Classification of Plant-Based Drinks Based on Volatile Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant-Based Drink Sample Selection
2.2. Sample Preparation
2.2.1. Sample Preparation for GC-IMS
2.2.2. Sample Preparation for the NeOse Pro Electronic Nose
2.3. Analysis
2.3.1. GC-IMS Analysis
2.3.2. Analysis Using the NeOse Pro Electronic Nose System
2.4. Statistics
3. Results
3.1. Comparison of PCA Results
3.2. Comparison of LDA Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brusati, M.; Baroni, L.; Rizzo, G.; Giampieri, F.; Battino, M. Plant-based milk alternatives in child nutrition. Foods 2023, 12, 1544. [Google Scholar] [CrossRef]
- Xie, A.; Dong, Y.; Liu, Z.; Li, Z.; Shao, J.; Li, M.; Yue, X. A review of plant-based drinks addressing nutrients, flavor, and processing technologies. Foods 2023, 12, 3952. [Google Scholar] [CrossRef] [PubMed]
- Angelino, D.; Rosi, A.; Vici, G.; Russo, M.D.; Pellegrini, N.; Martini, D. On behalf of the SINU Young Working Group. Nutritional quality of plant-based drinks sold in Italy: The Food Labelling of Italian Products (FLIP) study. Foods 2020, 9, 682. [Google Scholar] [CrossRef] [PubMed]
- Walther, B.; Guggisberg, D.; Badertscher, R.; Egger, L.; Portmann, R.; Dubois, S.; Haldimann, M.; Kopf-Bolanz, K.; Rhyn, P.; Zoller, O.; et al. Comparison of nutritional composition between plant-based drinks and cow’s milk. Front. Nutr. 2022, 9, 988707. [Google Scholar] [CrossRef]
- Ammann, J.; Grande, A.; Inderbitzin, J.; Guggenbühl, B. Understanding Swiss consumption of plant-based alternatives to dairy products. Food Qual. Prefer. 2021, 110, 104947. [Google Scholar] [CrossRef]
- Stöckl, M.; Pferdmenges, L.E.; Brühl, L.; Greiner, R.; Hüsken, A.; Krüger, R.; Langenkamper, G.; Lencioni, A.; Muller, A.; Schmidt, M.; et al. Characterization of the nutritional profile of three plant-based drinks. J. Food Compos. Anal. 2024, 135, 106553. [Google Scholar] [CrossRef]
- Wright, N.S.; Smith, M. Guidelines suggesting children avoid plant-based milks: A closer examination. Matern. Child Health J. 2020, 10, 1189–1192. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, M.L.; Serrano-Carretero, A.; García-Herrera, P.; Cámara-Hurtado, M.; Sánchez-Mata, M.C. Plant-based beverages as milk alternatives? Nutritional and functional approach through food labelling. Food Res. Int. 2023, 173, 113244. [Google Scholar] [CrossRef]
- McClements, D.J.; Newman, E.; McClements, I.F. Plant-based milks: A review of the science underpinning their design, fabrication, and performance. Compr. Rev. Food Sci. Food Saf. 2019, 18, 2047–2067. [Google Scholar] [CrossRef]
- Vautz, W.; Zimmermann, D.; Hartmann, M.; Baumbach, J.I.; Nolte, J.; Jung, J. Ion mobility spectrometry for food quality and safety. Food Addit. Contam. 2006, 23, 1064–1073. [Google Scholar] [CrossRef]
- Marquès, M.; Correig, E.; Capdevila, E.; Gargallo, E.; González, N.; Nadal, M.; Domingo, J.L. Essential and Non-essential Trace Elements in Milks and Plant-Based Drinks. Biol. Trace Elem. Res. 2022, 200, 4524–4533. [Google Scholar] [CrossRef] [PubMed]
- Basile, T.; Mallardi, D.; Cardone, M.F. Spectroscopy, a tool for the non-destructive sensory analysis of plant-based foods and beverages: A comprehensive review. Chemosensors 2023, 11, 579. [Google Scholar] [CrossRef]
