Reduction and Control Technology of Harmful Dicarbonyl Compounds in Flounder (Pleuronectiformes) Seafood Condiment Preparation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents and Materials
2.2. α-DCCs Analysis
2.3. Proximate Composition and Measurement Analysis of Flounder Steak
2.4. Preparation of Flounder Polypeptide Lyophilized Powder
2.5. Characteristics of Enzymatic Hydrolysates
2.5.1. Enzymolysis Analysis
2.5.2. Ferric Reducing Antioxidant Power (FRAP) Analysis
2.5.3. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Ability Analysis
2.5.4. Emulsification (EAI) and Emulsifying Stability (ESI) Analysis
2.6. Optimization of MR Parameters
2.7. Compound Flounder Seafood Condiments
2.8. Quality Verification
2.9. Statistical Analysis
3. Results and Discussion
3.1. Method Validation
3.2. Evaluation of the Proximate Composition in Flounder Steak
3.3. Physicochemical Properties of Enzymatic Hydrolysates
3.3.1. Evaluation of Enzymolysis
3.3.2. T-AOC and DPPH Radical Scavenging Ability Analysis
3.3.3. Evaluation of the EAI and ESI
3.4. Effects of MR Parameters on α-DCC Contents
3.5. Analysis of α-DCCs in Commercially Available Seafood Condiments
3.6. Effects of Ingredients on α-DCC Contents
3.7. Optimization Evaluation of Flounder Seafood Condiment Formulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Li, C.; Li, L.; Yang, X.; Chen, S.; Wu, Y.; Zhao, Y.; Wang, J.; Wei, Y. Application of UHPLC-Q/TOF-MS-based metabolomics in the evaluation of metabolites and taste quality of Chinese fish sauce (Yu-lu) during fermentation. Food Chem. 2019, 296, 132–141. [Google Scholar] [CrossRef]
- Gao, P.; Li, L.; Xia, W.S.; Xu, Y.S.; Liu, S.Q. Valorization of Nile tilapia (Oreochromis niloticus) fish head for a novel fish sauce by fermentation with selected lactic acid bacteria. LWT-Food Sci. Technol. 2020, 129, 109539. [Google Scholar] [CrossRef]
- Ruan, L.C.; Ju, Y.J.; Zhan, C.Y.; Hou, L.H. Technology. Improved umami flavor of soy sauce by adding enzymatic hydrolysate of low-value fish in the natural brewing process. LWT-Food Sci. Technol. 2021, 155, 112911. [Google Scholar] [CrossRef]
- Yu, M.G.; Li, T.; Song, H.L. Characterization of key aroma-active compounds in four commercial oyster sauce by GC/GC × GC–O–MS, AEDA, and OAV. Food Compos. Anal. 2021, 107, 104368. [Google Scholar] [CrossRef]
- Cha, J.; Debnath, T.; Lee, K.G. Analysis of α-dicarbonyl compounds and volatiles formed in Maillard reaction model systems. Sci. Rep. 2019, 9, 5325. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.Y.; Choudhury, R.P.; Cai, W.; Lu, M.; Fallon, J.T.; Fisher, E.A.; Vlassara, H. Dietary glycotoxins promote diabetic atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 2003, 168, 213–220. [Google Scholar] [CrossRef]
- Kim, S.; Kwon, J.; Kim, Y.; Lee, K.G. Correlation analysis between the concentration of α-dicarbonyls and flavor compounds in soy sauce. Food Biosci. 2020, 36, 100615. [Google Scholar] [CrossRef]
- Lim, H.H.; Shin, H.S. In-solution derivatization and detection of glyoxal and methylglyoxal in alcoholic beverages and fermented foods by headspace solid-phase microextraction and gas chromatography–mass spectrometry. Food Compos. Anal. 2020, 92, 103584. [Google Scholar] [CrossRef]
- Zhu, H.; Poojary, M.M.; Andersen, M.L.; Lund, M.N. Effect of pH on the Reaction between Naringenin and Methylglyoxal: A Kinetic Study. Food Chem. 2019, 298, 125086. [Google Scholar] [CrossRef]
