A Comprehensive Review on Characterization of Pepper Seeds: Unveiling Potential Value and Sustainable Agrifood Applications
Abstract
:1. Introduction
2. Literature Search and Selection Criteria
3. Addressing Pepper Waste: A Focus on the Revalorisation of Seeds
4. Potential Value of Pepper Seeds: Nutritional Profile and Phytochemical Compounds
4.1. Nutritional Composition of Pepper Seeds: Carbohydrates, Dietary Fibre, Proteins, Fats, Moisture and Ash
4.2. Functional Composition of Pepper Seeds: Total Phenolics and Flavonoids
4.3. Fatty Acid Profile of Pepper Seeds: Saturated and Unsaturated Fatty Acids
4.4. Characterization of Volatile Organic Compounds of Pepper Seeds
5. Sustainable Agrifood Applications: Integral Valorisation of Pepper Seeds
5.1. The Condimentary Use of Pepper Seeds in Food
5.2. The Organic Pepper Seed Extracts as Plant Biostimulants
5.3. Nutraceutical Applications to Benefit Human Health
5.4. Pepper Seeds as Suitable Ingredient for Nonfood Industries: Cosmetic and Biofuel Source
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jarret, R.L.; Levy, I.J.; Potter, T.L.; Sermak, S.C. Seed oil and fatty acid composition in Capsicum spp. J. Food Compos. Anal. 2013, 30, 102–108. [Google Scholar] [CrossRef]
- Guo, B.-X.; Wang, R.; Yan, J.; Jia, X.-P.; Qu, L.-Y.; Yin, W.-T.; Liu, H.-M.; Wang, X.-D. Roasted ground pepper seed press-cake sauce: Quality, characteristics and palatability. Ital. J. Food Sci. 2025, 37, 128–139. [Google Scholar] [CrossRef]
- MAPA. Análisis Campaña 2022/23 de Hortalizas de Invernadero. 2023. Available online: http://www.mapa.gob.es/es/agricultura/temas/producciones-agricolas/analisishortalizasinvernaderobalancecampana2022_23yprevisiones2023_248noviembre2023_tcm30-665839.pdf (accessed on 17 December 2024).
- Gu, L.B.; Pang, H.L.; Lu, K.K.; Liu, H.M.; Wang, X.D.; Qin, G.Y. Process optimization and characterization of fragrant oil from red pepper (Capsicum annuum L.) seed extracted by subcritical butane extraction. J. Sci. Food Agric. 2017, 97, 1894–1903. [Google Scholar] [CrossRef] [PubMed]
- Sanatombi, K. A comprehensive review on sustainable strategies for valorization of pepper waste and their potential application. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70118. [Google Scholar] [CrossRef]
- Kim, S.; Lee, K.W.; Park, J.; Lee, H.J.; Hwang, I.K. Effect of drying in antioxidant activity and changes of ascorbic acid and colour by different drying and storage in Korean red pepper (Capsicum annuum, L.). Int. J. Food Sci. Technol. 2006, 41, 90–95. [Google Scholar] [CrossRef]
- Choi, M.H.; Kim, M.H.; Han, Y.S. Physicochemical properties and antioxidant activity of colored peppers (Capsicum annuum L.). Food Sci. Biotechnol. 2022, 32, 209–219. [Google Scholar] [CrossRef]
- Rodríguez-Roque, M.J.; Rojas-Graü, M.A.; Elez-Martínez, P.; Martín-Belloso, O. Nutritional and antioxidant properties of green bell peppers and implications for health. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3427–3448. [Google Scholar] [CrossRef]
- Kozlov, A.V.; Javadov, S.; Sommer, N. Cellular ROS and antioxidants: Physiological and pathological role. Antioxidants 2024, 13, 602. [Google Scholar] [CrossRef]
- Pérez-Gálvez, A.; Viera, I.; Roca, M. Carotenoids and chlorophylls as antioxidants. Antioxidants 2020, 9, 505. [Google Scholar] [CrossRef]
- Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 2009, 7, 65–74. [Google Scholar] [CrossRef]
- Materska, M.; Perucka, I. Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L.). J. Agric. Food Chem. 2005, 9, 1750–1756. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Xu, Z.; Wu, C.T.; Janes, M.; Prinyawiwatkul, W.; No, H.K. Antioxidant activities of different coloured sweet bell peppers (Capsicum annuum L.). J. Food Sci. 2007, 72, 98–102. [Google Scholar] [CrossRef]
- Younes, A.H.; Mustafa, Y.F. Sweet bell pepper: A focus on its nutritional qualities and illness-alleviated properties. Ind. J. Clin. Biochem. 2024, 39, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Castro, C.J.; Valdez-Morales, M.; Oomah, B.D. Bioactive compounds and antioxidant activity in scalded Jalapeño pepper industrial byproduct (Capsicum annuum). J. Food Sci. Technol. 2017, 54, 1999–2010. [Google Scholar] [CrossRef]
- Cvetković, T.; Ranilović, J.; Jokić, S. Quality of pepper seed by-products: A review. Foods 2022, 11, 748. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Liu, X.; Hou, A.; Wang, Y.; Li, L.; Peng, X.; Xiao, Y. Discrimination and characterization of volatile organic compounds and nutritional values of three varieties of chopped pepper seeds. Food Chem. X 2024, 21, 101150. [Google Scholar] [CrossRef] [PubMed]
- Cassani, L.; Marcovich, N.E.; Gomez-Zavaglia, A. Valorization of fruit and vegetables agro-wastes for the sustainable production of carotenoid-based colorants with enhanced bioavailability. Int. Food Res. 2022, 125, 110924. [Google Scholar] [CrossRef]
- Vaz, A.; Odriozola-Serrano, I.; Oms-Oliu, G.; Martín-Belloso, O. Physicochemical properties and bioaccessibility of phenolic compounds of dietary fiber concentrates from vegetable by-products. Foods 2022, 11, 2578. [Google Scholar] [CrossRef]
- Alyamoor, A.H.; Mustafa, Y.F. Bell pepper biowaste products as medicinally valuable nutraceuticals: A comprehensive review. Iraqi J. Pharm. 2023, 20, 152–167. [Google Scholar] [CrossRef]
- Cvetković, T.; Ranilović, J.; Gajari, D.; Tomić-Obrdalj, H.; Šubarić, D.; Moslavac, T.; Cikoš, A.M.; Jokić, S. Podravka and Slavonka varieties of pepper seeds (Capsicum annuum L.) as a new source of highly nutritional edible oil. Foods 2021, 9, 1262. [Google Scholar] [CrossRef]
- Malorgio, G.; Marangon, F. Agricultural business economics: The challenge of sustainability. Agric. Food Econ. 2021, 9, 6. [Google Scholar] [CrossRef]
- Sharma, V.; Tsai, M.L.; Nargotra, P.; Chen, C.W.; Kuo, C.H.; Sun, P.P.; Dong, C.D. Agro-industrial food waste as a low-cost substrate for sustainable production of industrial enzymes: A critical review. Catalysts 2022, 12, 1373. [Google Scholar] [CrossRef]
- Brunori, G. Biomass, biovalue and sustainability: Some thoughts on the definition of the bioeconomy. EuroChoices 2023, 12, 48–52. [Google Scholar] [CrossRef]