- Mu, F.; Gu, Y.; Zhang, J.; Zhang, L. Milk source identification and milk quality estimation using an electronic nose and machine learning techniques. Sensors 2020, 20, 4238. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Hu, Z.; Hu, X.; Li, D.; Tian, S. Electronic tongue and electronic nose for food quality and safety. Food Res. Int. 2022, 162, 112214. [Google Scholar] [CrossRef] [PubMed]
- Alikord, M.; Mohammadi, A.; Kamankesh, M.; Shariatifar, N. Food safety and quality assessment: Comprehensive review and recent trends in the applications of ion mobility spectrometry (IMS). Crit. Rev. Food. Sci. Nutr. 2022, 62, 4833–4866. [Google Scholar] [CrossRef] [PubMed]
- Jena, S.P.; Paikaray, B.K.; Pramanik, J.; Thapa, R.; Samal, A.K. Classifications on wine informatics using PCA, LDA, and supervised machine learning techniques. Int. J. Work Innov. 2023, 4, 58–73. [Google Scholar] [CrossRef]
- Giampieri, F.; Luca Mazzoni, L.; Danila Cianciosi, D.; Alvarez-Suarez, J.M.; Regolo, L.; Sánchez-González, C.; Capocasa, F.; Xiao, J.; Mezzetti, B.; Battino, M. Organic vs conventional plant-based foods: A review. Food Chem. 2022, 383, 132352. [Google Scholar] [CrossRef]
- Manousi, N.; Zachariadis, A.G. Determination of volatile compounds in nut-based milk alternative beverages by HS-SPME prior to GC-MS analysis. Molecules 2019, 24, 3091. [Google Scholar] [CrossRef]
- Brenet, S.; John-Herpin, A.; Gallat, F.X.; Musnier, B.; Buhot, A.; Herrier, C.; Rousselle, T.; Livache, T.; Hou, Y. Highly-selective optoelectronic nose based on surface plasmon resonance imaging for sensing volatile organic compounds. Anal. Chem. 2018, 90, 9879–9887. [Google Scholar] [CrossRef]
- Metsalu, T.; Vilo, J. Clustvis: A web tool for visualizing the clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015, 43, 566–570. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, T.; Yang, D.; Xie, J. Application of gas chromatography-ion mobility spectrometry in the analysis of food volatile components. Acta Chromatogr. 2022, 35, 35–45. [Google Scholar] [CrossRef]
- Hu, S.; Ren, H.; Song, Y.; Liu, F.; Qian, L.; Zuo, F.; Meng, L. Analysis of volatile compounds by GCMS reveals their rice cultivars. Sci. Rep. 2023, 13, 7973. [Google Scholar] [CrossRef]
- Wang, T.; An, J.; Chai, M.; Zhu, Z.; Jiang, Y.; Huang, X.; Han, B. Volatile metabolomics reveals the characteristics of the unique flavor substances in oats. Food Chem. X 2023, 20, 101000. [Google Scholar] [CrossRef]
- Oliveira, I.; Malheiro, R.; Meyer, A.S.; Pereira, J.A.; Gonçalves, B. Application of chemometric tools for the comparison of volatile profile from raw and roasted regional and foreign almond cultivars (Prunus dulcis). J. Food Sci. Technol. 2019, 56, 3764–3776. [Google Scholar] [CrossRef]
- Zhang, Y.; Kan, J.; Liu, X.; Song, F.; Zhu, K.; Li, N.; Zhang, Y. Chemical components, nutritional value, volatile organic compounds and biological activities in vitro of (Cocos nucifera L.) water with different maturities. Foods 2024, 13, 863. [Google Scholar] [CrossRef] [PubMed]
