Flavor Profile of Tomatoes Across Different Cultivation Times Based on GC × GC-Q/TOFMS
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Samples Collection
2.3. Extraction of Volatile Compounds
2.4. GC × GC-Q/TOFMS Conditions
2.5. Identification of Volatile Components
2.6. Statistical Analyses
3. Results and Discussion
3.1. Volatile Components in Tomatoes
3.2. The Identification of Crucial Volatiles in Tomatoes
3.3. Variations in Volatiles Composition Across Different Cultivation Times
3.4. Effect of Cultivation Time on Volatiles According to the Pathways
3.4.1. Fatty Acid-Derived Volatiles
3.4.2. Amino Acid-Derived Volatiles
3.4.3. Isoprenoid-Derived Volatiles
3.5. Principal Component Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GC × GC Q/TOFMS | Comprehensive two-dimensional gas chromatography with quadrupole time-of-flight-mass spectrometry |
LOX pathway | Lipoxygenase pathway |
MEP pathway | Methyl-erythritol-phosphate pathway |
CCD | carotenoid cleavage dioxygenases |
References
- Zhu, G.; Wang, S.; Huang, Z.; Zhang, S.; Liao, Q.; Zhang, C.; Lin, T.; Qin, M.; Peng, M.; Yang, C.; et al. Rewiring of the Fruit Metabolome in Tomato Breeding. Cell 2018, 172, 249–261.e12. [Google Scholar] [CrossRef] [PubMed]
- Tieman, D.; Zhu, G.; Resende, M.F.R.; Lin, T.; Nguyen, C.; Bies, D.; Rambla, J.L.; Beltran, K.S.O.; Taylor, M.; Zhang, B.; et al. A Chemical Genetic Roadmap to Improved Tomato Flavor. Science 2017, 355, 391–394. [Google Scholar] [CrossRef]
- Vogel, J.; Tieman, D.; Sims, C.; Odabasi, A.; Charles, D.; Klee, H. Carotenoid content impacts flavor acceptability into tomato (Solanum lycopersicum). J. Sci. Food Agric. 2010, 90, 2233–2240. [Google Scholar] [CrossRef]
- Li, J.; Fu, Y.; Bao, X.; Li, H.; Zuo, J.; Zhang, M.; Wang, J. Comparison and Analysis of Tomato Flavor Compounds Using Different Extraction Methods. Food Meas. 2020, 14, 465–475. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, Y.; Liu, B.; Chen, R.; Qiao, Y.; Zhang, Q.; Li, Q.; Wang, X.; Wang, Z. Analysis for Different Flavor Compounds in Mature Milk from Human and Livestock Animals by GC × GC-TOFMS. Food Chem. X 2023, 19, 100760. [Google Scholar] [CrossRef]
- Yin, X.; Chen, Q.; Liu, Q.; Wang, Y.; Kong, B. Influences of Smoking in Traditional and Industrial Conditions on Flavour Profile of Harbin Red Sausages by Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry. Foods 2021, 10, 1180. [Google Scholar] [CrossRef]
- Guan, S.; Liu, C.; Yao, Z.; Wan, H.; Ruan, M.; Wang, R.; Ye, Q.; Li, Z.; Zhou, G.; Cheng, Y. Detection and Analysis of VOCs in Cherry Tomato Based on GC-MS and GC × GC-TOF MS Techniques. Foods 2024, 13, 1279. [Google Scholar] [CrossRef]
- Yoo, H.; Kim, J.; Park, K.; Son, J.; Lee, J. Light-Controlled Fruit Pigmentation and Flavor Volatiles in Tomato and Bell Pepper. Antioxidants 2020, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Rao, J.; Rong, S.; Ding, G.; Liu, J.; Li, Y.; Song, Y. Fruit Quality Response to Different Abaxial Leafy Supplemental Lighting of Greenhouse-Produced Cherry Tomato (Solanum lycopersicum var. Cerasiforme). Horticulturae 2022, 8, 423. [Google Scholar] [CrossRef]
- He, L.; Xu, X.; Wang, Y.; Chen, W.; Sun, R.; Cheng, G.; Liu, B.; Chen, W.; Duan, C.; Wang, J.; et al. Modulation of volatile compound metabolome and transcriptome in grape berries exposed to sunlight under dry-hot climate. BMC Plant Biol. 2020, 20, 59. [Google Scholar] [CrossRef]
- Rosenfeld, H.; Per Lea, L. Influence of temperature and plant density on sensory quality and volatile terpenoids of carrot (Daucus carota L.) root. J. Sci. Food Agr. 2002, 82, 1384–1390. [Google Scholar] [CrossRef]