- Yasin, M.; Li, L.; Mak, M.; Chen, Z.; Panchal, S.K. Capsicum waste as a sustainable source of capsaicinoids for metabolic diseases. Foods 2023, 12, 907. [Google Scholar] [CrossRef]
- Nava-Ochoa, A.E.; Antunes-Ricardo, M.; Guajardo-Flores, D. Nano-sized carriers for capsaicinoids with topic analgesic and anti-inflammatory effects. J. Biotechnol. 2021, 333, 77–85. [Google Scholar] [CrossRef]
- Ocampo-Pérez, R.; Padilla-Ortega, E.; Medellín-Castillo, N.A.; Coronado-Oyarvide, P.; Aguilar-Madera, C.G.; Segovia-Sandoval, S.J.; Flores-Ramírez, R.; Parra-Marfil, A. Synthesis of biochar from chili seeds and its application to remove ibupro-fen from water. Equilibrium and 3D modeling. Sci. Total Environ. 2019, 655, 1397–1408. [Google Scholar] [CrossRef]
- Šeregelj, V.; Šaponjac, V.T.; Lević, S.; Kalušević, A.; Ćetković, G.; Čanadanović-Brunet, J.; Nedović, V.; Stajčić, S.; Vulić, J.; Vidaković, A. Application of encapsulated natural bioactive compounds from red pepper waste in yogurt. J. Microencapsul. 2019, 36, 704–714. [Google Scholar] [CrossRef]
- Gupta, S.; Sireesha, S.; Sreedhar, I.; Patel, C.M.; Anitha, K. Latest trends in heavy metal removal from wastewater by biochar based sorbents. J. Water Process Eng. 2020, 38, 101561. [Google Scholar] [CrossRef]
- Jagadeesh, N.; Sundaram, B. Adsorption of pollutants from wastewater by biochar: A review. J. Hazard. Mater. Adv. 2023, 9, 100226. [Google Scholar] [CrossRef]
- Singh, A.; Singhania, R.R.; Soam, S.; Chen, C.W.; Haldar, D.; Varjani, S.; Chang, J.S.; Dong, C.D.; Patel, A.K. Production of bioethanol from food waste: Status and perspectives. Bioresour. Technol. 2022, 360, 127651. [Google Scholar] [CrossRef]
- Hassoun, A.; Jagtap, S.; Trollman, H.; Garcia-Garcia, G.; Duong, L.N.K.; Saxena, P.; Bouzembrak, Y.; Treiblmaier, H.; Para-López, C.; Carmona-Torres, C.; et al. From food industry 4.0 to food industry 5.0: Identifying technological enablers and potential future applications in the food sector. Compr. Rev. Food Sci. Food Saf. 2024, 23, e370040. [Google Scholar] [CrossRef] [PubMed]
- Rojas, L.F.; Zapata, P.; Ruiz-Tirado, L. Agro-industrial waste enzymes: Perspectives in circular economy. Curr. Opin. Green Sustain. Chem. 2022, 34, 100585. [Google Scholar] [CrossRef]
- Kirchherr, J.; Nadja Yang, N.-H.; Schulze-Spüntrup, F.; Heerink, M.J.; Hartley, K. Conceptualizing the circular economy (revisited): An analysis of 221 definitions. Resour. conserv. recycl. 2023, 194, 107001, ISSN 0921-3449. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Chiou, A.; Ioannou, M.S. Bioactive phytochemicals in industrial tomatoes and their processing byproducts. LWT-Food Sci. Technol. 2012, 49, 213–216. [Google Scholar] [CrossRef]
- Hodges, R.; Buzby, J.C.; Bennett, B. Postharvest losses and waste in developed and less developed countries: Opportunities to improve resource use. J. Agric. Sci. 2011, 149, 37–45. [Google Scholar] [CrossRef]
- Kader, A.A. Postharvest technology of horticultural crops—An overview from farm to fork. Ethiop. J. Appl. Sci. Technol. 2013, 1, 1–8. Available online: https://ucanr.edu/sites/Postharvest_Technology_Center_/files/231724.pdf (accessed on 1 February 2025).
- Canseco Villafuerta, A.; Condiciones que Pueden Favorecer la Pudrición del Fruto por Alternaria. AgriSolución. 2023. Available online: https://www.agrisolucion.com/articulos/post/pimiento-condiciones-que-pueden-favorecer-la-pudri/ (accessed on 6 February 2025).
- Kiaya, V.; Postharvest Losses and Strategies to Reduce Them. Technical paper on Post-Harvest Losses, ©Action Contre la Faim (ACF) International. 2014. Available online: https://www.actioncontrelafaim.org/wp-content/uploads/2018/01/technical_paper_phl__pdf (accessed on 6 February 2025).
- FAO. The State of Food and Agriculture 2019. Moving Forward on Food Loss and Waste Reduction. 2019. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/11f9288f-dc78-4171-8d02-92235b8d7dc7/content (accessed on 3 March 2025).
- Tiamiyu, Q.O.; Adebayo, S.E.; Ibrahim, N. Recent advances on postharvest technologies of bell pepper: A review. Heliyon 2023, 9, e15302. [Google Scholar] [CrossRef]
- Xu, D.; Yuan, S.; Chen, B.; Shi, J.; Sui, Y.; Gao, L.; Geng, S.; Zuo, J.; Wang, Q. A comparative proteomic and metabolomic analysis of the low-temperature response of a chilling-injury sensitive and a chilling-injury tolerant cultivar of green bell pepper. Sci Hortic. 2023, 318, 112092. [Google Scholar] [CrossRef]
- Zhao, K.; Wang, X.; Yue, X.; Lv, J.; Xu, X.; Lu, H.; Zuo, J.; Xu, X.; Chen, B.; Yuan, S.; et al. A comprehensive physiological and omics analysis of trypsin-mediated protection of green pepper fruits from chilling injury. Food Chem. 2024, 460, 140547. [Google Scholar] [CrossRef]
- Balamurugan, A.; Kumar, A. Postharvest fruit rot of bell pepper (Capsicum annuum L.): Pathogenicity and host range of Alternaria alternata. Sci. Hortic. 2023, 319, 112156. [Google Scholar] [CrossRef]
- Slathia, S.; Sharma, Y.P.; Hakla, H.R.; Urfan, M.; Yadav, N.S.; Pal, S. Postharvest management of Alternaria induced rot in tomato fruits with essential oil of Zanthoxylum armatum DC. Front. Sustain. Food Syst. 2021, 5, 679830. [Google Scholar] [CrossRef]
- Shafique, M.S.; Amrao, L.; Saeed, S.; Ahmed, M.Z.; Ghuffar, S.; Anwaar, H.A.; Abdullah, A. Occurrence of leaf spot caused by Alternaria alternata on eggplant (Solanum melongena) in Pakistan. Plant Dis. 2021, 105, 1224. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Jia, M.; Li, S.; Xiao, L.; Wang, Y.; Peng, W.; Xiang, M. First report of postharvest fruit rot in Solanum muricatum Aiton caused by Alternaria alternata in southwest China. Plant Dis. 2022, 106, 2520. [Google Scholar] [CrossRef]
- Chen, G.; Yang, L.; Luo, H.L.; Huang, Y.C.; Ju, Y.; Wei, Y.W.; Sun, J.M. First report of leaf spot on passion fruit in China, caused by Alternaria alternata. Plant Dis. 2022, 107, 1229. [Google Scholar] [CrossRef]
- Mersha, Z.; Zhang, S.; Bartz, J.A. A Postharvest Fruit Disease—Black Mold rot Caused by Alternaria sp. on Imported Plum Tomatoes in South Florida. The Vegetarian Newsletter. HOS of Florida. 2012. Available online: https://edis.ifas.ufl.edu/publication/PP303 (accessed on 19 March 2025).