- Boue, S.; Shih, B.Y.; Carter-Wientjes, C.H.; Cleveland, T.E. Identification of volatile compounds in soybean at various developmental stages using solid phase microextraction. J. Agric. Food Chem. 2003, 51, 4873–4876. [Google Scholar] [CrossRef] [PubMed]
- Agila, A.; Barringer, S.A. Volatile profile of cashews (Anacardium occidentale L.) from different geographical origins during roasting. J. Food Sci. 2011, 76, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Buśko, M.; Jeleń, H.; Góral, T.; Chmielewski, J.; Stuper, K.; Szwajkowska-Michałek, L.; Tyrakowska, B.; Perkowski, J. Volatile metabolites in various cereal grains. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2010, 27, 1574–1581. [Google Scholar] [CrossRef]
- Bocci, F.; Frega, N. Analysis of the volatile fraction from sunflower oil extracted under pressure. J. Am. Oil Chem. 1996, 73, 713–716. [Google Scholar] [CrossRef]
- Singh, A.; Shi, Y.; Magreault, P.; Kitts, D.D.; Jarzębski, M.; Siejak, P.; Pratap-Singh, A. A rapid gas-chromatography/mass spectrometry technique for determining odour activity values of volatile compounds in plant proteins: Soy, and allergen-free pea and brown rice protein. Molecules 2021, 26, 4104. [Google Scholar] [CrossRef]
- Hwang, S.H.; Lee, J.; Park, K.J. Profile change of the volatile and non-volatile compounds in dried or baked laver by photooxidation. J. Food Sci. 2024, 89, 998–1011. [Google Scholar] [CrossRef] [PubMed]
- Bendaali, Y.; Vaquero, C.; González, C.; Morata, A. Elaboration of an organic beverage based on grape juice with positive nutritional properties. Food Sci. Nutr. 2022, 10, 1768–1779. [Google Scholar] [CrossRef]
- Michel-Cuello, C.; Ortiz-Cerda, I.; Moreno-Vilet, L.; Grajales-Lagunes, A.; Moscosa-Santillán, M.; Bonnin, J.; González-Chávez, M.M.; Ruiz-Cabrera, M. Study of enzymatic hydrolysis of fructans from Agave salmiana characterization and kinetic assessment. Sci. World J. 2012, 2012, 863432. [Google Scholar] [CrossRef] [PubMed]
- Mu, H.; Dai, T.; Huang, S.; Wu, K.; Wang, M.; Tan, C.; Zhang, F.; Sheng, J.; Zhao, C. Physical and chemical properties, flavor and organoleptic characteristics of a walnut and purple rice fermented plant drink. Foods 2024, 13, 400. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Al-Dalali, S.; Wang, Z.; Xu, B.; Zhou, H. Investigation of volatile flavor compounds and characterization of aroma-active compounds of water-boiled salted duck using GC–MS–O, GC–IMS, and E-nose. Food Chem. 2022, 386, 132728. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yuan, L.; Liu, H.; Liu, H.; Zhou, Y.; Li, M.; Gao, R. Analysis of the changes of volatile flavor compounds in a traditional Chinese shrimp paste during fermentation based on electronic nose, SPME-GC-MS and HS-GC-IMS. Food Sci. Hum. Wellness 2023, 12, 173–182. [Google Scholar] [CrossRef]
- Xiao, N.; Xu, H.; Jiang, X.; Sun, T.; Luo, Y.; Shi, W. Evaluation of aroma characteristics in grass carp mince as affected by different washing processes using an E-nose, HS-SPME-GC-MS, HS-GC-IMS, and sensory analysis. Food Res. Int. 2022, 158, 111584. [Google Scholar] [CrossRef] [PubMed]