- Ashraf, J.M.; Ahmad, S.; Rabbani, G.; Hasan, Q.; Jan, A.T.; Lee, E.J.; Khan, R.H.; Alam, K.; Choi, I. 3-Deoxyglucosone: A Potential Glycating Agent Accountable for Structural Alteration in H3 Histone Protein through Generation of Different AGEs. PLoS ONE 2015, 10, e0116804. [Google Scholar] [CrossRef]
- Tolgahan, K.; Slađana, Ž.; Neslihan, G.T.; Jelena, V.; Dodig, D.; Vural, G. Formation of α-Dicarbonyl Compounds in Cookies Made from Wheat, Hull-less Barley and Colored Corn and Its Relation with Phenolic Compounds, Free Amino Acids and Sugars. Eur. Food Res. Technol. 2016, 242, 51–60. [Google Scholar]
- Gürsul, A.I.; Gökmen, V. Multiresponse Kinetic Modelling of α-Dicarbonyl Compounds Formation in Fruit Juices during Storage. Food Chem. 2020, 320, 126620. [Google Scholar] [CrossRef]
- Zhu, H.; Poojary, M.M.; Andersen, M.L.; Lund, M.N. Trapping of Carbonyl Compounds by Epicatechin: Reaction Kinetics and Identification of Epicatechin Adducts in Stored UHT Milk. J. Agric. Food Chem. 2020, 68, 7718–7726. [Google Scholar] [CrossRef]
- Jayawardhana, H.H.A.C.K.; Oh, J.Y.; Jayawardena, T.U.; Sanjeewa, K.K.A.; Liyanage, N.M.; Nagahawatta, D.P.; Hyun, J.; Son, K.T.; Jeon, Y.J.; Park, J. Protective Effect of fish gut hydrolysates from olive flounder (Paralichthys olivaceus) surimi byproducts against AAPH-induced oxidative stress in vitro and in vivo zebrafish models. J. Aquat. Food Prod. Technol. 2022, 31, 924–938. [Google Scholar] [CrossRef]
- Sohn, H.; Kim, J.; Jin, C.; Lee, J. Identification of vibrio species isolated from cultured olive flounder (Paralichthys olivaceus) in jeju island, South Korea. Fish. Aquat. Sci. 2019, 22, 14. [Google Scholar] [CrossRef]
- Ko, J.Y.; Kang, N.; Lee, J.H.; Kim, J.S.; Kim, W.S.; Park, S.J.; Kim, Y.T.; Jeon, Y.J. Angiotensin I-converting enzyme inhibitory peptides from an enzymatic hydrolysate of flounder fish (Paralichthys olivaceus) muscle as a potent anti-hypertensive agent. Process Biochem. 2016, 51, 535–541. [Google Scholar] [CrossRef]
- Liu, D.; He, Y.; Xiao, J.; Zhou, Q.; Wang, M. The occurrence and stability of Maillard reaction products in various traditional Chinese sauces. Food Chem. 2020, 342, 128319. [Google Scholar] [CrossRef]
- Konduri, A.; Bharti, V.S.; Krishnan, S.; Kumar, S.; Shukla, S.P.; Sahu, N.P.; Manupati, A.A.R.; Kara, T.; Amal, C.T. Dietary biochar effect on growth performance, proximate composition, and physiological response of penaeus vannamei (boone, 1931) cultured in inland saline groundwater. Anim. Feed Sci. Tech. 2024, 316, 116053. [Google Scholar] [CrossRef]
- Zhao, F.; Qian, J.; Liu, H.; Wang, C.; Wang, X.J.; Wu, W.X.; Wang, D.H.; Cai, C.P.; Lin, Y. Quantification, identification and comparison of oligopeptides on five tea categories with different fermentation degree by Kjeldahl method and ultra-high performance liquid chromatography coupled with quadrupole-orbitrap ultra-high resolution mass spectrometry. Food Chem. 2022, 378, 132130. [Google Scholar]
- Ayanda, I.O.; Ekhator, U.I.; Bello, O.A. Determination of selected heavy metal and analysis of proximate composition in some fish species from ogun river, Southwestern Nigeria. Heliyon 2019, 5, e02512. [Google Scholar] [CrossRef]
