Degraded Polysaccharides from Noni (Morinda citrifolia L.) juice Mitigate Glucose Metabolism Disorders by Regulating PI3K/AKT-Nrf2-GSK3β Signaling Pathways in HepG2 Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Noni juice Polysaccharide and Degraded Polysaccharides
2.3. Determination of Molecular Weight
2.4. Monosaccharide Composition Analysis
2.5. Fourier Transform Infrared (FTIR) Spectroscopy Analysis
2.6. Cell Activity Assay
2.7. Glucose Consumption Assay
2.8. Determination of Oxidative Stress Markers
2.9. Western Blot Method
2.10. Statistical Analysis
3. Results and Discussion
3.1. Preparation and Chemical Components of Polysaccharides
3.2. Compositional Analysis of Polysaccharides
3.3. FT-IR Analysis
3.4. Impact of DNJP Concentration on HepG2 Cell Viability
3.5. Consumption of Glucose Activity
3.6. Effect of DNJPs on Oxidative Stress
3.7. Western Blot Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baechle, C.; Stahl-Pehe, A.; Prinz, N.; Meissner, T.; Kamrath, C.; Holl, R.; Rosenbauer, J. Prevalence trends of type 1 and type 2 diabetes in children and adolescents in North Rhine-Westphalia, the most populous federal state in Germany, 2002–2020. Diabetes Res. Clin. Pract. 2022, 190, 109995. [Google Scholar] [CrossRef]
- Chandrasekaran, P.; Weiskirchen, R. Cellular and Molecular Mechanisms of Insulin Resistance. Curr. Tissue Microenviron. Rep. 2024, 5, 79–90. [Google Scholar] [CrossRef]
- Yang, Q.; Zhu, Z.; Wang, L.; Xia, H.; Mao, J.; Wu, J.; Kato, K.; Li, H.; Zhang, J.; Yamanaka, K.; et al. The protective effect of silk fibroin on high glucose induced insulin resistance in HepG2 cells. Environ. Toxicol. Pharmacol. 2019, 69, 66–71. [Google Scholar] [CrossRef]
- Huang, H.; Liu, Y.; Xu, Z.; Zhang, D.; Feng, M.; Zhao, T.; Zhang, L.; Li, W.; Li, X. Effect of fucoidan on kidney injury in type 2 diabetic rats based on PI3K/AKT/Nrf2. J. Funct. Foods 2022, 90, 104976. [Google Scholar] [CrossRef]
- Forbes, J.M.; Thorburn, D.R. Mitochondrial dysfunction in diabetic kidney disease. Nat. Rev. Nephrol. 2021, 17, 291–312. [Google Scholar] [CrossRef] [PubMed]
- Samuel, V.T.; Shulman, G.I. Nonalcoholic fatty liver disease as a nexus of metabolic and hepatic diseases. Cell Metab. 2018, 27, 22–41. [Google Scholar] [CrossRef] [PubMed]
- Boura-Halfon, S.; Zick, Y. Phosphorylation of IRS proteins, insulin action, and insulin resistance. Am. J. Physiol.-Endocrinol. Metab. 2009, 296, E581–E591. [Google Scholar] [CrossRef] [PubMed]
- McManus, E.J.; Sakamoto, K.; Armit, L.J.; Ronaldson, L.; Shpiro, N.; Marquez, R.; Alessi, D.R. Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. EMBO J. 2005, 24, 1571–1583. [Google Scholar] [CrossRef]
- Tonelli, C.; Chio, I.I.C.; Tuveson, D.A. Transcriptional regulation by Nrf2. Antioxid. Redox Signal. 2018, 29, 1727–1745. [Google Scholar] [CrossRef]
- Baird, L.; Yamamoto, M. The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway. Mol. Cell. Biol. 2020, 40, e00099-20. [Google Scholar] [CrossRef]
- Dinkova-Kostova, A.T.; Kostov, R.V.; Kazantsev, A.G. The role of Nrf2 signaling in counteracting neurodegenerative diseases. FEBS J. 2018, 285, 3576–3590. [Google Scholar] [CrossRef] [PubMed]