- Gou, Y.; Han, Y.; Li, J.; Niu, X.; Ma, G.; Xu, Q. Discriminant analysis of aroma differences between cow milk powder and special milk powder (donkey, camel, and horse milk powder) in Xinjiang based on GC-IMS and multivariate statistical methods. Foods 2023, 12, 4036. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Ren, X.; Wei, L.; Cao, X.; Ge, Y.; Liu, H.; Li, J. Collaborative analysis on difference of apple fruits flavour using electronic nose and electronic tongue. Food Res. Int. 2020, 162, 112214. [Google Scholar] [CrossRef]
- Loutfia, A.; Coradeschia, S.; Manib, G.K.; Shankarb, P.; Rayappanb, J.B.B. Electronic noses for food quality: A review. J. Food Eng. 2015, 144, 103–111. [Google Scholar] [CrossRef]
- Hernández-Mesa, M.; Ropartz, D.; García-Campaña, A.M.; Rogniaux, H.; Dervilly-Pinel, G.; Le Bizec, B. Ion mobility spectrometry in food analysis: Principles, current applications and future trends. Molecules 2019, 24, 2706. [Google Scholar] [CrossRef] [PubMed]
Source | Type | Brand | Additional Information | Main Labeled Ingredients | Sample Number | |||
---|---|---|---|---|---|---|---|---|
Almond | Conventional | Adez | almond (2%), sunflower lecithin, gellan gum, steviol glycosides, vitamins (B12, D) | 10 | 29 | 61 | ||
Almond | Conventional | Plant Pro | UHT, with added calcium and minerals | almond (2.75%), sugar, sunflower oil, calcium carbonate, salt, sunflower lecithin, vitamins (A, D, E) | 73 | 111 | 113 | |
Almond | Conventional | Happy | almond (1%), calcium carbonate, guar gum, gellan gum, lecithins, salt | 149 | 181 | 199 | ||
Almond (roasted) | Conventional | Alpro | almond (2%), salt, sugar, sunflower lecithin, carob flour, gellan gum, vitamins (B2, B12, D, E) | 89 | 91 | 106 | 124 | |
Almond | Conventional (Barista) | Joya | almond (2.5%), gellan gum, maltodextrin, lecithins, salt | 144 | 178 | 204 | ||
Almond | Conventional (Barista) | Alpro | almond (2.5%), sugar, fructose, calcium carbonate, guar gum, gellan gum, salt | 22 | 46 | 65 | ||
Almond | Organic | DMbio | UHT; natural | almond (7%), salt | 68 | 76 | 114 | |
Almond | Organic | The Bridge | gluten-free | Italian almond paste (3%), cane sugar, carob flour | 56 | 74 | 103 | |
Almond | Organic | Happy | almond (1%), calcium carbonate, guar gum, gellan gum, lecithins, salt | 181 | 149 | 199 | ||
Cashew | Conventional | Alpro | cashew (3.1%), sea salt, carob flour, gellan gum, sunflower lecithin, vitamins (B2, B12, D2, E) | 11 | 42 | 52 | ||
Coconut | Conventional | Adez | coconut extract (4.6%), rice (3.8%), sunflower lecithin, gellan gum, guar gum, vitamins (B12, D) | 38 | 41 | 53 | 58 | |
Coconut | Conventional | Joya | UHT, with added calcium | coconut milk (coconut cream, water) (5.3%), rice (3.8%), gellan gum, guar gum, lecithins, salt, vitamins (B12, D2) | 67 | 71 | 79 | 85 |
Coconut | Conventional | Koko | dairy-free; original recipe | coconut milk (8.4%), grape juice concentrate, fatty acid–sucrose esters, salt, carotene, vitamins (B12, D2) | 86 | 102 | 121 | |
Coconut | Conventional | Happy | new recipe | coconut (2%), rice (3.8%), gellan gum, guar gum, lecithins, salt | 136 | 161 | 172 | |
Coconut | Conventional (Barista) | Joya | gluten-free | coconut milk (coconut cream, water) (9%), soybean (2.3%) | 151 | 214 | ||
