Quantitative Analysis of High-Price Rice Adulteration Based on Near-Infrared Spectroscopy Combined with Chemometrics
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Sample Preparation
2.2. Material and Equipment
2.3. NIRS Data Acquisition
2.4. Sample Set Division
2.5. Spectral Pre-Treatments
2.6. Model Building
2.7. Model Evaluation
3. Results and Discussion
3.1. NIRS Data for Adulterated Rice
3.2. Quantitative Analysis Based on the PLSR Model
3.2.1. Full-Band PLSR Model
3.2.2. Non-Full Band PLSR Model
3.3. Quantitative Analysis Based on the SVR Model
3.3.1. Full-Band SVR Model
3.3.2. Non-Full Band SVR Model
3.4. Quantitative Analysis Based on the BPNN Model
3.5. Comparative Analysis of Quantitative Models
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Doe, J. Plastic Rice: Cameroon Government to Investigate Fake Rice Issue. BBC News, 7 March 2024. [Google Scholar]
- TNN. Fair Price Shops Selling ‘Plastic’ Rice, Claims Viegas. Time News, 16 May 2023.
- Lu, L.; Hu, Z.; Hu, X.; Han, J.; Chen, Z. Quantitative approach of multidimensional interactive sensing for rice quality using electronic tongue sensor array based on information entropy. Sens. Actuators B Chem. 2020, 329, 129254. [Google Scholar] [CrossRef]
- Liu, K.; Chen, Y.; Huang, J.; Qiu, Y.; Li, S.; Zhuo, X.; Yu, F.; Gao, J.; Li, G.; Zhang, W. Spikelet differentiation and degeneration in rice varieties with different panicle sizes. Food Energy Secur. 2021, 11, 1–18. [Google Scholar] [CrossRef]
- Vieira, M.B.; Faustino, M.V.; Lourenço, T.F.; Oliveira, M.M. DNA-based tools to certify authenticity of rice varieties—An overview. Foods 2022, 11, 258. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Hu, X.; Li, K.; Liu, Y.; Rong, Q.; Zhu, L.; Yuan, L.; Qu, F.; Zhang, X.; Tan, W. A mitochondrial-targeted prodrug for NIR imaging guided and synergetic NIR photodynamic-chemo cancer therapy. Chem. Sci. 2017, 8, 7689–7695. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Yu, Y.; Wang, R.; Chen, M.; Li, Z.; He, X.; Ren, Z.; Dong, H. The identification of aged-rice adulteration by support vector machine classification combined with characteristic wavelength variables. Microchem. J. 2024, 199, 110032. [Google Scholar] [CrossRef]
- Ma, H.; Wang, J.; Chen, Y.; Lai, Z. Rapid authentication of starch adulterations in ultrafine granular powder of Shanyao by near-infrared spectroscopy coupled with chemometric methods. Food Chem. 2017, 215, 108–115. [Google Scholar] [CrossRef]
- Gomes, A.A.; Khvalbota, L.; Onça, L.; Machyňáková, A.; Špánik, I. Handling multiblock data in wine authenticity by sequentially orthogonalized one class partial least squares. Food Chem. 2022, 382, 132271. [Google Scholar] [CrossRef]
- Jiang, Y.; Lu, Z.; Chen, X.; Yu, Z.; Qin, H.; Chen, J.; Lu, J.; Yao, S. Optimizing the quantitative analysis of solid biomass fuel properties using laser induced breakdown spectroscopy (LIBS) coupled with a kernel partial least squares (KPLS) model. Anal. Methods 2021, 13, 5467–5477. [Google Scholar] [CrossRef]