- Prusky, D.; Alkan, N.; Mengiste, T.; Fluhr, R. Quiescent and necrotrophic lifestyle choice during postharvest disease development. Annu. Rev. Phytopathol. 2013, 51, 155–176. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L.; Martínez-Guirado, C.; del Mar Rebolloso-Fuentes, M. Nutrient composition and antioxidant activity of 10 pepper (Capsicum annuum) varieties. Eur. Food Res. Technol. 2006, 224, 1–9. [Google Scholar] [CrossRef]
- El-Adaway, T.A.; Taha, K.M. Characteristics and composition of watermelon, pumpkin, and paprika seed oils and flours. J. Agric. Food Chem. 2001, 49, 1253–1259. [Google Scholar] [CrossRef]
- Ozcan, M.M.; Al Juhaimi, F.Y. Nutritive value and fatty acid composition of pepper seeds from different cultivars. Food Chem. 2011, 129, 1162–1165. [Google Scholar] [CrossRef]
- Georgé, S.; Tourniaire, F.; Gautier, H.; Goupy, P.; Rock, E.; Caris-Veyrat, C. Changes in the contents of carotenoids, polyphenols, and vitamin C during technological processing of red and green bell peppers. Int. Food Res. 2011, 44, 1078–1084. [Google Scholar] [CrossRef]
- Chouaibi, M.; Rezig, L.; Hamdi, S.; Ferrari, G. Chemical characteristics and compositions of red pepper seed oils extracted by different methods. Ind. Crops Prod. 2019, 128, 363–370. [Google Scholar] [CrossRef]
- Azabou, S.; Taheur, F.B.; Jridi, M.; Bouaziz, M.; Nasri, M. Discarded seeds from red pepper (Capsicum annuum) processing industry as a sustainable source of high added-value compounds and edible oil. Environ. Sci. Pollut. Res. 2017, 24, 22196–22203. [Google Scholar] [CrossRef] [PubMed]
- Koncsek, A.; Helyes, L.; Daoog, H.G. Bioactive compounds of cold pressed spice paprika seeds oils. J. Food Process. Preserv. 2018, 42, e13403. [Google Scholar] [CrossRef]
- Ma, Y.; Wu, X.; Zhao, L.; Wang, Y.; Liao, X. Comparison of the compounds and characteristics of pepper seed oil by pressure assisted, ultrasound-assisted and conventional solvent extraction. Innov. Food Sci. Emerg. 2019, 54, 78–86. [Google Scholar] [CrossRef]
- Liu, Q.; Meng, X.; Li, T.; Raza, W.; Liu, D.; Shen, Q. The growth promotion of peppers (Capsicum annuum L.) by Trichoderma guizhouense NJAU4742-based biological organic fertilizer: Possible role of increasing nutrient availabilities. Microorganisms 2020, 8, 1296. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, E.; Arsunar, E.S.; Aydeniz, B.; Güneşer, O. Cold pressed capia pepper seed (Capsicum annuum L.) oils: Composition, aroma and sensory properties. Eur. J. Lipid Sci. Technol. 2015, 117, 1016–1026. [Google Scholar] [CrossRef]
- Valdez-Morales, M.; Sandoval-Castro, C.J.; Gutiérrez-Dorado, R.; Mendoza-Espinoza, J.A.; Medina-Godoy, S.; Espinosa-Alonso, L.G. Oil recovery from Jalapeño pepper by-products and analysis of the industrial scalding process on its nutraceutical potential. Waste Biomass Valorization 2021, 12, 4475–4487. [Google Scholar] [CrossRef]
- Embaby, H.S.; Mokhtar, S.M. Chemical composition and nutritive value of lantana and sweet pepper seeds and Nabak seed kernels. J. Food Sci. 2011, 76, 736–741. [Google Scholar] [CrossRef]
- Zou, Y.; Ma, K.; Tian, M. Chemical composition and nutritive value of hot pepper seed (Capsicum annuum) grown in Northeast Region of China. Food Sci. Technol. 2015, 35, 659–663. [Google Scholar] [CrossRef]
- Bostanci, H.; Ok, S.; Yilmaz, E. Valorization of capia pepper seed flour I: Spreadable new products development. Waste Biomass Valorization 2019, 10, 681–690. [Google Scholar] [CrossRef]
- Teterycz, D.; Sobota, A. Use of high-protein and high-dietary-fiber vegetable processing waste from bell pepper and tomato for pasta fortification. Foods 2023, 12, 2567. [Google Scholar] [CrossRef]
- Anaya-Esparza, L.M.; Villagrán-de la Mora, Z.; Vázquez-Paulino, O.; Ascencio, F.; Villarruel-López, A. Bell peppers (Capsicum annum L.) losses and wastes: Source for food and pharmaceutical applications. Molecules 2021, 26, 5341. [Google Scholar] [CrossRef] [PubMed]
- USDA. Peppers, Sweet, Red, Raw. 2021. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/170108/nutrients (accessed on 17 March 2025).
- Adewole, E.; Olori, H.; Ojo, A.; Adewumi, F.; Ogunmodede, O.; Oludoro, T.; Peters, O.; Akinwale, H.; Agboola, K.; Adegbite, S. Identification of amino acids and B-vitamins in scotch bonnet pepper (Capsicum chinense) using an HPLC-UV detector. Food Sci. Technol. 2022, 10, 89–111. [Google Scholar] [CrossRef]
- Zhuang, Y.; Chen, L.; Sun, L.; Cao, J. Bioactive characteristics and antioxidant activities of nine peppers. J. Funct. Foods 2012, 4, 331–338. [Google Scholar] [CrossRef]
- Dobón-Suárez, A.; Giménez, M.J.; Castillo, S.; García-Pastor, M.E.; Zapata, P.J. Influence of the phenological stage and harvest date on the bioactive compounds content of green pepper fruit. Molecules 2021, 26, 3099. [Google Scholar] [CrossRef] [PubMed]
- Koyuncu, F.; Çetinbas, M.; Erdal, İ. Nutritional constituents of wild-grown black mulberry (Morus nigra L.). J. Appl. Bot. Food Qual. 2014, 87, 93–96. [Google Scholar] [CrossRef]
- Güsewell, S. N: P ratios in terrestrial plants: Variation and functional significance. New Phytol. 2004, 164, 243–266. [Google Scholar] [CrossRef]
- Alonso-Villegas, R.; González-Amaro, R.M.; Figueroa-Hernández, C.Y.; Rodríguez-Buenfil, I.M. The genus Capsicum: A review of bioactive properties of its polyphenolic and capsaicinoid composition. Molecules 2023, 28, 4239. [Google Scholar] [CrossRef]
- Giordano, D.; Facchiano, A.; Minasi, P.; D’Agostino, N.; Parisi, M.; Carbone, V. Phenolic Compounds and capsaicinoids in three Capsicum annuum varieties: From analytical characterization to in silico hypotheses on biological activity. Molecules 2023, 28, 6772. [Google Scholar] [CrossRef]
- Branen, A.L. Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J. Am. Oil Chem. 1975, 52, 59–63. [Google Scholar] [CrossRef]
- Ito, N.; Hirose, M.; Fukushima, S.; Tsuda, H.; Shirai, T.; Tatematsu, M. Studies on antioxidants: Their carcinogenic and modifying effects on chemical carcinogenesis. Food Chem. Toxicol. 1986, 24, 1071–1082. [Google Scholar] [CrossRef]
- Sim, K.H.; Sil, H.Y. Antioxidant activities of red pepper (Capsicum annuum) pericarp and seed extracts. Int. J. Food Sci. Technol. 2008, 43, 1813–1823. [Google Scholar] [CrossRef]
- Gurnani, N.; Gupta, M.; Mehta, D.; Mehta, B.K. Chemical composition, total phenolic and flavonoid contents, and in vitro antimicrobial and antioxidant activities of crude extracts from red chilli seeds (Capsicum frutescens L.). J. Taibah Univ. Sci. 2016, 10, 462–470. [Google Scholar] [CrossRef]
- Ahmad, R.; Riaz, M.; Aldholmi, M.; Alsulays, A.; Alsulais, W.; Alaswad, D.; Almutawah, A.I.; Al Nahab, H.Z. Solanum pseudocapsicum vs Capsicum annum; comparative phenolics profiling using green ultrasonic extraction and UHPLC analysis. Ultrason. Sonochem. 2024, 103, 106789. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cai, P.; Cheng, G.; Zhang, Y. A brief review of phenolic compounds identified from plants: Their extraction, analysis, and biological activity. Nat. Prod. Commun. 2022, 17. [Google Scholar] [CrossRef]