Coconut | Organic | Natur Aktiv | coconut meat (12%), agave syrup, guar gum, salt | 70 | 95 | 123 | ||
Coconut | Organic | DMbio | UHT | coconut (8%), sea salt | 14 | 27 | 50 | 59 |
Oat | Organic (Barista) | Riso Scotti | oat (16%), sunflower oil, pea protein, salt | 128 | 185 | 192 | ||
Oat | Organic (Barista) | The Bridge | oat (14%), sunflower oil, saffron oil, salt | 135 | 166 | 184 | 191 | |
Rice | Conventional | Auchan | rice (14%), sunflower oil, salt | 137 | 145 | 200 | ||
Rice | Conventional | Alpro | rice (not grown in the European Union) (12.5%), sunflower oil, salt, gellan gum, vitamins (B12, D2) | 66 | 97 | 109 | ||
Rice | Conventional | Alpro | dolce | rice (16%), sunflower oil, rapeseed lecithin, salt, gellan gum, vitamins (B2, B12, D) | 37 | 39 | 64 | |
Rice | Conventional | Plant Pro | rice (15%), sunflower oil, salt | 80 | 99 | 117 | ||
Rice | Organic | DMbio | natural | rice (13%), sunflower oil, salt | 32 | 47 | 49 | |
Rice | Organic | Happy | rice (12.1%), sunflower oil, calcium carbonate, gellan gum, salt | 179 | 180 | 206 | ||
Rice | Organic | Isola | with added calcium | rice (17%), sunflower oil, seaweed, salt | 176 | 188 | 193 | |
Rice | Organic | Riso Scotti | with added calcium | rice (17%), sunflower oil, seaweed, salt | 88 | 104 | 112 | |
Rice | Organic | The Bridge | gluten-free, with added calcium | Italian rice (17%), sunflower oil, saffron oil, seaweed, sea salt | 83 | 98 | 105 | |
Rice | Organic | The Bridge | gluten-free; natural | Italian rice (17%), sunflower oil, saffron oil, sea salt | 69 | 77 | 100 | 120 |
Rice | Organic | My Bio | rice (17%), sunflower oil, salt | 159 | 165 | 171 | ||
Soy | Conventional | Alpro | low sugar | soybean (8%), sugar, gellan gum, sea salt, vitamins (B2, B12, D2) | 1 | 7 | 33 | |
Soy | Conventional | Alpro | sugar-free | shelled soybean (8.7%), calcium carbonate, salt, gellan gum, vitamins (B2, B12, D2) | 175 | 186 | 195 | |
Soy | Organic | DMbio | with added calcium | soybean (7%), cane sugar, seaweed, salt | 34 | 60 | 62 | |
Soy | Organic | DMbio | natural | soybean (8%) | 78 | 94 | 116 | |
Soy | Organic | Happy | original recipe | soybean (6.9%), sugar, calcium carbonate, gellan gum, disodium phosphate, vitamins (B2, D, B12) | 197 | |||
Spelt | Organic | DMbio | natural | spelt (11%), sunflower oil, salt | 87 | 108 | 122 |
Time | Carrier Gas Flow Rate [mL/min] |
---|---|
00:00.000 | | |
00:00.500 | 5.0 |
00:09.500 | 5.0 |
02:00.000 | 2.0 |
10:00.000 | 2.0 |
25:00.020 | 60.0 |
GC-IMS | Electronic Nose | ||||||||
---|---|---|---|---|---|---|---|---|---|
Brand | Type | Rate of Overlapping | Main Overlapping Ingredients | Notable Findings | Brand | Type | Rate of Overlapping | Main Overlapping Ingredients | Notable Findings |
Alpro | Almond | 1/3 |
| Complete separation of soy samples | Alpro | Almond | 0/3 |
| Complete separation of almond and cashew samples |
Cashew | 1/3 | Cashew | 0/3 | ||||||
Rice | 2/3 | Rice | 1/3 | ||||||
Soy (s.f.) | 0/3 | Soy (s.f.) | 1/3 | ||||||
Barista | Almond | 2/3 |
| Coconut and oat 2 samples are difficult to distinguish | Barista | Almond | 2/3 |
| Complete separation of coconut samples |
Coconut | 3/3 | Coconut | 0/3 | ||||||
Oat 1 | 2/3 | Oat 1 | 2/3 | ||||||