- Khorramifar, A.; Sharabiani, V.R.; Karami, H.; Kisalaei, A.; Lozano, J.; Rusinek, R.; Gancarz, M. Investigating changes in pH and soluble solids content of potato during the storage by electronic nose and Vis/NIR spectroscopy. Foods 2022, 11, 4077. [Google Scholar] [CrossRef]
- Bian, X.; Wu, D.; Zhang, K.; Liu, P.; Shi, H.; Tan, X.; Wang, Z. Variational mode decomposition weighted multiscale support vector regression for spectral determination of rapeseed oil and rhizoma alpiniae offcinarum adulterants. Biosensors 2022, 12, 586. [Google Scholar] [CrossRef]
- Li, Z.; Song, J.; Ma, Y.; Yu, Y.; He, X.; Guo, Y.; Dou, J.; Dong, H. Identification of aged-rice adulteration based on near-infrared spectroscopy combined with partial least squares regression and characteristic wavelength variables. Food Chem. X 2023, 17, 100539. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liang, Y.; Xu, Q.; Cao, D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 2009, 648, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.; Wang, L.; Yuan, P.; Yan, L.; Xiao, J. Rapid seed viability prediction of Sophora japonica by improved successive projection algorithm and hyperspectral imaging. Infrared Phys. Technol. 2022, 123, 104143. [Google Scholar] [CrossRef]
- Gilbraith, W.E.; Celani, C.P.; Booksh, K.S. Visualization of confusion matrices with network graphs. J. Chemom. 2023, 37, e3435. [Google Scholar] [CrossRef]
- Hecht-Nielsen, R. Theory of the backpropagation neural network. In Neural Networks for Perception; Academic Press: Cambridge, MA, USA, 1992; pp. 65–93. [Google Scholar]
- Lu, H.; Jiang, H.; Chen, Q. Determination of fatty acid content of rice during storage based on feature fusion of olfactory visualization sensor data and near-infrared spectra. Sensors 2021, 21, 3266. [Google Scholar] [CrossRef]
- Bai, L.; Song, C.; Zhou, X.; Tian, Y.; Wei, L. Assessing project portfolio risk via an enhanced GA-BPNN combined with PCA. Eng. Appl. Artif. Intell. 2023, 126, 106779. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, Z.; Xu, Z.; Zhang, P.; Jiang, Y.; Fu, D.; Chen, Y. Quantitative determination of TVB-N content for different types of refrigerated grass carp fillets using near-infrared spectroscopy combined with machine learning. J. Food Compos. Anal. 2024, 126, 105871. [Google Scholar] [CrossRef]
- Liu, J.; Li, P.; Tang, X.; Li, J.; Chen, J. Research on improved convolutional wavelet neural network. Sci. Rep. 2021, 11, 17941. [Google Scholar] [CrossRef]
- Yu, Y.; Chai, Y.; Li, Z.; Li, Z.; Ren, Z.; Dong, H.; Chen, L. Quantitative predictions of protein and total flavonoids content in Tartary and common buckwheat using near-infrared spectroscopy and chemometrics. Food Chem. 2025, 462, 141033. [Google Scholar] [CrossRef]