- Sykiotis, G.P. Keap1/Nrf2 Signaling Pathway. Antioxidants 2021, 10, 828. [Google Scholar] [CrossRef] [PubMed]
- Manning, B.D.; Toker, A. AKT/PKB Signaling: Navigating the Network. Cell 2017, 169, 381–405. [Google Scholar] [CrossRef] [PubMed]
- Teli, D.M.; Gajjar, A.K. Glycogen synthase kinase-3: A potential target for diabetes. Bioorg. Med. Chem. 2023, 92, 117406. [Google Scholar] [CrossRef]
- Shoeb, A.; Alwar, M.C.; Shenoy, P.J.; Gokul, P. Effect of Morinda citrifolia (Noni) fruit juice on high fat diet induced dyslipidemia in rats. J. Clin. Diagn. Res. 2016, 10, FF06. [Google Scholar] [CrossRef]
- Nerurkar, P.V.; Nishioka, A.; Eck, P.O.; Johns, L.M.; Volper, E.; Nerurkar, V.R. Regulation of glucose metabolism via hepatic forkhead transcription factor 1 (FoxO1) by Morinda citrifolia (noni) in high-fat diet-induced obese mice. Br. J. Nutr. 2012, 108, 218–228. [Google Scholar] [CrossRef]
- Hou, C.; Chen, L.; Yang, L.; Ji, X. An insight into anti-inflammatory effects of natural polysaccharides. Int. J. Biol. Macromol. 2020, 153, 248–255. [Google Scholar] [CrossRef]
- Chen, L.; Huang, G.L. Antioxidant activities of polysaccharides from natural resources. Antioxidants 2020, 9, 170. [Google Scholar] [CrossRef]
- Zeng, P.; Li, J.; Chen, Y.; Zhang, L. The structures and biological functions of polysaccharides from traditional Chinese herbs. Prog. Mol. Biol. Transl. Sci. 2019, 163, 423–444. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, Y.; Lai, Z.; Hu, X.; Wang, L.; Wang, X.; Li, Z.; Gao, M.; Yang, Y.; Wang, Q.; et al. Effect of monosaccharide composition and proportion on the bioactivity of polysaccharides: A review. Int. J. Biol. Macromol. 2024, 254, 127955. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Zheng, X.; Wang, D.; Song, C.; Shi, W.; Lu, Y. Degradation polysaccharide of Euryale ferox Salisb. Seeds significantly enhanced the hypoglycemic efficiency of type 2 diabetes mellitus. Int. J. Biol. Macromol. 2025, 318, 145238. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, X.; Li, X.; Li, W.; Li, C.; Zhou, Y.; Wang, L.; Dong, B. A versatile nanocomposite based on nanoceria for antibacterial enhancement and protection from aPDT-aggravated inflammation via modulation of macrophage polarization. Biomaterials 2021, 268, 120614. [Google Scholar] [CrossRef]
- Ji, X.; Guo, J.; Tian, J.; Ma, K.; Liu, Y. Research progress on degradation methods and product properties of plant polysaccharides. J. Light Ind. 2023, 38, 55–62. [Google Scholar] [CrossRef]
- Ji, X.; Yan, Y.; Hou, C.; Shi, M.; Liu, Y. Structural characterization of a galacturonic acid-rich polysaccharide from Ziziphus Jujuba cv. Muzao. Int. J. Biol. Macromol. 2020, 147, 844–852. [Google Scholar] [CrossRef]
- Rahman, P.M.; Muraleedaran, K.; Mujeeb, V.M.A. Applications of chitosan powder with in situ synthesized nano ZnO particles as an antimicrobial agent. Int. J. Biol. Macromol. 2015, 77, 266–272. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, L.; Cheung, P.C.K. A review of isolation, chemical properties, and bioactivities of polysaccharides from Bletilla striata. Biomed. Res. Int. 2020, 2020, 5391379. [Google Scholar] [CrossRef]