- Howard, L.R.; Talcott, S.T.; Brenes, C.H.; Villalon, B. Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. J. Agric. Food Chem. 2000, 48, 1713–1720. [Google Scholar] [CrossRef] [PubMed]
- Marín, A.; Ferreres, F.; Tomás-Barberán, F.A.; Gil, M.I. Characterization and quantitation of antioxidant constituents of sweet pepper (Capsicum annuum L.). J. Agric. Food Chem. 2004, 52, 3861–3869. [Google Scholar] [CrossRef]
- Ghasemnezhad, M.; Sherafati, M.; Payvast, G.A. Variation in phenolic compounds, ascorbic acid and antioxidant activity of five coloured bell pepper (Capsicum annum) fruits at two different harvest times. J. Funct. Foods 2024, 3, 44–49. [Google Scholar] [CrossRef]
- Hamed, M.; Kalita, D.; Bartolo, M.E.; Jayanty, S.S. Capsaicinoids, polyphenols and antioxidant activities of Capsicum annuum: Comparative study of the effect of ripening stage and cooking methods. Antioxidants 2019, 8, 364. [Google Scholar] [CrossRef]
- Guilherme, R.; Aires, A.; Rodrigues, N.; Peres, A.M.; Pereira, J.A. Phenolics and antioxidant activity of green and red sweet peppers from organic and conventional agriculture: A comparative study. Agriculture 2020, 10, 652. [Google Scholar] [CrossRef]
- Liang, J.L.; Yeow, C.C.; Teo, K.C. Valorizing cabbage (Brassica oleracea L. var. capitata) and Capsicum (Capsicum annuum L.) wastes: In vitro health-promoting activities. J. Food Sci. Technol. 2019, 56, 4696–4704. [Google Scholar] [CrossRef]
- Atalay, A.B.; Inanc, A.L. Optimization of ultrasound-assisted phenolic extraction from red pepper seed by response surface methodology. TURKJANS 2020, 7, 32–140. [Google Scholar] [CrossRef]
- Kavuncuoğlu, H.; Çapar, T.D.; Yalçın, H. Total phenolic contents, antioxidant activities and antioxidant capacities of some selected pepper (Capsicum annuum L.) pulps and seeds. Eur. J. Sci. Technol. 2021, 5, 100845. [Google Scholar] [CrossRef]
- Başyiğit, B.; Dağhan, Ş.; Karaaslan, M. Biochemical, compositional, and spectral analyses of İsot (Urfa pepper) seed oil and evaluation of its functional characteristics. Grasas Aceites 2020, 71, e384. [Google Scholar] [CrossRef]
- Li, M.; Wen, X.; Peng, Y.; Wang, Y.; Wang, K.; Ni, Y. Functional properties of protein isolates from bell pepper (Capsicum annuum L. var. annuum) seeds. LWT 2018, 97, 802–810. [Google Scholar] [CrossRef]
- Peterson, J.; Dwyer, J. Flavonoids: Dietary occurrence and biochemical activity. Nutr. Res. 1998, 12, 1995–2018. [Google Scholar] [CrossRef]
- Matthäus, B.; Őzcan, M.M. Chemical evaluation of some paprika (Capsicum annuum L.) seed oils. Eur. J. Lipid Sci. Technol. 2009, 111, 1249–1254. [Google Scholar] [CrossRef]
- Velickovska, S.K.; Mot, A.C.; Mitrev, S.; Goluboski, S.; Bruhl, L.; Mirhosseini, H.; Silaghi-Dumitrescu, R.; Matthäus, B. Bioactive compounds and “in vitro” antioxidant activity of some traditional and non-traditional cold-pressed edible oils from Macedonia. J. Food Technol. 2018, 55, 1614–1623. [Google Scholar] [CrossRef]
- Dudareva, N.; Klempien, A.; Muhlemann, J.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef]
- Martina, M.; Tikunov, Y.; Portis, E.; Bovy, A. The genetic basis of tomato aroma. Genes 2021, 12, 226. [Google Scholar] [CrossRef]
- Buttery, R.G.; Ling, L.C.; Stern, D.J. Studies on popcorn aroma and flavor volatiles. J. Agric. Food Chem. 1997, 45, 837–843. [Google Scholar] [CrossRef]
- Forero, M.D.; Quijano, C.E.; Pino, J.A. Volatile compounds of chile pepper (Capsicum annuum L. var. glabriusculum) at two ripening stages. Flavour Fragr. J. 2008, 24, 1–47. [Google Scholar] [CrossRef]
- Martín, A.; Hernández, A.; Aranda, E.; Casquete, R.; Velázquez, R.; Bartolomé, T.; Córdoba, M.G. Impact of volatile composition on the sensorial attributes of dried paprikas. Food Res. Int. 2017, 100, 691–697. [Google Scholar] [CrossRef]
- Qiu, Y.; Li, Y.; Wu, L.; Wei, H.; Fu, J.; Chen, W.; Lin, S.; Yang, S.; Zhang, R.; Shang, W.; et al. Analysis of important volatile organic compounds and genes produced by aroma of pepper fruit by HS-SPME-GC/MS and RNA sequencing. Plants 2023, 12, 2246. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.Y.; Bock, J.Y.; Baik, S.O.; Lee, J.H.; Lee, T.K. Effects of roasting on pyrazine contents and oxidative stability of red pepper seed oil prior to its extraction. J. Agric. Food Chem. 1999, 47, 1700–1704. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.R.; Waller, G.R.; Burlinggame, A.L. Volatile components of roasted peanuts: Basic fraction. J. Agric. Food Chem. 1971, 19, 1020–1024. [Google Scholar]
- Walradt, J.P.; Pittet, A.O.; Kinlin, T.E.; Muralidhara, R.; Sanderson, A. Volatile flavor components of deep fat-fried soybeans. J. Agric. Food Chem. 1970, 18, 337–339. [Google Scholar]
- Yilmaz, E.; Bostanci, H.; Ok, S. Valorization of capia pepper seed flour-II: Sensory properties and storage stability of the new spreadable pastes. Waste Biomass Valorization 2019, 10, 3163–3171. [Google Scholar] [CrossRef]
- Yilmaz, E. Valorization of Capia pepper seed flour in breakfast sauce production. Waste Biomass Valorization 2020, 11, 6803–6813. [Google Scholar] [CrossRef]
- Guo, B.X.; Chen, C.Y.; Wang, R.; Liu, Y.H.; Meng, J.J.; Liu, H.M.; Wang, X.D. Formulation of a novel hot pot dipping sauce enriched with pepper seed press cake: Physical properties and flavor characteristics. Food Chem. X 2024, 24, 101840. [Google Scholar] [CrossRef]
- Mendes Gomes, L.M.; Petito, N.; Costa, V.G.; Falcão, D.Q.; De Lima Araújo, K.G. Inclusion complexes of red bell pepper pigments with cyclodextrin: Preparation, characterisation and application as natural colourant in yogurt. Food Chem. 2014, 148, 428–436. [Google Scholar] [CrossRef]
- Lobo, F.A.T.; Silva, V.; Domingues, J.; Rodrigues, S.; Costa, V.; Falcão, D.; de Lima Araújo, K.G. Inclusion complexes of yellow bell pepper pigments with β-cyclodextrin: Preparation, characterisation and application as food natural colourant. J. Sci. Food Agric. 2018, 98, 2665–2671. [Google Scholar] [CrossRef] [PubMed]
- Careaga, M.; Fernández, E.; Dorantes, L.; Mota, L.; Jaramillo, M.E.; Hernandez-Sanchez, H. Antibacterial activity of Capsicum extract against Salmonella typhimurium and Pseudomonas aeruginosa inoculated in raw beef meat. Int. J. Food Microbiol. 2003, 83, 331–335. [Google Scholar] [CrossRef]
- Aljaloud, S.O.; Gyawali, R.; Reddy, M.R.; Ibrahim, S.A. Antibacterial activity of red bell pepper against Escherichia coli O157:H7 in ground beef. Internet J. Food Saf. 2012, 14, 44–47. [Google Scholar]
- Çalişkanlar, S.; Saygili, D.; Karagözlü, N.; Karagözlü, C. Utilization of pomegranate and black grape seed by-products in yogurt production: Effects on phenolic compounds and antioxidant activity. Food Sci. Nutr. 2023, 12, 1170–1179. [Google Scholar] [CrossRef] [PubMed]