- Lu, H.; Chen, W.; Wang, Y.; Bai, X.; Cheng, G.; Duan, C.; Wang, J.; He, F. Effect of the Seasonal Climatic Variations on the Accumulation of Fruit Volatiles in Four Grape Varieties Under the Double Cropping System. Front. Plant Sci. 2022, 12, 809558. [Google Scholar] [CrossRef]
- Rienth, M.; Vigneron, N.; Darriet, P.; Sweetman, C.; Burbidge, C.; Bonghi, C.; Walker, R.P.; Famiani, F.; Castellarin, S.D. Grape berry secondary metabolites and their modulation by abiotic factors in a climate change scenario—A review. Front. Plant Sci. 2021, 12, 643258. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Gao, X.; Lu, H.; Peng, W.; Chen, W.; Li, S.; Li, S.; Duan, C.; Wang, J. Influence of attenuated reflected solar radiation from the vineyard floor on volatile compounds in Cabernet Sauvignon grapes and wines of the north foot of Mt. Tianshan. Food Res. Int. 2020, 137, 109688. [Google Scholar] [CrossRef]
- Friedel, M.; Frotscher, J.; Nitsch, M.; Hofmann, M.; Bogs, J.; Stoll, M.; Dietrich, H. Light promotes expression of monoterpene and flavonol metabolic genes and enhances flavour of winegrape berries (Vitis vinifera L. cv. Riesling). Aust. J. Grape Wine Res. 2016, 22, 409–421. [Google Scholar] [CrossRef]
- Meng, N.; Wei, Y.; Gao, Y.; Yu, K.; Cheng, J.; Li, X.; Duan, C.; Pan, Q. Characterization of transcriptional expression and regulation of carotenoid cleavage dioxygenase 4b in grapes. Front. Plant Sci. 2021, 11, 483. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Liu, Y.; Lu, H.; Hu, L.; Wang, Y.; Cheng, C.; Chen, W.; Li, S.; He, F.; Duan, C.; et al. Volatomics of ‘Cabernet Sauvignon’ grapes and wines under the fan training system revealed the nexus of microclimate and volatile compounds. Food Chem. 2023, 403, 134421. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, J.; Wang, L.; Lu, X.; Ahammed, G.; Zhang, X.; Cui, X.; Wang, H. Integration of transcriptome and metabolome reveals regulatory mechanisms of volatile flavor formation during tomato fruit ripening. Hortic. Plant J. 2025, 11, 680–692. [Google Scholar] [CrossRef]
- Yang, Z.; Feng, Z.; Bi, J.; Zhang, Z.; Jiang, Y.; Yang, T.; Zhang, Z. Characterization of key aroma compounds of tomato quality under enriched CO2 coupled with water and nitrogen based on E-nose and GC–MS. Sci. Hortic. 2024, 338, 113709. [Google Scholar] [CrossRef]
- Fu, X.; Cheng, S.; Zhang, Y.; Du, B.; Feng, C.; Zhou, Y.; Mei, X.; Jiang, Y.; Duan, X.; Yang, Z. Differential responses of four biosynthetic pathways of aroma compounds in postharvest strawberry (Fragaria × ananassa Duch.) under interaction of light and temperature. Food Chem. 2016, 221, 356–364. [Google Scholar] [CrossRef]
- Anza, M.; Riga, P.; Garbisu, C. Effects of variety and growth season on the organoleptic and nutritional quality of hydroponically grown tomato. J. Food Qual. 2006, 29, 16–37. [Google Scholar] [CrossRef]
- Toor, R.K.; Savage, G.P.; Lister, C.E. Seasonal variations in the antioxidant composition of greenhouse grown tomatoes. J. Food Compos. Anal. 2006, 19, 1–10. [Google Scholar] [CrossRef]
- Kasampalis, D.; Tsouvaltzis, P.; Siomos, A. Tomato Fruit Quality in Relation to Growing Season, Harvest Period, Ripening Stage and Postharvest Storage. Emir. J. Food Agri. 2020, 33, 130–138. [Google Scholar] [CrossRef]
- Wang, L.; Baldwin, E.; Bai, J. Recent advance in aromatic volatile research in tomato fruit: The metabolisms and regulations. Food Bioprocess Tech. 2016, 9, 203–216. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, H.; Zhong, T.; Chen, D.; Wu, Y.; Xie, Z. Molecular regulatory mechanisms affecting fruit aroma. Foods 2024, 13, 1870. [Google Scholar] [CrossRef]