- Yue, W.; Xie, J.; Ran, H.; Xiong, S.; Rong, J.H.; Wang, P.; Hu, Y. Antioxidant Peptides from Silver Carp Steak by Alkaline Protease and Flavor Enzyme Hydrolysis: Characterization of Their Structure and Cytoprotective Effects Against H2O2-Induced Oxidative Stress. J. Food Sci. 2024, 89, 8868–8886. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Qian, M.; Shen, Y.; Qin, X.; Huang, H.; Yang, H.; He, Y.; Bai, W. An high-throughput sequencing approach to the preliminary analysis of bacterial communities associated with changes in amino acid nitrogen, organic acid and reducing sugar contents during soy sauce fermentation. Food Chem. 2021, 349, 129131. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Wang, Q.; Teng, J.; Wu, F.; He, Z. Preparation process optimization and evaluation of bioactive peptides from Carya cathayensis sarg meal. Curr. Res. Food Sci. 2022, 6, 100408. [Google Scholar] [CrossRef]
- Guidea, A.; Zagrean-Tuza, C.; Mot, A.C.; Sarbu, C. Comprehensive evaluation of radical scavenging, reducing power and chelating capacity of free proteinogenic amino acids using spectroscopic assays and multivariate exploratory techniques. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 233, 118158. [Google Scholar] [CrossRef] [PubMed]
- Park, J.T.; Johnson, M.J. A submicro detemination of glucose. J. Biol. Chem. 1949, 181, 149–151. [Google Scholar] [CrossRef]
- Yang, J.; Chen, J.X.; Hao, Y.X.; Liu, Y.P. Identification of the DPPH radical scavenging reaction adducts of ferulic acid and sinapic acid and their structure-antioxidant activity relationship. LWT 2021, 146, 111411. [Google Scholar] [CrossRef]
- Molina, E.; Papadopoulou, A.; Ledward, D.A. Emulsifying properties of high pressure treated soy protein isolate and 7S and 11S globulins. Food Hydrocoll. 2001, 15, 263–269. [Google Scholar] [CrossRef]
- Guo, F.; Xiong, Y.L.; Qin, F.; Jian, H.; Huang, X.; Chen, J. Surface properties of heat-induced soluble soy protein aggregates of different molecular masses. J. Food Sci. 2015, 80, C279–C287. [Google Scholar] [CrossRef]
- Jang, H.W.; Jiang, Y.; Hengel, M.; Shibamoto, T. Formation of 4(5)-Methylimidazole and Its Precursors, α-Dicarbonyl Compounds, in Maillard Model Systems. J. Agric. Food Chem. 2013, 61, 6865–6872. [Google Scholar] [CrossRef]
- Martins, S.I.F.S.; Jongen, W.M.F.; Boekel, M.A.J.S.V. A Review of Maillard Reaction in Food and Implications to Kinetic Modelling. Trends Food Sci. Technol. 2000, 11, 364–373. [Google Scholar] [CrossRef]
- Oh, J.Y.; Kim, E.A.; Lee, H.; Kim, H.S.; Lee, J.S.; Jeon, Y.J. Antihypertensive effect of surimi prepared from olive flounder (Paralichthys olivaceus) by angiotensin-I converting enzyme (ACE) inhibitory activity and characterization of ACE inhibitory peptides. Process Biochem. 2019, 80, 164–170. [Google Scholar] [CrossRef]
- Neves, A.C.; Harnedy, P.A.; O’Keeffe, M.B.; FitzGerald, R.J. Bioactive peptides from atlantic salmon (Salmo salar) with angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory, and antioxidant activities. Food Chem. 2017, 218, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Hu, F.; Jiang, Q.X.; Xu, Y.S.; Xia, W.S. Effect of pretreatments on hydrolysis efficiency and antioxidative activity of hydrolysates produced from bighead carp (Aristichthys nobilis). J. Aquat. Food Prod. Technol. 2016, 25, 916–927. [Google Scholar] [CrossRef]
- Korkmaz, K.; Tokur, B. Optimization of hydrolysis conditions for the production of protein hydrolysates from fish wastes using response surface methodology. Food Biosci. 2021, 45, 101312. [Google Scholar] [CrossRef]
- Jünger, M.; Mittermeier-Kleßinger, V.K.; Farrenkopf, A.; Dunkel, A.; Stark, T.; Fröhlich, S.; Somoza, V.; Dawid, C.; Hofmann, T. Sensoproteomic Discovery of taste-modulating peptides and taste re-engineering of soy sauce. J. Agric. Food Chem. 2022, 70, 101312. [Google Scholar] [CrossRef]