- Haya, F.; Hussain, A.; Kabir, K.; Arshad, F.; Ayesha, A.; Bibi, B.; Ahmed, A.; Najam, A.; Firdous, N.; Yaqub, S.; et al. Pumpkin seeds; an alternate and sustainable source of bioactive compounds and nutritional food formulations. J. Food Compos. Anal. 2025, 137, 106954. [Google Scholar] [CrossRef]
- Vásquez, A.M.R.; Quintero Escobar, C.A.; Trujillo Capera, J.E.; Perdomo Falla, A.F. Aprovechamiento de subproducto del cacao para la elaboración de galletas. Rev. Agropecu. Agroindus. La Angostura 2024, 4. [Google Scholar] [CrossRef]
- Campos-Rodríguez, J.; Acosta-Coral, K.; Moreno-Rojo, C.; Paucar-Menacho, L.M. Maracuyá (Passiflora edulis): Composición nutricional, compuestos bioactivos, aprovechamiento de subproductos, biocontrol y fertilización orgánica en el cultivo. Sci. Agropecu. 2023, 14, 479–497. [Google Scholar] [CrossRef]
- Laqui-Estaña, J.; Obreque-Slier, E.; García-Nauto, N.; Saldaña, E. Advances in grape seed oil extraction techniques and their applications in food products: A comprehensive review and bibliometric analysis. Foods 2024, 13, 3561. [Google Scholar] [CrossRef]
- Eskander, M.Z.; Hassan, K.H.A.; Alshara, A.; Taher, E.; Ali, Z.A. Oil extraction and fatty acid characterization of sweet peppers seeds Capsicum annum (L.) by gas chromatography-mass spectrometry (GC-MS) and its use in beef burger patties preservation. JMBFS 2023, 12, e9520. [Google Scholar] [CrossRef]
- Yılmaz, E.; Hüriyet, Z.; Arifoğlu, N.; Dündar Emir, D. Functional properties of the capia pepper seed defatted press cakes. Waste Biomass Valorization 2017, 8, 783–791. [Google Scholar] [CrossRef]
- Işık, F.; Yapar, A. Fatty acid composition and sensory properties of tarhanas prepared by processed tomato and paprika waste materials. J. Food Process. Preserv. 2012, 38, 607–614. [Google Scholar] [CrossRef]
- Boiko, Y.A.; Kravchenko, I.A.; Shandra, A.A.; Boiko, I.A. Extraction, identification and anti-inflammatory activity of carotenoids out of Capsicum annuum L. J. Herbmed Pharmacol. 2017, 6, 10–15. [Google Scholar]
- Mandha, J.; Shumoy, H.; Matemu, A.O.; Raes, K. Valorization of mango by-products to enhance the nutritional content of maize complementary porridges. Foods 2021, 10, 1635. [Google Scholar] [CrossRef]
- Carpes, S.T.; Pereira, D.; De Moura, C.; Soares dos Reis, A.; Dangui da Silva, L.; Oldoni, T.L.C.; Almelda, J.F.; Plata-Oviedo, M.V.S. Lyophilized and microencapsulated extracts of grape pomace from winemaking industry to prevent lipid oxidation in chicken pâté. Braz. J. Food Technol. 2020, 23, 1–13. [Google Scholar] [CrossRef]
- Sporin, M.; Avbelj, M.; Kovas, B.; Mozina, S.S. Quality characteristics of wheat flour dough and bread containing grape pomace flour. Food Sci. Technol. Int. 2018, 24, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Dobón-Suárez, A.; Giménez, M.J.; García-Pastor, M.E.; Zapata, P.J. Salicylic acid foliar application increases crop yield and quality parameters of green pepper fruit during postharvest storage. Agronomy 2021, 11, 2263. [Google Scholar] [CrossRef]
- Giménez, M.J.; Valverde, J.M.; Valero, D.; Guillén, F.; Martínez-Romero, D.; Serrano, M.; Castillo, S. Quality and antioxidant properties on sweet cherries as affected by preharvest salicylic and acetylsalicylic acids treatments. Food Chem. 2014, 160, 226–232. [Google Scholar] [CrossRef]
- Giménez, M.J.; Valverde, J.M.; Valero, D.; Zapata, P.J.; Castillo, S.; Serrano, M. Postharvest methyl salicylate treatments delay ripening and maintain quality attributes and antioxidant compounds of ‘Early Lory’ sweet cherry. Postharvest Biol. Technol. 2016, 117, 102–109. [Google Scholar] [CrossRef]
- Martínez-Esplá, A.; Serrano, M.; Valero, D.; Martínez-Romero, D.; Castillo, S.; Zapata, P.J. Enhancement of antioxidant systems and storability of two plum cultivars by preharvest treatments with salicylates. Int. J. Mol. Sci. 2017, 18, 1911. [Google Scholar] [CrossRef]
- Martínez-Esplá, A.; Valero, D.; Martínez-Romero, D.; Castillo, S.; Giménez, M.J.; García-Pastor, M.E.; Serrano, S.; Zapata, P.J. Preharvest application of methyl jasmonate as an elicitor improves the yield and phenolic content of artichoke. J. Agric. Food Chem. 2017, 65, 9247–9254. [Google Scholar] [CrossRef]
- García-Pastor, M.E.; Zapata, P.J.; Castillo, S.; Martínez-Romero, D.; Guillén, F.; Valero, D.; Serrano, M. The effects of salicylic acid and its derivatives on increasing pomegranate fruit quality and bioactive compounds at harvest and during storage. Front. Plant Sci. 2020, 11, 668. [Google Scholar] [CrossRef] [PubMed]
- García-Pastor, M.E.; Giménez, M.J.; Serna-Escolano, V.; Guillén, F.; Valero, D.; Serrano, M.; García-Martínez, S.; Terry, L.A.; Alamar, M.C.; Zapata, P.J. Oxalic acid preharvest treatment improves colour and quality of seedless table grape ‘Magenta’ upregulating on-vine abscisic acid metabolism, relative VvNCED1 gene expression, and the antioxidant system in berries. Front. Plant Sci. 2021, 12, 740240. [Google Scholar] [CrossRef] [PubMed]
- Serna-Escolano, V.; Giménez, M.J.; Castillo, S.; Valverde, J.M.; Martínez-Romero, D.; Guillén, F.; Serrano, M.; Valero, D.; Zapata, P.J. Preharvest treatment with oxalic acid improves postharvest storage of lemon fruit by stimulation of the antioxidant system and phenolic content. Antioxidants 2021, 10, 963. [Google Scholar] [CrossRef]
- Lorente-Mento, J.M.; Valero, D.; Martínez-Romero, D.; Badiche, F.; Serrano, M.; Guillén, F. Preharvest multiple applications of GABA improve quality traits and antioxidant compounds of pomegranate fruit during storage. Horticulturae 2023, 9, 534. [Google Scholar] [CrossRef]
- Badiche, F.; Valverde, J.M.; Martínez-Romero, D.; Castillo, S.; Serrano, M.; Valero, D. Preharvest use of γ-aminobutyric acid (GABA) as an innovative treatment to enhance yield and quality in lemon fruit. Horticulturae 2023, 9, 93. [Google Scholar] [CrossRef]
- Carrión-Antolí, A.; Badiche-El Hilali, F.; Lorente-Mento, J.M.; Díaz-Mula, H.M.; Serrano, M.; Valero, D. Antioxidant systems and quality in sweet cherries are improved by preharvest GABA treatments leading to delay postharvest senescence. Int. J. Mol. Sci. 2024, 25, 260. [Google Scholar] [CrossRef]
- Kosseva, M.R. Functional food and nutraceuticals derived from food industry wastes. In Food Industry Wastes: Assessment and Recuperation of Commodities; Elsevier Inc.: Philadelphia, PA, USA, 2013; pp. 103–120. [Google Scholar] [CrossRef]
- Rudra, S.G.; Nishad, J.; Jakhar, N.; Kaur, C. Food industry waste: Mine of nutraceuticals. Int. J. Sci. Environ. Technol. 2015, 4, 205–229. Available online: https://www.semanticscholar.org/paper/FOOD-INDUSTRY-WASTE%3A-MINE-OF-NUTRACEUTICALS-Rudra-Nishad/db85ccb609762076cdea3a0fb88285c31044add8 (accessed on 10 March 2025).