- Shi, J.; Cao, C.; Xu, J.; Zhou, C. Research Advances on Biosynthesis, Regulation, and Biological Activities of Apocarotenoid Aroma in Horticultural Plants. J. Chem. 2020, 2020, 2526956. [Google Scholar] [CrossRef]
- Liu, X.; Crane, J.; Wu, X.; Wang, Y. Integrated Metabolomics and Proteomics Analysis Provides Insights into the Formation of Volatile Compounds in Three Different Polyembryonic Mango Cultivars. J. Agric. Food Chem. 2024, 72, 20171–20181. [Google Scholar] [CrossRef]
- Guan, S.; Wang, R.; Ruan, M.; Liu, C.; Yao, Z.; Wan, H.; Li, Z.; Zhou, G.; Diao, M.; Cheng, Y. Comparative analysis of volatile flavor compounds of cherry tomato varieties with different colors using GC-MS. Microchem. J. 2025, 212, 113539. [Google Scholar] [CrossRef]
- Engelberth, J.; Engelberth, M. Variability in the Capacity to Produce Damage-Induced Aldehyde Green Leaf Volatiles among Different Plant Species Provides Novel Insights into Biosynthetic Diversity. Plants 2020, 9, 213. [Google Scholar] [CrossRef]
- Cheng, G.; Chang, P.; Shen, Y.; Wu, L.; El-Sappah, A.; Zhang, F.; Liang, Y. Comparing the Flavor Characteristics of 71 Tomato (Solanum lycopersicum) Accessions in Central Shaanxi. Front. Plant Sci. 2020, 11, 586834. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Zhou, Y.; Liu, Y.; Chen, H.; Ge, H. Volatile compound metabolism during cherry tomato fruit development and ripening. J. Food Meas. Charact. 2023, 17, 2162–2171. [Google Scholar] [CrossRef]
- Lu, H.; Gao, X.; Duan, C.; Li, S.; Chen, W.; Wang, J. The effect of cluster position determined by vineyard row orientation on grape flavonoids and aroma profiles of Vitis vinifera L. cv. Cabernet Sauvignon and Italian Riesling in the North Foot of Tianshan Mountains. S. Afr. J. Enol. Vitic. 2021, 42, 44–55. [Google Scholar] [CrossRef]
- Zhang, Z.; Qiao, D.; He, L.; Pan, Q.; Wang, S. Effects of vine top shading on the accumulation of C6/C9 compounds in ‘Cabernet Sauvignon’ (Vitis vinifera L.) grape berries in northwestern China. J. Sci. Food Agric. 2021, 102, 1862–1871. [Google Scholar] [CrossRef]
- López-Gresa, M.; Payá, C.; Ozáez, M.; Rodrigo, I.; Conejero, V.; Klee, H.; Bellés, J.; Lisón, P. A New Role for Green Leaf Volatile Esters in Tomato Stomatal Defense Against Pseudomonas syringe pv. Tomato. Front. Plant Sci. 2018, 9, 01855. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, X.; Han, M.; Yang, X.; Li, Z.; Wang, J.; Pan, Q. Rain-shelter cultivation modifies carbon allocation in the polyphenolic and volatile metabolism of Vitis vinifera L. Chardonnay grapes. PLoS ONE 2016, 11, e0156117. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Zhao, Y.; Zhu, S.; Du, F.; Mao, R.; Liu, L.; Zhu, Y.; Li, S.; Sun, M.; Tian, B. Rain-shelter cultivation affects the accumulation of volatiles in ‘shuijing’ grape berries during development. HortScience 2022, 57, 877–888. [Google Scholar] [CrossRef]
- Zou, J.; Chen, J.; Tang, N.; Gao, Y.; Hong, M.; Wei, W.; Cao, H.; Jian, W.; Li, N.; Deng, W. Transcriptome analysis of aroma volatile metabolism change in tomato (Solanum lycopersicum) fruit under different storage temperatures and 1-MCP treatment. Postharvest Biol. Technol. 2018, 135, 57–67. [Google Scholar] [CrossRef]
- Xi, Y.; Li, Q.; Yan, J.; Baldwin, E.; Plotto, A.; Rosskopf, E.; Hong, J.; Zuo, J.; Bai, J.; Li, J. Effects of Harvest Maturity, Refrigeration and Blanching Treatments on the Volatile Profiles of Ripe “Tasti-Lee” Tomatoes. Foods 2021, 10, 1727. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Chu, Y.; Zhang, M.; Wen, Y.; Duan, C.; Pan, Q. Three types of ultraviolet irradiation differentially promote expression of shikimate pathway genes and production of anthocyanins in grape berries. Plant Physiol. Biochem. 2012, 57, 74–83. [Google Scholar] [CrossRef]