- Zaukuu, J.L.Z.; Nkansah, A.A.; Mensah, E.T.; Agbolegbe, R.K.; Kovacs, Z. Non-destructive authentication of melon seed (Cucumeropsis mannii) powder using a pocket-sized near-infrared (NIR) spectrophotometer with multiple spectral preprocessing. J. Food Compos. Anal. 2024, 134, 106425. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, X.; Nguyen, T.T.; Liu, J.; Wu, T.; Lee, E.; Tu, X.M. Partial least squares regression and principal component analysis: Similarity and differences between two popular variable reduction approaches. Gen. Psychiatry 2022, 35, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, L.; Wu, Y.; Lu, M.; Yang, Y.; Li, L. Apple variety identification using near-infrared spectroscopy. J. Spectrosc. 2018, 2018, 6935197. [Google Scholar] [CrossRef]
- Chai, Y.; Yu, Y.; Zhu, H.; Li, Z.; Dong, H.; Yang, H. Identification of common buckwheat (Fagopyrum esculentum Moench) adulterated in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn) flour based on near-infrared spectroscopy and chemometrics. Curr. Res. Food Sci. 2023, 7, 100573. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, P.S.; Castanho, A.; Almeida, A.S.; Oliveira, J.; Brites, C. Identification of rice flour types with near-infrared spectroscopy associated with PLS-DA and SVM methods. Eur. Food Res. Technol. 2020, 246, 527–537. [Google Scholar] [CrossRef]
- Shi, S.; Feng, J.; Yang, L.; Xing, J.; Pan, G.; Tang, J.; Wang, J.; Liu, J.; Cao, C.; Jiang, Y. Combination of NIR spectroscopy and algorithms for rapid differentiation between one-year and two-year stored rice. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 291, 122343. [Google Scholar] [CrossRef]
- Nga, T.T.K.; Pham, T.V.; Tam, D.M.; Koo, I.; Mariano, V.Y.; Do-Hong, T. Combining binary particle swarm optimization with support vector machine for enhancing rice varieties classification accuracy. IEEE Access 2021, 9, 66062–66078. [Google Scholar] [CrossRef]
- Timsorn, K.; Lorjaroenphon, Y.; Wongchoosuk, C. Identification of adulteration in uncooked Jasmine rice by a portable low-cost artificial olfactory system. Measurement 2017, 108, 67–76. [Google Scholar] [CrossRef]
- García Martín, J.F. Optical path length and wavelength selection using Vis/NIR spectroscopy for olive oil’s free acidity determination. Int. J. Food Sci. Technol. 2015, 50, 1461–1467. [Google Scholar] [CrossRef]
- Liu, W.; Xu, X.; Liu, C.; Zheng, L. Nondestructive detection of authenticity of Thai jasmine rice using multispectral imaging. J. Food Qual. 2021, 2021, 6642220. [Google Scholar] [CrossRef]