- Galanakis, C.M. Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol. 2012, 26, 68–87. [Google Scholar] [CrossRef]
- Banerjee, J.; Singh, R.; Vijayaraghavan, R.; MacFarlane, D.; Patti, A.; Arora, A. Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chem. 2016, 225, 10–22. [Google Scholar] [CrossRef]
- Sodaeizadeh, H.; Rafieiolhossaini, M.; Havlík, J.; Van Damme, P. Allelopathic activity of different plant parts of Peganum harmala L. and identification of their growth inhibitors substances. Plant Growth Regul. 2009, 59, 227–236. [Google Scholar] [CrossRef]
- Abdalla, M.M. The potential of moringa oleifera extract as a biostimulant in enhancing the growth, biochemical and hormonal contents in rocket (Eruca vesicaria subsp. sativa) plants. Int. J. Plant Physiol. Biochem. 2013, 5, 42–49. [Google Scholar] [CrossRef]
- Czerniewicz, P.; Chrzanowski, G.; Sytykiewicz, H.; Sprawka, I.; Leszczynski, B. Aphidicidal and deterrent activity of phenolic acid extracts from some herbal plants towards Myzus persicae Sulz. and Rhopalosiphum padi L. Fresenius Environ. Bull. 2016, 25, 5714–5721. [Google Scholar]
- Ertani, A.; Pizzeghello, D.; Francioso, O.; Tinti, A.; Nardi, S. Biological activity of vegetal extracts containing phenols on plant metabolism. Molecules 2016, 21, 205. [Google Scholar] [CrossRef]
- Laquale, S.; Avato, P.; Argentieri, M.P.; Candido, V.; Perniola, M.; D’Addabbo, T. Nematicidal activity of Echinacea species on the root-knot nematode Meloidogyne incognita. J. Pest Sci. 2020, 93, 1397–1410. [Google Scholar] [CrossRef]
- Mejri, S.; Ghinet, A.; Magnin-Robert, M. New plant immunity elicitors from a sugar beet byproduct protect wheat against Zymoseptoria tritici. Sci. Rep. 2023, 13, 90. [Google Scholar] [CrossRef] [PubMed]
- Lujan, P.; Dura, S.; Guzman, I.; Grace, M.; Lila, M.A.; Steiner, R.; Sanogo, S. Efficacy of pecan husk and shell phenolic extracts against Phytophthora blight in chile pepper. Plant Health Prog. 2021, 22, 342–347. [Google Scholar] [CrossRef]
- Ganesh, K.S.; Sridhar, A.; Vishali, S. Utilization of fruit and vegetable waste to produce value-added products: Conventional utilization and emerging opportunities—A review. Chemosphere 2022, 287, 132221. [Google Scholar] [CrossRef] [PubMed]
- Swallah, M.S.; Sun, H.; Affoh, R.; Fu, H.; Yu, H. Antioxidant potential overviews of secondary metabolites (polyphenols) in fruits. Int. J. Food Sci. 2020, 2020, 9081686. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Amezquita, L.E.; Tejada-Ortigoza, V.; Serna-Saldivar, S.O.; Welti-Chanes, J. Dietary fiber concentrates from fruit and vegetable by-products: Processing, modification, and application as functional ingredients. Food Bioprocess Technol. 2018, 11, 1439–1463. [Google Scholar] [CrossRef]
- Javed, A.; Ahmad, A.; Tahir, A.; Shabbir, U.; Nouman, M. Potato peel waste—Its nutraceutical, industrial and biotechnological applications. AIMS Agric. Food 2019, 4, 807–823. [Google Scholar] [CrossRef]
- Nunes, A.; Filipa Pimentel, A.S.G.; Costa, R.C.A.; Oliveira, M.B.P.P. Cardioprotective properties of grape seed proanthocyanidins: An update. Trends Food Sci. Technol. 2016, 57, 31–39. [Google Scholar] [CrossRef]
- Šamec, D.; Loizzo, M.R.; Gortzi, O.; Çankaya, İ.T.; Tundis, R.; Suntar, İ.; Shirooie, S.; Zengin, G.; Devkota, H.P.; Reboredo Rodríguez, P.; et al. The potential of pumpkin seed oil as a functional food—A comprehensive review of chemical composition, health benefits, and safety. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4422–4446. [Google Scholar] [CrossRef]
- Kumar, M.; Chandran, D.; Tomar, M.; Bhuyan, D.J.; Grasso, S.; Sá, A.G.A.; Carciofi, B.A.M.; Radha; Dhumal, S.; Singh, S.; et al. Valorization potential of tomato (Solanum lycopersicum L.) seed: Nutraceutical quality, food properties, safety aspects, and application as a health-promoting ingredient in foods. Horticulturae 2022, 8, 265. [Google Scholar] [CrossRef]
- Liu, J.; Hao, W.; He, Z.; Kwek, E.; Zhu, H.; Ma, N.; Ma, K.Y.; Chen, Z. Blueberry and cranberry anthocyanin extracts reduce bodyweight and modulate gut microbiota in C57BL/6 J mice fed with a high-fat diet. Eur. J. Nutr. 2021, 60, 2735–2746. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Caudillo, E.; Tecante, A.; Valdivia-Lopez, M.A. Dietary fiber content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chem. 2008, 107, 656–663. [Google Scholar] [CrossRef]
- Mueed, A.; Shibli, S.; Korma, S.A.; Madjirebaye, P.; Esatbeyoglu, T.; Deng, Z. Flaxseed bioactive compounds: Chemical composition, functional properties, food applications and health benefits-related gut microbes. Foods 2022, 11, 3307. [Google Scholar] [CrossRef] [PubMed]
- Viuda-Martos, M.; Fernández-López, J.; Pérez-Álvarez, J.A. Pomegranate and its many functional components as related to human health: A review. Compr. Rev. Food Sci. Food Saf. 2010, 9, 635–654. [Google Scholar] [CrossRef]
- Richardson, D.P.; Ansell, J.; Drummond, L.N. The nutritional and health attributes of kiwifruit: A review. Eur. J. Nutr. 2018, 57, 2659–2676. [Google Scholar] [CrossRef]
- Romo-Hualde, A.; Yetano-Cunchillos, A.; González-Ferrero, C.; Sáiz-Abajo, M.; González-Navarro, C.J. Supercritical fluid extraction and microencapsulation of bioactive compounds from red pepper (Capsicum annum L.) by-products. Food Chem. 2012, 133, 1045–1049. [Google Scholar] [CrossRef]
- Silva, L.; Azevedo, J.; Pereira, M.J.; Valentão, P.; Andrade, P.B. Chemical assessment and antioxidant capacity of pepper (Capsicum annuum L.) seeds. Food Chem. Toxicol. 2013, 53, 240–248. [Google Scholar] [CrossRef]