Oat 2 | 3/3 | Oat 2 | 2/3 | ||||||
DMbio | Almond | 3/5 |
| Oat, soy, and spelt samples are difficult to distinguish | DMbio | Almond | 0/5 |
|
|
Coconut | 4/5 | Coconut | 3/5 | ||||||
Oat | 5/5 | Oat | 4/5 | ||||||
Rice | 4/5 | Rice | 3/5 | ||||||
Soy | 5/5 | Soy | 4/5 | ||||||
Spelt | 5/5 | Spelt | 4/5 | ||||||
Almond | Barista | 2/3 |
| Conventional and organic almond samples are difficult to distinguish | Almond | Barista | 1/3 |
| Complete separation of conventional and roasted conventional samples |
Conventional | 3/3 | Conventional | 0/3 | ||||||
Organic | 3/3 | Organic | 1/3 | ||||||
Roasted (conv.) | 2/3 | Roasted (conv.) | 0/3 | ||||||
Coconut | Adez | 3/4 |
| Happy, Joya, and Naturaktiv samples are difficult to distinguish | Coconut | Adez | 3/4 |
| Joya and Naturaktiv samples are difficult to distinguish |
Happy | 4/4 | Happy | 3/4 | ||||||
Joya | 4/4 | Joya | 4/4 | ||||||
Koko | 3/4 | Koko | 2/4 | ||||||
Naturaktiv | 4/4 | Naturaktiv | 4/4 | ||||||
Rice (conv.) | Alpro | 2/3 |
| Complete separation of Happy samples | Rice (conv.) | Alpro | 0/3 |
|
|
Alpro (sweet) | 1/3 | Alpro (sweet) | 2/3 | ||||||
Happy | 0/3 | Happy | 2/3 | ||||||
PlantPro | 1/3 | PlantPro | 2/3 | ||||||
Rice (org.) | Auchan | 4/5 |
| DMbio, Isola, Riso Scotti, and The Bridge samples are difficult to distinguish | Rice (org.) | Auchan | 3/5 |
| Isola, MyBio and The Bridge samples are difficult to distinguish |
DMbio | 5/5 | DMbio | 4/5 | ||||||
Isola | 5/5 | Isola | 5/5 | ||||||
MyBio | 4/5 | MyBio | 5/5 | ||||||
Riso Scotti | 5/5 | Riso Scotti | 4/5 | ||||||
The Bridge | 5/5 | The Bridge | 5/5 |
Examined Group | GC-IMS | Electronic Nose | ||
---|---|---|---|---|
Original Grouped cases Correctly Classified | Cross-Validated Grouped Cases Correctly Classified | Original Grouped Cases Correctly Classified | Cross-Validated Grouped Cases Correctly Classified | |
Alpro | 100.0% | 15.4% | 100.0% | 100.0% |
Barista | 100.0% | 92.3% | 100.0% | 100.0% |
DMbio | 100.0% | 89.5% | 100.0% | 100.0% |
Almond | 100.0% | 95.0% | 100.0% | 100.0% |
Coconut | 100.0% | 100.0% | 100.0% | 96.2% |
Rice (convent.) | 100.0% | 91.7% | 100.0% | 100.0% |
Rice (organic) | 100.0% | 90.9% | 100.0% | 100.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papp, Z.; Nemeth, L.G.; Nzetchouang Siyapndjeu, S.; Bufa, A.; Marosvölgyi, T.; Gyöngyi, Z. Classification of Plant-Based Drinks Based on Volatile Compounds. Foods 2024, 13, 4086. https://doi.org/10.3390/foods13244086
Papp Z, Nemeth LG, Nzetchouang Siyapndjeu S, Bufa A, Marosvölgyi T, Gyöngyi Z. Classification of Plant-Based Drinks Based on Volatile Compounds. Foods. 2024; 13(24):4086. https://doi.org/10.3390/foods13244086
Chicago/Turabian StylePapp, Zsigmond, Laura Gabriela Nemeth, Sandrine Nzetchouang Siyapndjeu, Anita Bufa, Tamás Marosvölgyi, and Zoltán Gyöngyi. 2024. "Classification of Plant-Based Drinks Based on Volatile Compounds" Foods 13, no. 24: 4086. https://doi.org/10.3390/foods13244086
APA StylePapp, Z., Nemeth, L. G., Nzetchouang Siyapndjeu, S., Bufa, A., Marosvölgyi, T., & Gyöngyi, Z. (2024). Classification of Plant-Based Drinks Based on Volatile Compounds. Foods, 13(24), 4086. https://doi.org/10.3390/foods13244086