- Kacuráková, M.; Capek, P.; Sasinková, V.; Wellner, N.; Ebringerová, A. FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohydr. Polym. 2000, 43, 195–203. [Google Scholar] [CrossRef]
- Zhang, B.; Wei, X.; Du, P.; Luo, H.; Hu, L.; Guan, L.; Chen, G. Structural Characterization of Polysaccharides from Noni (Morinda citrifolia L.) Juice and Their Preventive Effect on Oxidative Stress Activity. Molecules 2025, 30, 1103. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Hou, C.; Yan, Y.; Shi, M.; Liu, Y. Comparison of structural characterization and antioxidant activity of polysaccharides from jujube (Ziziphus jujuba Mill.) fruit. Int. J. Biol. Macromol. 2020, 149, 1008–1018. [Google Scholar] [CrossRef]
- Santoleri, D.; Titchenell, P.M. Resolving the Paradox of Hepatic Insulin Resistance. Cell. Mol. Gastroenterol. Hepatol. 2019, 7, 447–456. [Google Scholar] [CrossRef]
- Zhou, B.; Xia, H.; Yang, L.; Wang, S.; Sun, G. The Effect of Lycium Barbarum Polysaccharide on the Glucose and Lipid Metabolism: A Systematic Review and Meta-Analysis. J. Am. Nutr. Assoc. 2022, 41, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Ahmad, F.A.; Hasan, N.; Alsayegh, A.A.; Hakami, O.; Bantun, F.; Tasneem, S.; Alamier, W.M.; Babalghith, A.O.; Aldairi, A.F.; et al. Ganoderma lucidum: Multifaceted mechanisms to combat diabetes through polysaccharides and triterpenoids: A comprehensive review. Int. J. Biol. Macromol. 2024, 268, 131644. [Google Scholar] [CrossRef]
- Patching, S.G. Glucose Transporters at the Blood-Brain Barrier: Function, Regulation and Gateways for Drug Delivery. Mol. Neurobiol. 2017, 54, 1046–1077. [Google Scholar] [CrossRef]
- Hopkins, B.D.; Goncalves, M.D.; Cantley, L.C. Insulin-PI3K signalling: An evolutionarily insulated metabolic driver of cancer. Nat. Rev. Endocrinol. 2020, 16, 276–283. [Google Scholar] [CrossRef]
- Jere, S.W.; Houreld, N.N.; Abrahamse, H. Role of the PI3K/AKT (mTOR and GSK3β) signalling pathway and photobiomodulation in diabetic wound healing. Cytokine Growth Factor Rev. 2019, 50, 52–59. [Google Scholar] [CrossRef]
- Yung, H.W.; Charnock-Jones, D.S.; Burton, G.J. Regulation of AKT phosphorylation at Ser473 and Thr308 by endoplasmic reticulum stress modulates substrate specificity in a severity dependent manner. PLoS ONE 2011, 6, e17894. [Google Scholar] [CrossRef]
- Báez, A.M.; Ayala, G.; Pedroza-Saavedra, A.; González-Sánchez, H.M.; Amparan, L.C. Phosphorylation Codes in IRS-1 and IRS-2 Are Associated with the Activation/Inhibition of Insulin Canonical Signaling Pathways. Curr. Issues Mol. Biol. 2024, 46, 634–649. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, W.; Liang, B.; Zou, Z.; Zhang, A. NLRP3 inflammasome activation and disruption of IRS-1/PI3K/AKT signaling: Potential mechanisms of arsenic-induced pancreatic beta cells dysfunction in rats. Ecotoxicol. Environ. Saf. 2025, 289, 117504. [Google Scholar] [CrossRef]