- Sirotkin, A.V. Peppers and their constituents against obesity. Biol. Futur. 2023, 74, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Allemand, A.; Leonardi, B.F.; Zimmer, A.R.; Moreno, S.; Romão, P.R.T.; Gosmann, G. Red pepper (Capsicum baccatum) extracts present anti-inflammatory effects in vivo and inhibit the production of TNF-α and NO in vitro. J. Med. Food. 2016, 19, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Sulthana, R.N.; Taqui, S.N.; Syed, U.T.; Khan, T.M.Y.; Khadar, S.D.A.; Mokashi, I.; Shahapurkar, K.; Kalam, M.A.; Murthy, H.C.A.; Syed, A.A. Adsorption of crystal violet dye from aqueous solution using industrial pepper seed spent: Equilibrium, thermo-dynamic, and kinetic studies. Adsorp. Sci. Technol. 2022, 2022, 9009214. [Google Scholar] [CrossRef]
- Jeon, G.; Choi, Y.; Lee, S.; Kim, Y.; Oh, M.; Jeong, H.; Lee, J. Antioxidant and antiproliferative properties of hot pepper (Capsicum annuum L.) seeds. J. Food Biochem. 2012, 36, 595–603. [Google Scholar] [CrossRef]
- Valenzuela, G.M.; Gruszycki, M.R.; Pérez Zamora, C.; Nuñez, M.B.; Chiappetta, D.A.; Giménez, M.C. Formulación de productos cosméticos con aceite de semillas de Cucurbita argyrosperma C. Huber. Rev. Colomb. Cienc. Químico—Farm. 2020, 49, 159–170. [Google Scholar] [CrossRef]
- Jurado, J.A.; Muños, L.V. Caracterización del Aceite de las Semillas de Solanum quitoense Variedad la Selva y Evaluación de su Actividad Antioxidante. Undergraduate Thesis, Universidad Tecnológica de Pereira, Pereira, Colombia, 2009. [Google Scholar]
- Mechqoq, H.; Hourfane, S.; El Yaagoubi, M.; El Hamdaoui, A.; da Silva Almeida, J.R.G.; Rocha, J.M.; El Aouad, N. Molecular docking, tyrosinase, collagenase, and elastase inhibition activities of argan by-products. Cosmetics 2022, 9, 24. [Google Scholar] [CrossRef]
- Tafreshi, Y.M.; Eghlima, G.; Hatami, M.; Vafadar, M. Exploring the potential impact of salicylic acid and jasmonic acid in promoting seed oil content, vitamin C and antioxidant activity in rosehip (Rosa canina L.). BMC Plant Biol. 2025, 25, 249. [Google Scholar] [CrossRef]
- Michalak, M.; Błońska-Sikora, E.; Dobros, N.; Spałek, O.; Zielińska, A.; Paradowska, K. Bioactive compounds, antioxidant properties, and cosmetic applications of selected cold-pressed plant oils from seeds. Cosmetics 2024, 11, 153. [Google Scholar] [CrossRef]
- Cravotto, C.; Rapinel, V.; Nguyen-Thanh, B.; Bonet-García, R.; Bartier, M.; Claux, O.; Fabiano-Tixier, A.S. Sustainable grape seed oil processing: Green solvent extraction and byproduct valorisation. Food Bioprod. Process. 2025, 149, 428–438. [Google Scholar] [CrossRef]
- Carpena, M.; da Pereira, R.; Garcia-Perez, P.; Otero, P.; Soria-Lopez, A.; Chamorro, F.; Simal-Gandara, J. An Overview of Bioactive Food Compounds and Their Properties. In Membrane Separation of Food Bioactive Ingredients. Food Bioactive Ingredients; Jafari, S.M., Castro-Muñoz, R., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Rahmattullah, N.; Arumingtyas, E.L.; Widyananda, M.H.; Ahyar, A.N.; Tabroni, I. Bioinformatics analysis of bioactive compounds of four Capsicum species against SARS-CoV-2 infection. Int. J. Adv. Biol. Biomed. Res. 2021, 9, 298–319. [Google Scholar] [CrossRef]
- Vulić, J.; Šeregelj, V.; Kalušević, A.; Lević, S.; Nedović, V.; Tumbas Šaponjac, V.; Ćetković, G. Bioavailability and bioactivity of encapsulated phenolics and carotenoids isolated from red pepper waste. Molecules 2019, 24, 2837. [Google Scholar] [CrossRef] [PubMed]
- Duque-Soto, C.; Quintriqueo-Cid, A.; Rueda-Robles, A.; Robert, P.; Borrás-Linares, I.; Lozano-Sánchez, J. Evaluation of Different Advanced Approaches to Simulation of Dynamic In Vitro Digestion of Polyphenols from Different Food Matrices—A Systematic Review. Antioxidants 2022, 12, 101. [Google Scholar] [CrossRef] [PubMed]
- Toghiani, J.; Fallah, N.; Nasernejad, B. Production of protein-rich fungal biomass from pistachio dehulling waste using edible. Neurospora intermedia. Sci. Rep. 2025, 15, 5873. [Google Scholar] [CrossRef] [PubMed]
- Gebre, G.D.; Gebremariam, S.N.; Keneni, Y.G.; Marchetti, J.M. Valorization of tropical fruit-processing wastes and byproducts for biofuel production. Biofuels Bioprod. Bioref. 2023, 17, 1807–1842. [Google Scholar] [CrossRef]
- Ubaid, M.; Sainia, C.S. Evaluation of different green technological approaches for the extraction of oil from grape seeds: A comparative study. Grasas Aceites 2024, 75, 2173. [Google Scholar] [CrossRef]
- Duan, X.; Yu, Z.; Zhou, L.; He, D.; Jiang, X.; Lei, F. Extraction of pumpkin seed oil bodies as natural O/W emulsions: Physicochemical properties, oxidative stability, and component interactions. LWT 2025, 219, 117554. [Google Scholar] [CrossRef]
- Silveira, E.A.; Barcelo, R.; Cruz Lamas, G.; de Oliveira Rodrigues, P.P.; Santana Chaves, B.; de Paula Protásio, T.; Rousset, P.; Ghesti, G.F. Biofuel from agro-industrial residues as sustainable strategy for CO₂ mitigation: Statistical optimization of pequi seeds torrefaction. Energy Convers. Manag. 2024, 304, 118222. [Google Scholar] [CrossRef]
- Vasileiadou, A. From organic wastes to bioenergy, biofuels, and value-added products for urban sustainability and circular economy: A review. Urban Sci. 2024, 8, 121. [Google Scholar] [CrossRef]
- Chatzisymeon, E.; Foteinis, S.; Borthwick, A.G.L. Life cycle assessment of the environmental performance of conventional and organic methods of open field pepper cultivation system. Int. J. Life Cycle Assess. 2017, 22, 896–908. [Google Scholar] [CrossRef]
- U.S. Department of Energy. Life cycle greenhouse gas emissions of biodiesel and renewable diesel production in the United States. Environ. Sci. Technol. 2021, 55, 11077–11085. [Google Scholar] [CrossRef]
- Forest Research. Carbon Emissions of Different Fuels. 2021. Available online: https://www.forestresearch.gov.uk/tools-and-resources/fthr/biomass-energy-resources/reference-biomass/facts-figures/carbon-emissions-of-different-fuels/ (accessed on 16 May 2025).