- Li, Z.; Yang, D.; Guan, X.; Sun, Y.; Wang, J. Changes in volatile composition of cabernet sauvignon (Vitis vinifera L.) grapes under leaf removal treatment. Agronomy 2023, 13, 1888. [Google Scholar] [CrossRef]
- Skaliter, O.; Bednarczyk, D.; Shor, E.; Shklarman, E.; Manasherova, E.; Aravena-Calvo, J.; Kerzner, S.; Cna’ani, A.; Jasinska, W.; Masci, T.; et al. The R2R3-MYB transcription factor EVER controls the emission of petunia floral volatiles by regulating epicuticular wax biosynthesis in the petal epidermis. Plant Cell 2024, 36, 174–193. [Google Scholar] [CrossRef]
- Huang, Y.; Xie, F.; Cao, X.; Li, M. Research progress in biosynthesis and regulation of plant terpenoids. Research progress in biosynthesis and regulation of plant terpenoids. Biotechnol. Biotec. Equip. 2022, 35, 1799–1808. [Google Scholar] [CrossRef]
- Ueda, T.; Murata, M.; Yokawa, K. Single Wavelengths of LED Light Supplement Promote the Biosynthesis of Major Cyclic Monoterpenes in Japanese Mint. Plants 2021, 10, 1420. [Google Scholar] [CrossRef]
- Bahena-Garrido, S.M.; Ohama, T.; Suehiro, Y.; Hata, Y.; Isogai, A.; Iwashita, K.; Goto-Yamamoto, N.; Koyama, K. The potential aroma and flavor compounds in Vitis sp. cv. koshu and V. vinifera L. cv. chardonnay under different environmental conditions. J. Sci. Food Agric. 2019, 99, 1926–1937. [Google Scholar] [CrossRef] [PubMed]
- Young, P.R.; Eyeghe-Bickong, H.A.; du Plessis, K.; Alexandersson, E.; Jacobson, D.A.; Coetzee, Z.; Deloire, A.; Vivier, M.A. Grapevine plasticity in response to an altered microclimate: Sauvignon Blanc modulates specific metabolites in response to increased berry exposure. Plant Physiol. 2016, 170, 1235–1254. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ahmad, N.; Gao, Y.; Wang, Y.; Meng, X.; Duan, C.; Lu, J.; Pan, Q. Norisoprenoid Accumulation under Genotype and Vintage Effects in Vitis vinifera L. Wine Varieties. Horticulturae 2024, 10, 970. [Google Scholar] [CrossRef]
- Morales, M.L.; Callejón, R.M.; Ubeda, C.; Guerreiro, A.; Gago, C.; Miguel, M.G.; Antunes, M.D. Effect of storage time at low temperature on the volatile compound composition of Sevillana and Maravilla raspberries. Postharvest Biol. Technol. 2014, 96, 128–134. [Google Scholar] [CrossRef]
- Rubio, A.; Rambla, J.L.; Santaella, M.; Gomez, M.D.; Orzaez, D.; Granell, A.; Gomez-Gomez, L. Cytosolic and plastoglobule-targeted carotenoid dioxygenases from Crocus sativus are both involved in beta-ionone release. J. Biol. Chem. 2018, 283, 24816–24825. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Jiang, N.; Liu, J.; Cui, G.; Zhao, M.; Du, Y.; Ping, H.; Li, C. Flavor Profile of Tomatoes Across Different Cultivation Times Based on GC × GC-Q/TOFMS. Foods 2025, 14, 2975. https://doi.org/10.3390/foods14172975
Gao Y, Jiang N, Liu J, Cui G, Zhao M, Du Y, Ping H, Li C. Flavor Profile of Tomatoes Across Different Cultivation Times Based on GC × GC-Q/TOFMS. Foods. 2025; 14(17):2975. https://doi.org/10.3390/foods14172975
Chicago/Turabian StyleGao, Yuan, Nan Jiang, Jing Liu, Guanglu Cui, Meng Zhao, Yuanfang Du, Hua Ping, and Cheng Li. 2025. "Flavor Profile of Tomatoes Across Different Cultivation Times Based on GC × GC-Q/TOFMS" Foods 14, no. 17: 2975. https://doi.org/10.3390/foods14172975
APA StyleGao, Y., Jiang, N., Liu, J., Cui, G., Zhao, M., Du, Y., Ping, H., & Li, C. (2025). Flavor Profile of Tomatoes Across Different Cultivation Times Based on GC × GC-Q/TOFMS. Foods, 14(17), 2975. https://doi.org/10.3390/foods14172975