- Pellacani, S.; Borsari, M.; Cocchi, M.; D’Alessandro, A.; Durante, C.; Farioli, G.; Strani, L. Near infrared and UV-Visible spectroscopy coupled with chemometrics for the characterization of flours from different starch origins. Chemosensors 2024, 12, 1. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Ong, P.; Jian, J.; Yin, J.; Ma, G. Characteristic wavelength optimization for partial least squares regression using improved flower pollination algorithm. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 302, 123095. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Guo, Z.; Ren, Z.; Wang, S.; Yue, M.; Zhang, S.; Yin, X.; Gong, K.; Ma, C. Rapid determination of protein, starch and moisture content in wheat flour by near-infrared hyperspectral imaging. J. Food Compos. Anal. 2023, 117, 105134. [Google Scholar] [CrossRef]
- Sabzekar, M.; Hasheminejad, S.M.H. Robust regression using support vector regressions. Chaos Solitons Fractals 2021, 144, 110738. [Google Scholar] [CrossRef]
- Montesinos López, O.A.; Montesinos López, A.; Crossa, J. Support vector machines and support vector regression. In Multivariate Statistical Machine Learning Methods for Genomic Prediction; Springer International Publishing: Cham, Switzerland, 2022; pp. 337–378. [Google Scholar]
- Hu, R.; Yu, Y.; Ni, M.; Yu, J.; Zhou, J.; Zhu, C.; Li, Z. Identification of lotus seed flour adulteration based on near-infrared spectroscopy combined with deep belief network. Food Sci. 2020, 41, 298–303. (In Chinese) [Google Scholar]
Sample Set Division Method | Preprocessing | Optimal Number of Factors | Correction Set | Prediction Set | |||
---|---|---|---|---|---|---|---|
R2c | RMSEC | R2p | RMSEP | RPD | |||
Wuchang rice blended with Nanjing rice | |||||||
SPXY | MSC | 14 | 0.9313 | 0.0917 | 0.7442 | 0.1829 | 1.6526 |
SNV | 16 | 0.9538 | 0.0771 | 0.7807 | 0.1749 | 1.7265 | |
SG | 13 | 0.8667 | 0.1196 | 0.7542 | 0.1689 | 1.7894 | |
SG-FD | 15 | 0.9482 | 0.0811 | 0.7902 | 0.1757 | 1.7238 | |
KS | MMN | 15 | 0.9352 | 0.0961 | 0.7502 | 0.1529 | 1.5484 |
SNV | 17 | 0.9600 | 0.0776 | 0.7945 | 0.1506 | 1.6734 | |
SG-FD | 15 | 0.9502 | 0.0857 | 0.7588 | 0.1646 | 1.4670 | |
SG-SD | 10 | 0.9145 | 0.1080 | 0.7853 | 0.1413 | 1.7156 | |
Wuchang rice blended with Songjing rice | |||||||
SPXY | MMN | 10 | 0.8371 | 0.1308 | 0.4477 | 0.1844 | 1.5770 |
SG | 11 | 0.7916 | 0.1421 | 0.4778 | 0.1797 | 1.6180 | |
KS | MMN | 8 | 0.7883 | 0.1446 | 0.6763 | 0.1673 | 1.6616 |
MSC | 9 | 0.8068 | 0.1403 | 0.7057 | 0.1655 | 1.6827 | |
SNV | 9 | 0.8074 | 0.1402 | 0.7022 | 0.1654 | 1.6831 | |
SG | 11 | 0.7783 | 0.1467 | 0.6911 | 0.1631 | 1.7119 | |
SG-FD | 12 | 0.9011 | 0.1098 | 0.6969 | 0.1727 | 1.6087 | |
SG-SD | 9 | 0.8858 | 0.1161 | 0.6523 | 0.1816 | 1.5348 | |
Thai fragrant rice blended with Jiangxi silk seedling rice | |||||||
SPXY | MMN | 14 | 0.8852 | 0.1227 | 0.7010 | 0.1573 | 1.4387 |
MSC | 15 | 0.9068 | 0.1130 | 0.7380 | 0.1515 | 1.4963 | |
SNV | 15 | 0.9075 | 0.1127 | 0.7398 | 0.1515 | 1.4957 | |
SG | 13 | 0.8403 | 0.1387 | 0.7194 | 0.1535 | 1.4757 | |
KS | MMN | 17 | 0.9213 | 0.1036 | 0.7698 | 0.1617 | 1.5370 |
MSC | 15 | 0.9084 | 0.1103 | 0.7495 | 0.1599 | 1.5546 | |
SNV | 15 | 0.9090 | 0.1100 | 0.7501 | 0.1600 | 1.5540 | |
SG-SD | 11 | 0.8985 | 0.1149 | 0.6724 | 0.1827 | 1.4236 | |
Thai fragrant rice blended with Yunhui rice | |||||||