- Yarushkin, A.A.; Kachaylo, E.M.; Pustylnyak, V.O. The constitutive androstane receptor activator inhibits gluconeogenic genes through suppression of HNF4α and FOXO1 transcriptional activity. Br. J. Pharmacol. 2013, 168, 1923–1932. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, S.; Zhang, Y.; Wang, H.; Chen, Y.; Lu, H. Activation of NRF2 by epiberberine improves oxidative stress and insulin resistance in T2DM mice and IR-HepG2 cells in an AMPK dependent manner. J. Ethnopharmacol. 2024, 327, 117931. [Google Scholar] [CrossRef]
- Huang, X.; Liu, G.; Guo, J.; Su, Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int. J. Biol. Sci. 2018, 14, 1483–1496. [Google Scholar] [CrossRef] [PubMed]
- O-Sullivan, I.; Zhang, W.; Wasserman, D.H.; Liew, C.W.; Liu, J.; Paik, J.; De Pinho, R.A.; Stolz, D.B.; Kahn, C.R.; Schwartz, M.W.; et al. FoxO1 integrates direct and indirect effects of insulin on hepatic glucose production and glucose utilization. Nat. Commun. 2015, 6, 7079. [Google Scholar] [CrossRef] [PubMed]
Antibody | Supplier | Dilution |
---|---|---|
Nrf2 | Proteintech | 1:2000 |
NQO1 | Proteintech | 1:4000 |
HO-1 | Affinity | 1:4000 |
IRS1 | Proteintech | 1:1000 |
P-PI3K | Proteintech | 1:1000 |
PI3K | Affinity | 1:1000 |
P-GSK3β | Proteintech | 1:2000 |
GSK3β | Proteintech | 1:5000 |
P-AKT | Proteintech | 1:2000 |
AKT | Affinity | 1:2000 |
P-FOXO1 | Proteintech | 1:2000 |
FOXO1 | Proteintech | 1:4000 |
GAPDH | Proteintech | 1:10,000 |
Sample | Mw (kDa) | Mn (kDa) | PDI (Mw/Mn) |
---|---|---|---|
NJP | 298.6 (±7.757%) | 290.6 (±7.791%) | 1.027 (±10.994%) |
DNJP | 191.8 (±11.358%) | 137.1 (±13.110%) | 1.399 (±17.346%) |
Sample | Fuc | Rha | Ara | Gal | Glc | Xyl | Man | GalA | GlcA |
---|---|---|---|---|---|---|---|---|---|
NJP | 0.96% | 16.59% | 8.63% | 36.38% | 10.29% | 3.16% | 6.36% | 16.63% | 1.00% |
DNJP | 1.06% | 15.93% | 8.58% | 34.93% | 10.23% | 3.00% | 9.08% | 16.25% | 0.95% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, X.; Du, P.; Luo, Y.; Zhao, Y.; Zhou, X.; Chen, G.; Zhang, B. Degraded Polysaccharides from Noni (Morinda citrifolia L.) juice Mitigate Glucose Metabolism Disorders by Regulating PI3K/AKT-Nrf2-GSK3β Signaling Pathways in HepG2 Cells. Foods 2025, 14, 2989. https://doi.org/10.3390/foods14172989
Wei X, Du P, Luo Y, Zhao Y, Zhou X, Chen G, Zhang B. Degraded Polysaccharides from Noni (Morinda citrifolia L.) juice Mitigate Glucose Metabolism Disorders by Regulating PI3K/AKT-Nrf2-GSK3β Signaling Pathways in HepG2 Cells. Foods. 2025; 14(17):2989. https://doi.org/10.3390/foods14172989
Chicago/Turabian StyleWei, Xiaoyu, Peiwen Du, Youping Luo, Yadong Zhao, Xueming Zhou, Guangying Chen, and Bin Zhang. 2025. "Degraded Polysaccharides from Noni (Morinda citrifolia L.) juice Mitigate Glucose Metabolism Disorders by Regulating PI3K/AKT-Nrf2-GSK3β Signaling Pathways in HepG2 Cells" Foods 14, no. 17: 2989. https://doi.org/10.3390/foods14172989
APA StyleWei, X., Du, P., Luo, Y., Zhao, Y., Zhou, X., Chen, G., & Zhang, B. (2025). Degraded Polysaccharides from Noni (Morinda citrifolia L.) juice Mitigate Glucose Metabolism Disorders by Regulating PI3K/AKT-Nrf2-GSK3β Signaling Pathways in HepG2 Cells. Foods, 14(17), 2989. https://doi.org/10.3390/foods14172989