- Jafarpour, A.; Gomes, R.M.; Gregersen, S.; Sloth, J.J.; Jacobsen, C.; Sorensen, A.D.M. Characterization of cod (Gadus morhua) frame composition and its valorization by enzymatic hydrolysis. Food Compos. Anal. 2020, 89, 103469. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, M.M.; Zhao, H.F.; Su, G.W.; Gao, X.L. Application of artififial neural network to prediction of cantonese soy sauce brewing and changing pattern concerning total nitrogen and α-amino acid nitrogen. J. Food Process Eng. 2010, 34, 1982–1999. [Google Scholar] [CrossRef]
- Hu, Y.M.; Lu, S.Z.; Li, Y.S.; Wang, H.; Shi, Y.; Zhang, L.; Tu, Z.C. Protective effect of antioxidant peptides from grass carp scale gelatin on the H2O2-mediated oxidative injured HepG2 cells. Food Chem. 2021, 373, 131539. [Google Scholar] [CrossRef]
- Miao, J.; Liao, W.; Kang, M.; Jia, Y.; Wang, Q.; Duan, S.; Xiao, S.; Cao, Y.; Ji, H. Anti-fatigue and anti-oxidant activities of oyster (Ostrea rivularis) hydrolysate prepared by compound protease. Food Funct. 2018, 9, 6577–6585. [Google Scholar] [CrossRef]
- Farvin, K.H.; Lystbæk Andersen, L.; Hauch Nielsen, H.; Jacobsen, C.; Jakobsen, G.; Johansson, I.; Jessen, F. Antioxidant activity of cod (Gadus morhua) protein hydrolysates: In vitro assays and evaluation in 5% fish oil-in-water emulsion. Food Chem. 2014, 149, 326–334. [Google Scholar] [CrossRef]
- Zhang, Y.; Gui, M.; Fan, W.; Gao, L.; Bu, X.Y. Response Surface Methodology Optimization on Extraction and Antioxidant Activity Evaluation of Antioxidant Peptide from Enzymatic Hydrolysates of Sturgeon bone. LWT-Food Sci. Technol. 2024, 198, 116042. [Google Scholar] [CrossRef]
- Khasmakhi, E.N.; Rahimabadi, E.Z.; Sangatash, M.M. Purification and Characterization of Antioxidant Peptide Fractions from Protein Hydrolysate of Rainbow Trout (Oncorhynchus mykiss) Viscera. Food. Res. Int. 2025, 206, 116027. [Google Scholar] [CrossRef] [PubMed]
- Guérard, F.; Dufossé, L.; Broise, D.D.L.; Binet, A. Enzymatic Hydrolysis of Proteins from Yellowfin Tuna (Thunnus albacares) Wastes Using Alcalase. J. Mol. Catal. B Enzym. 2001, 11, 1051–1059. [Google Scholar] [CrossRef]
- Li, S.; Liu, X.; Leng, K.; Li, F.; Ding, Q.; Wang, W. Antioxidant Activity and Stability of Collagen Peptides from Atlantic Cod (Gadus morhua) bone. Food Ferment. Ind. 2024, 50, 50–56. [Google Scholar]
- Lu, S.; Cui, H.; Zhan, H.; Hayat, K.; Jia, C.; Hussain, S.; Tahir, M.U.; Zhang, X.; Ho, C.T. Timely Addition of Glutathione for Its Interaction with Deoxypentosone To Inhibit the Aqueous Maillard Reaction and Browning of Glycylglycine-Arabinose System. J. Agric. Food Chem. 2019, 67, 6585–6593. [Google Scholar] [CrossRef] [PubMed]
- Haldar, A.; Das, M.; Chatterjee, R.; Dey, T.K.; Dhar, P.; Chakrabarti, J. Functional Properties of Protein Hydrolysates from Fresh Water Mussel Lamellidens marginalis (Lam.). Indian J. Biochem. Bio. 2018, 55, 105–113. [Google Scholar]
- Liu, C.Y.; Ma, X.M.; Che, S.; Wang, C.W.; Li, B.F. The Effect of Hydrolysis with Neutrase on Molecular Weight, Functional Properties, and Antioxidant Activities of Alaska Pollock Protein Isolate. J. Ocean. Univ. China 2018, 17, 1423–1431. [Google Scholar] [CrossRef]
- Sun, Y.; Lin, L.; Zhang, P. Color development kinetics of Maillard reactions. Ind. Eng. Chem. Res. 2021, 60, 3495–3501. [Google Scholar] [CrossRef]
- Jiang, W.; Liu, Y.; Yang, X.Q.; Hu, S.W. Antioxidant and antibacterial activities of modified crab shell bioactive peptides by Maillard reaction. Int. J. Food Prop. 2018, 21, 2730–2743. [Google Scholar] [CrossRef]