SPXY | MMN | 7 | 0.7184 | 0.1585 | 0.5779 | 0.1731 | 1.5857 |
MSC | 6 | 0.7012 | 0.1611 | 0.5764 | 0.1694 | 1.6202 | |
SNV | 6 | 0.7018 | 0.1610 | 0.5845 | 0.1693 | 1.6210 | |
SG | 8 | 0.8040 | 0.1419 | 0.7471 | 0.1409 | 1.9502 | |
SG-FD | 5 | 0.7501 | 0.1531 | 0.7254 | 0.1471 | 1.8648 | |
SG-SD | 7 | 0.7628 | 0.1507 | 0.6778 | 0.1546 | 1.7735 | |
KS | SG | 7 | 0.8047 | 0.1381 | 0.5723 | 0.1612 | 1.7907 |
SG-SD | 5 | 0.7663 | 0.1462 | 0.5642 | 0.1670 | 1.7310 |
Types | Models | Number of Wavelengths | Optimal Number of Factors | Correction Set | Prediction Set | |||
---|---|---|---|---|---|---|---|---|
R2c | RMSEC | R2p | RMSEP | RPD | ||||
Wuchang rice blended with Nanjing rice and Songjing rice | ||||||||
Nanjing | KS-SNV-PLSR | 256 | 17 | 0.9600 | 0.0776 | 0.7945 | 0.1506 | 1.6734 |
KS-SNV-SPA-PLSR | 29 | 20 | 0.8486 | 0.1346 | 0.6810 | 0.1562 | 1.4482 | |
KS-SNV-CARS-PLSR | 37 | 10 | 0.8987 | 0.1156 | 0.7847 | 0.1471 | 1.6018 | |
Songjing | KS-MSC-PLSR | 256 | 9 | 0.8068 | 0.1403 | 0.7057 | 0.1655 | 1.6827 |
KS-MSC-SPA-PLSR | 10 | 9 | 0.7302 | 0.1556 | 0.5203 | 0.1809 | 1.4531 | |
KS-MSC-CARS-PLSR | 26 | 8 | 0.8196 | 0.1371 | 0.7537 | 0.1576 | 1.8531 | |
Thai fragrant rice blended with Jiangxi silk rice and Yunhui rice | ||||||||
Jiangxi silk | KS-MMN-PLSR | 256 | 17 | 0.9213 | 0.1036 | 0.7698 | 0.1617 | 1.5370 |
KS-MMN-SPA-PLSR | 27 | 17 | 0.7440 | 0.1588 | 0.6533 | 0.1858 | 1.3447 | |
KS-MMN-CARS-PLSR | 44 | 11 | 0.8870 | 0.1198 | 0.7591 | 0.1694 | 1.4674 | |
Yunhui | SPXY-SG-PLSR | 256 | 8 | 0.8040 | 0.1419 | 0.7471 | 0.1409 | 1.9502 |
SPXY-SG-SPA-PLSR | 5 | 4 | 0.7692 | 0.1495 | 0.7524 | 0.1347 | 2.0242 | |
SPXY-SG-CARS-PLSR | 40 | 7 | 0.8051 | 0.1416 | 0.7769 | 0.1352 | 2.3242 |
Sample Set Division | Parameter Optimization | Preprocessing | Optimal Parameters | Correction Set | Prediction Set | ||||
---|---|---|---|---|---|---|---|---|---|
C | g | R2c | RMSEC | R2p | RMSEP | RPD | |||
Wuchang rice blended with Nanjing rice | |||||||||
SPXY | CV | MMN | 45.2548 | 45.2548 | 0.9959 | 0.0003 | 0.9326 | 0.0062 | 3.8488 |
MSC | 22.6274 | 1024 | 0.9961 | 0.0003 | 0.9467 | 0.005 | 4.3287 | ||
SNV | 22.6274 | 11.3137 | 0.9958 | 0.0003 | 0.9456 | 0.0051 | 4.2876 | ||
SG | 8 | 90.5097 | 0.8968 | 0.0074 | 0.9259 | 0.0068 | 3.6651 | ||
GA | MSC | 23.9151 | 380.6086 | 0.9694 | 0.0023 | 0.9002 | 0.0092 | 3.1384 | |
PSO | MSC | 37.7343 | 381.0129 | 0.9797 | 0.0016 | 0.9035 | 0.0089 | 3.2009 | |
SNV | 14.7347 | 4.4589 | 0.9583 | 0.0031 | 0.8980 | 0.0094 | 3.1068 | ||
KS | CV | MMN | 22.6274 | 64 | 0.9929 | 0.0006 | 0.9212 | 0.0047 | 3.4779 |
MSC | 22.6274 | 1024 | 0.9961 | 0.0003 | 0.9190 | 0.0007 | 2.9990 | ||
SNV | 22.6274 | 11.3137 | 0.9957 | 0.0004 | 0.9184 | 0.0048 | 3.4640 | ||
SG | 1024 | 32 | 0.9739 | 0.0022 | 0.8972 | 0.006 | 3.0936 | ||
GA | MSC | 50.4882 | 482.5373 | 0.9923 | 0.0007 | 0.9057 | 0.0064 | 3.0314 | |
SNV | 48.4435 | 5.4951 | 0.9918 | 0.0007 | 0.9056 | 0.0057 | 3.1934 | ||
