deng, Z.; Ou, H.Y. oriTfinder: A web-based tool for the identification of origin of transfers in DNA sequences of bacterial mobile genetic elements. Nucleic Acids Res. 2018, 46, W229–W234. [Google Scholar] [CrossRef]
- Ni, J.; Guan, C.; Huang, Y.; Yang, H.; Pan, D.; Tang, B. Emergence of plasmid harbouring the cfr gene in porcine Salmonella. Int. J. Antimicrob. Agents 2023, 62, 106833. [Google Scholar] [CrossRef] [PubMed]
Category | Antimicrobial Class | Antimicrobial Agent | MIC (mg/L) | Related Genes | Interpretation |
---|---|---|---|---|---|
Antimicrobial susceptibility testing | Folate pathway inhibitors | Sulfisoxazole | >2048 | sul1 | R |
Trimethoprim–sulfamethoxazole | >16/304 | R | |||
Quinolones | Nalidixic acid | >128 | qnrS1, gyrA(S83F, D87N), parC(S80I) | R | |
Ofloxacin | 16 | R | |||
Ciprofloxacin | >8 | R | |||
β-Lactam | Ampicillin | >128 | blaCTX-M-55, blaTEM-1B | R | |
Amoxicillin–clavulanic acid | >128/64 | R | |||
Cefotaxime | 16 | R | |||
Cefepime | 64 | R | |||
Tetracyclines | Tetracycline | 128 | tet(A) variant | R | |
Tigecycline | 4 | R | |||
Phenicols | Chloramphenicol | >128 | cfr, floR | R | |
florfenicol | >128 | R | |||
Aminoglycosides | Streptomycin | 256 | rmtB, aac(3)-IId, aac(6′)-Iaa, aadA7, aadA17, aph(3′)-Ia | R | |
Gentamicin | 64 | R | |||
Amikacin | 256 | R | |||
Kanamycin | 256 | R | |||
Rifamycins | Rifampicin | 64 | arr-2 | R | |
Polymyxins | Colistin | 4 | mcr-1 | R | |
Macrolides | Azithromycin | 64 | mph(A) | R | |
Fosfomycins | Fosfomycin | 512 | fosA3 | R | |
Carbapenems | Meropenem | 0.25 | S | ||
Collection time | 2022 | ||||
Serotype | Salmonella Kentucky | ||||
Sequence type | ST198 | ||||
cfr location | p3Sal23C1cfr (32,387 bp) | ||||
mcr-1 location | IncI2 (p2Sal23C1mcr, 63,103 bp) | ||||
Conjugation rate | 1.05 × 10−6~1.01 × 10−8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, Z.; Mai, Z.; Hu, M. Characterization of an Extensively Drug-Resistant Salmonella Kentucky ST198 Co-Harboring cfr, mcr-1 and tet(A) Variant from Retail Chicken Meat in Shanghai, China. Foods 2025, 14, 3025. https://doi.org/10.3390/foods14173025
Zhan Z, Mai Z, Hu M. Characterization of an Extensively Drug-Resistant Salmonella Kentucky ST198 Co-Harboring cfr, mcr-1 and tet(A) Variant from Retail Chicken Meat in Shanghai, China. Foods. 2025; 14(17):3025. https://doi.org/10.3390/foods14173025
Chicago/Turabian StyleZhan, Zeqiang, Zifeng Mai, and Mengjun Hu. 2025. "Characterization of an Extensively Drug-Resistant Salmonella Kentucky ST198 Co-Harboring cfr, mcr-1 and tet(A) Variant from Retail Chicken Meat in Shanghai, China" Foods 14, no. 17: 3025. https://doi.org/10.3390/foods14173025
APA StyleZhan, Z., Mai, Z., & Hu, M. (2025). Characterization of an Extensively Drug-Resistant Salmonella Kentucky ST198 Co-Harboring cfr, mcr-1 and tet(A) Variant from Retail Chicken Meat in Shanghai, China. Foods, 14(17), 3025. https://doi.org/10.3390/foods14173025