- Banna, M.H.A.; Hoque, M.S.; Tamanna, F.; Hasan, M.M.; Mondal, P.; Hossain, M.B.; Chakma, S.; Jaman, M.N.; Tareq, M.A.; Khan, M.S.I. Nutritional, microbial and various quality aspects of common dried fish from commercial fish drying centers in Bangladesh. Heliyon 2022, 8, e10830. [Google Scholar] [CrossRef]
- Kim, Y.; Ahn, H.; Lee, K.G. Analysis of glyoxal, methylglyoxal and diacetyl in soy sauce. Food Sci. Biotechnol. 2021, 30, 1403–1408. [Google Scholar] [CrossRef] [PubMed]
- The Joint FAO/WHO Expert Committee on Food Additives. Evaluation of certain food additives and contaminants—Sixty-seventh report of the joint FAO/WHO expert committee on food additives. WHO Tech. Rep. Ser. 2007, 940, 1–92. [Google Scholar]
- Hellwig, M.; Gensberger-Reigl, S.; Henle, T.; Pischetsrieder, M. Food-derived 1,2-dicarbonyl compounds and their role in diseases. Semin. Cancer Biol. 2018, 49, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Maasen, K.; Scheijen, J.L.J.M.; Opperhuizen, A.; Stehouwer, C.D.A.; Van Greevenbroek, M.M.; Schalkwijk, C.G. Quantification of Dicarbonyl Compounds in Commonly Consumed Foods and Drinks; Presentation of a Food Composition Database for Dicarbonyls. Food Chem. 2021, 339, 128063. [Google Scholar] [CrossRef]
- Duan, J.Y.; Wang, Y.; Wang, Z.L.; Su, Y.F.; Yu, P. Application of Maillard Reaction in Aquatic Products. China Condiment 2024, 49, 199–202. [Google Scholar]
Analyte | Regression Equation | Correlation Coefficient | Linear Range (ng/mL) | MDL(μg/kg) | LOQ (μg/kg) |
---|---|---|---|---|---|
2,3-BD | y = 685.78x + 330.04 | 0.991 | 0.05–10.00 | 6.60 | 10.70 |
MGO | y = 685.78x + 330.04 | 0.999 | 0.10–500.00 | 5.30 | 19.10 |
GO | y = 13.526x | 0.999 | 5.00–1000.00 | 3.60 | 10.50 |
3-DG | y = 31,615x + 302.12 | 0.991 | 1.00–250.00 | 21.80 | 24.00 |
Sample | Moisture/% | Protein/% | Ash/% | Lipid/% | CHO/% |
---|---|---|---|---|---|
Flounder steak | 73.35 ± 0.44 | 16.96 ± 0.39 | 5.18 ± 0.22 | 3.13 ± 0.16 | 0.12 ± 0.05 |
No. | Gelatinized Starch Addition/g | Salt/g | MR Product/mL | Sensory Scores |
---|---|---|---|---|
1 | 65 | 2.25 | 45 | 80.23 |
2 | 55 | 2.00 | 55 | 83.16 |
3 | 65 | 1.75 | 55 | 75.23 |
4 | 55 | 2.25 | 50 | 87.70 |
5 | 60 | 2.25 | 55 | 81.96 |
6 | 65 | 2.00 | 50 | 79.10 |
7 | 60 | 2.00 | 45 | 81.06 |
8 | 60 | 1.75 | 50 | 76.03 |
9 | 55 | 1.75 | 45 | 75.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, F.; Ge, Y.; Chen, H.; Wang, S.; Zhou, D.; Pan, M.; Cao, R.; Sun, G. Reduction and Control Technology of Harmful Dicarbonyl Compounds in Flounder (Pleuronectiformes) Seafood Condiment Preparation. Foods 2025, 14, 1717. https://doi.org/10.3390/foods14101717
He F, Ge Y, Chen H, Wang S, Zhou D, Pan M, Cao R, Sun G. Reduction and Control Technology of Harmful Dicarbonyl Compounds in Flounder (Pleuronectiformes) Seafood Condiment Preparation. Foods. 2025; 14(10):1717. https://doi.org/10.3390/foods14101717
Chicago/Turabian StyleHe, Fazhao, Yinggang Ge, Hui Chen, Shanyu Wang, Deqing Zhou, Mingchao Pan, Rong Cao, and Guohui Sun. 2025. "Reduction and Control Technology of Harmful Dicarbonyl Compounds in Flounder (Pleuronectiformes) Seafood Condiment Preparation" Foods 14, no. 10: 1717. https://doi.org/10.3390/foods14101717
APA StyleHe, F., Ge, Y., Chen, H., Wang, S., Zhou, D., Pan, M., Cao, R., & Sun, G. (2025). Reduction and Control Technology of Harmful Dicarbonyl Compounds in Flounder (Pleuronectiformes) Seafood Condiment Preparation. Foods, 14(10), 1717. https://doi.org/10.3390/foods14101717