PSO | SNV | 7.4899 | 5.4347 | 0.9413 | 0.0051 | 0.8965 | 0.0066 | 2.9471 | |
Wuchang rice blended with Songjing rice | |||||||||
SPXY | CV | MMN | 11.3137 | 128 | 0.9861 | 0.0011 | 0.8526 | 0.0127 | 2.6017 |
MSC | 11.3137 | 1024 | 0.9639 | 0.003 | 0.8888 | 0.0125 | 2.6413 | ||
SNV | 4 | 32 | 0.9763 | 0.002 | 0.8814 | 0.0101 | 2.8988 | ||
SG | 1024 | 16 | 0.8510 | 0.0121 | 0.7837 | 0.0210 | 2.0398 | ||
SG-FD | 1024 | 1024 | 0.9286 | 0.006 | 0.7428 | 0.0224 | 1.9317 | ||
GA | MMN | 33.7168 | 16.2077 | 0.8715 | 0.0105 | 0.7854 | 0.0190 | 2.1051 | |
MSC | 19.9383 | 352.4494 | 0.8931 | 0.0089 | 0.8227 | 0.0180 | 2.2470 | ||
SNV | 3.8597 | 4.4051 | 0.7260 | 0.0249 | 0.6764 | 0.0314 | 1.6866 | ||
PSO | SNV | 7.0270 | 4.6253 | 0.8103 | 0.0166 | 0.7555 | 0.0228 | 1.9514 | |
KS | CV | MMN | 16 | 90.5097 | 0.9768 | 0.002 | 0.8716 | 0.0103 | 2.7419 |
MSC | 45.2548 | 1024 | 0.9965 | 0.0003 | 0.8945 | 0.0092 | 2.9187 | ||
SNV | 16 | 22.6274 | 0.9955 | 0.0004 | 0.8845 | 0.0091 | 2.9287 | ||
SG | 724.077 | 11.3137 | 0.7712 | 0.0187 | 0.7201 | 0.0235 | 1.8407 | ||
PSO | SNV | 33.9274 | 2.6117 | 0.8530 | 0.0119 | 0.7362 | 0.0209 | 1.9402 | |
Thai fragrant rice blended with Jiangxi silk rice | |||||||||
SPXY | CV | MSC | 90.5097 | 1024 | 0.9950 | 0.0004 | 0.8031 | 0.0103 | 2.2348 |
SNV | 32 | 22.6274 | 0.9950 | 0.0004 | 0.8014 | 0.0103 | 2.2266 | ||
SG | 1024 | 4 | 0.6465 | 0.0343 | 0.7520 | 0.0147 | 1.8812 | ||
GA | MMN | 29.6159 | 23.387 | 0.7618 | 0.029 | 0.7222 | 0.0157 | 1.8034 | |
MSC | 82.1792 | 175.849 | 0.8448 | 0.0192 | 0.7331 | 0.0141 | 1.9081 | ||
SNV | 81.6226 | 1.9465 | 0.8287 | 0.0218 | 0.7294 | 0.0146 | 1.8763 | ||
SG | 90.8217 | 18.1971 | 0.5709 | 0.0414 | 0.7689 | 0.0160 | 1.8158 | ||
PSO | MMN | 27.1091 | 24.6807 | 0.7578 | 0.0294 | 0.7215 | 0.0158 | 1.7992 | |
MSC | 85.0057 | 171.7987 | 0.8454 | 0.0191 | 0.7325 | 0.0141 | 1.9070 | ||
SNV | 57.9140 | 2.1146 | 0.7886 | 0.0270 | 0.7220 | 0.0157 | 1.8091 | ||
SG | 83.4726 | 16.1597 | 0.5457 | 0.0441 | 0.7540 | 0.0174 | 1.7467 | ||
KS | CV | MMN | 32 | 128 | 0.9934 | 0.0006 | 0.7593 | 0.0153 | 2.0362 |
MSC | 45.2548 | 1024 | 0.981 | 0.0016 | 0.7956 | 0.0224 | 2.0731 | ||
SNV | 11.3137 | 32 | 0.9847 | 0.0013 | 0.8077 | 0.0121 | 2.2805 | ||
Thai fragrant rice blended with Yunhui rice | |||||||||
SPXY | CV | MMN | 2 | 362.0387 | 0.9506 | 0.0041 | 0.8293 | 0.0138 | 2.4152 |
MSC | 16 | 1024 | 0.9433 | 0.0047 | 0.7829 | 0.0192 | 2.1243 | ||
SNV | 2.8284 | 90.5097 | 0.9808 | 0.0015 | 0.8547 | 0.0114 | 2.6221 | ||
SG | 1024 | 8 | 0.8641 | 0.0114 | 0.8068 | 0.0162 | 2.2092 | ||
GA | MMN | 45.2050 | 11.5872 | 0.8324 | 0.0174 | 0.7166 | 0.0255 | 1.7996 | |
MSC | 29.9354 | 117.2724 | 0.7865 | 0.0225 | 0.7189 | 0.0275 | 1.7279 | ||
SG | 65.5509 | 1.5603 | 0.7757 | 0.0181 | 0.7841 | 0.0182 | 2.0823 | ||
SG-FD | 90.6014 | 259.2163 | 0.7481 | 0.0257 | 0.7136 | 0.0284 | 1.6952 | ||