Type of Pepper Seeds | Outcome | Type of Industry | Scientific Gap | Reference |
---|---|---|---|---|
Pepper seed press-cake (byproduct of Capsicum annuum L. oil pressing) | Roasting enhances sauce quality, particularly at 140–170 °C, leading to decreased oil separation rate and improved storage stability. | Agri-food industry | Limited information regarding the application of pepper seed press-cake in food products. | [2] |
Jalapeño pepper seeds and placenta (Capsicum annuum L.) derived from industrial processing byproduct. | The scalding process influences composition (e.g., decreasing capsaicinoids but increases total phenolics) and antioxidant capacity. | Agri-food industry/ non-food industry | A lack of comprehensive characterization of its bioactive compounds and antioxidant properties, particularly considering processing effects like scalding, limits its valorisation potential and efforts to reduce food waste. | [15] |
Chopped pepper seeds (CPS) from Capsicum annuum L. A byproduct generated during fermented–chopped pepper production. | Nutritional richness: Rich in amino acids and fatty acids, predominantly unsaturated fatty acids and contains essential mineral elements. Flavour characteristics: 53 volatile organic compounds (VOCs) identified. | Agri-food industry | Lack of previous studies on the flavour compounds and nutritional composition of chopped pepper seeds (CPS). | [17] |
Bell pepper (Capsicum annuum L.) seeds. | Rich in bioactive substances. Contain triterpenes, sterols, and fatty acids. Exhibit antioxidant potential. Show acetyl-cholinesterase-inhibitory properties. | Non-food industry | Further research is needed on immune-modulatory mechanisms and uses, and mechanisms regulating hypoglycaemic characteristics. | [20] |
Dried pepper Seeds (Capsicum annuum L.), specifically the Croatian varieties Podravka and Slavonka. | Nutritional richness: Good source of protein, high content of dietary fibres. Seeds contain oil, rich in unsaturated fatty acids, primarily linoleic acid (C18:2). Bioactive compounds: Contain polyphenols and γ-tocopherol. Show antioxidant power. Oil quality: Pepper seed oil has a pleasant taste. | Agri-food industry/ Non-food industry | Further investigation is needed on product applications (culinary evaluations, added value product development) and the evaluation of nutritional, textural, and sensory traits influenced by fibre fortification. | [21] |
Macronutrients | Content by 100 g | References |
---|---|---|
Carbohydrate (g) | 43.60–80.89 | [17,55,62] |
Dietary fibre (g) | 26.00–61.00 | [4,16,21,56,63] |
Crude protein (g) | 6.30–28.30 | [5,17,21,52,55,56,60,62,63,64,65] |
Crude fat (g) | 11.00–23.65 | [17,55,56,62,63,64,65] |
Moisture (g) | 4.48–5.96 | [62,63] |
Ash (g) | 1.81–12.54 | [17,62,63,65] |
Vitamins | Content by 100 g | References |
Vitamin A (IU) | 3131.00 | [66,67,68] |
Vitamin C (mg) | 127.70 | [66,67,68,69,70] |
Vitamin E (mg) | 1.58 | [66,67,68] |
Vitamin K (µg) | 4.90 | [66,67,68] |
Vitamin B3 (mg) | 0.98 | [66,67,68] |
Vitamin B6 (mg) | 0.29 | [66,67,68] |
Minerals | Content by 100 g | References |
Sodium (mg) | 2.35–2546.28 | [17,56,62,63,65] |
Potassium (mg) | 306.89–921.33 | [17,62,63,65] |
Phosphorus (mg) | 69.21–707.00 | [17,62,65] |
Magnesium (mg) | 141.80–279.00 | [17,63,65] |
Calcium (mg) | 38.80–174.71 | [17,56,63,65] |
Iron (mg) | 3.01–17.49 | [17,62,63] |
Zinc (mg) | 1.05–7.97 | [17,62,63] |
Manganese (mg) | 0.38–4.05 | [17,62,63] |
Copper (mg) | 0.72–3.33 | [17,62] |
Essential amino acids | Content by 100 g | References |
Leucine (Leu; mg) | 830–4006 | [17,62,63] |
Cysteine (Cys; mg) | 413–3463 | [17,62,63] |
Histidine (His; mg) | 192–1620 | [17,62,63] |
Lysine (Lys; mg) | 537–1476 | [17,62,63] |
Phenylalanine (Phe; mg) | 655–1344 | [17,62,63] |
Threonine (Thr; mg) | 478–1188 | [17,62,63] |
Isoleucine (Ile; mg) | 399–869 | [17,62,63] |
Tyrosine (Tyr; mg) | 200–831 | [17,62,63] |
Methionine (Met; mg) | 67–820 | [17,62,63] |
Valine (Val; mg) | 85–760 | [17,62,63] |
Non-essential amino acids | Content by 100 g | References |
Glutamic acid (Glu; mg) | 1188–3668 | [17,62,63] |
Aspartic acid (Asp; mg) | 1188–2030 | [17,62,63] |
Arginine (Arg; mg) | 894–1731 | [17,62,63] |
Serine (Ser; mg) | 558–1088 | [17,62,63] |
Glycine (Gly; mg) | 617–894 | [17,62,63] |
Alanine (Ala; mg) | 578–706 | [17,62,63] |
Proline (Pro; mg) | 100–680 | [17,62,63] |
Fruit Type | TPC ϒ | GA (ppm) | SC (ppm) | RA (ppm) | RV (ppm) | TFC Ϯ | References |
---|---|---|---|---|---|---|---|
Jalapeño pepper seeds (Capsicum annuum L.) | 10.01–13.09 | - | - | - | - | - | [15] |
Podravka pepper seeds (Capsicum annuum L.) | 1.58 | - | - | - | - | - | [21] |
Slavonka pepper seeds (Capsicum annuum L.) | 1.49 | - | - | - | - | - | [21] |
Red pepper seeds (Capsicum annuum L.) | 21.50 | - | - | - | - | 0.04 | [57] |
Red pepper seeds (Capsicum annuum L.) | 29.10 | - | - | - | - | 21.27 | [77] |
Red chilli seeds (Capsicum frutescens L.) | 7.95–26.15 | - | - | - | - | 4.64–12.84 | [78] |
Red pepper seeds (Capsicum annuum L.) | 22.30 | 5.53 | 14.52 | 23.87 | 0.00 | - | [79] |
Green pepper seeds (Capsicum annuum L.) | 88.60 | 6.96 | 2.21 | 6.31 | 0.00 | - | [79] |
Fatty Acid | Content (%) | References |
---|---|---|
Palmitic acid (C16:0) | 10.60–14.40 | [1,21,52,55,56,57,58,60,62] |
Stearic acid (C18:0) | 2.40–4.10 | [1,21,52,55,56,57,58,60,62] |
Oleic acid (C18:1) | 4.60–14.60 | [1,21,52,55,56,57,58,60,62] |
Linoleic acid (C18:2) | 67.80–77.90 | [1,21,52,55,56,57,58,60,62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobón-Suárez, A.; Zapata, P.J.; García-Pastor, M.E. A Comprehensive Review on Characterization of Pepper Seeds: Unveiling Potential Value and Sustainable Agrifood Applications. Foods 2025, 14, 1969. https://doi.org/10.3390/foods14111969
Dobón-Suárez A, Zapata PJ, García-Pastor ME. A Comprehensive Review on Characterization of Pepper Seeds: Unveiling Potential Value and Sustainable Agrifood Applications. Foods. 2025; 14(11):1969. https://doi.org/10.3390/foods14111969
Chicago/Turabian StyleDobón-Suárez, Alicia, Pedro Javier Zapata, and María Emma García-Pastor. 2025. "A Comprehensive Review on Characterization of Pepper Seeds: Unveiling Potential Value and Sustainable Agrifood Applications" Foods 14, no. 11: 1969. https://doi.org/10.3390/foods14111969
APA StyleDobón-Suárez, A., Zapata, P. J., & García-Pastor, M. E. (2025). A Comprehensive Review on Characterization of Pepper Seeds: Unveiling Potential Value and Sustainable Agrifood Applications. Foods, 14(11), 1969. https://doi.org/10.3390/foods14111969