PSO | SG | 30.737 | 2.6073 | 0.7751 | 0.0182 | 0.7824 | 0.0184 | 2.0735 | |
SG-FD | 84.7656 | 279.656 | 0.7507 | 0.0255 | 0.7143 | 0.0283 | 1.6781 | ||
KS | CV | MMN | 5.6569 | 512 | 0.9968 | 0.0003 | 0.8531 | 0.0125 | 2.5846 |
MSC | 16 | 1024 | 0.9338 | 0.0058 | 0.8647 | 0.0321 | 1.8133 | ||
SNV | 2.8284 | 90.5097 | 0.985 | 0.0012 | 0.8599 | 0.0121 | 2.6302 | ||
SG | 1024 | 16 | 0.9265 | 0.006 | 0.7626 | 0.0205 | 2.0277 |
Types | Models | Number of Wavelengths | Optimal Parameters | Correction Set | Prediction Set | ||||
---|---|---|---|---|---|---|---|---|---|
C | g | R2c | RMSEC | R2p | RMSEP | RPD | |||
Wuchang rice blended with Nanjing rice and Songjing rice | |||||||||
Nanjing | SPXY-MSC-CV-SVR | 256 | 22.6274 | 1024 | 0.9961 | 0.0003 | 0.9467 | 0.005 | 4.3287 |
SPXY-MSC-CV-SPA-SVR | 16 | 1024 | 1024 | 0.9391 | 0.0046 | 0.8578 | 0.0133 | 1.2562 | |
SPXY-MSC-CV-CARS-SVR | 41 | 1024 | 1024 | 0.9520 | 0.0035 | 0.8940 | 0.0116 | 1.4355 | |
Songjing | KS-MSC-CV-SVR | 256 | 45.2548 | 1024 | 0.9965 | 0.0003 | 0.8945 | 0.0092 | 2.6413 |
KS-MSC-CV-SPA-SVR | 10 | 8 | 362.0387 | 0.8943 | 0.0083 | 0.7232 | 0.0217 | 1.8920 | |
KS-MSC-CV-CARS-SVR | 26 | 90.5097 | 1024 | 0.8077 | 0.0156 | 0.7287 | 0.0520 | 1.8848 | |
Thai fragrant rice blended with Jiangxi silk rice and Yunhui rice | |||||||||
Jiangxi Silk | KS-SNV-CV-SVR | 256 | 11.3137 | 32 | 0.9847 | 0.0013 | 0.8077 | 0.0121 | 2.2805 |
KS-SNV-CV-SPA-SVR | 45 | 16 | 90.5097 | 0.9525 | 0.0040 | 0.7695 | 0.0156 | 2.0520 | |
KS-SNV-CV-CARS-SVR | 30 | 5.6569 | 1024 | 0.9834 | 0.0014 | 0.8220 | 0.0131 | 2.3574 | |
Yunhui | KS-MSC-CV-SVR | 256 | 16 | 1024 | 0.9338 | 0.0058 | 0.8647 | 0.0321 | 1.8133 |
KS-MSC-CV-SPA-SVR | 5 | 1024 | 1024 | 0.7038 | 0.0255 | 0.7118 | 0.0544 | 1.6712 | |
KS-MSC-CV-CARS-SVR | 34 | 64 | 1024 | 0.7624 | 0.0221 | 0.6811 | 0.0464 | 1.5415 |
Sample Set Division Method | Preprocessing | Correction Set | Prediction Set | |||
---|---|---|---|---|---|---|
R2c | RMSEC | R2p | RMSEP | RPD | ||
Wuchang rice blended with Nanjing rice | ||||||
SPXY | SNV | 0.9887 | 0.0404 | 0.9091 | 0.1260 | 2.3997 |
SG | 0.9666 | 0.0692 | 0.9729 | 0.0703 | 4.2969 | |
SG-FD | 0.9870 | 0.0431 | 0.9514 | 0.0931 | 3.2478 | |
KS | MMN | 0.9681 | 0.0723 | 0.9477 | 0.0764 | 3.1288 |
SNV | 0.9947 | 0.0299 | 0.9688 | 0.0599 | 4.0286 | |
SG | 0.9828 | 0.0532 | 0.9437 | 0.0793 | 3.0122 | |
Wuchang rice blended with Songjing rice | ||||||
SPXY | MMN | 0.9513 | 0.0842 | 0.9055 | 0.1235 | 2.3462 |
SG | 0.8649 | 0.1462 | 0.8527 | 0.1688 | 1.7163 | |
SG-FD | 0.9329 | 0.1105 | 0.8567 | 0.1526 | 1.9003 | |
SG-SD | 0.9330 | 0.0989 | 0.8527 | 0.1548 | 1.8716 | |
KS | SNV | 0.9597 | 0.0783 | 0.8519 | 0.1491 | 1.8634 |
SG-FD | 0.9504 | 0.0872 | 0.8241 | 0.1657 | 1.6924 | |
Thai fragrant rice blended with Jiangxi silk seedling rice | ||||||
SPXY | MSC | 0.9235 | 0.1201 | 0.8482 | 0.1305 | 1.7540 |
SNV | 0.9637 | 0.0787 | 0.8602 | 0.1239 | 1.9379 | |
KS | MMN | 0.9459 | 0.0943 | 0.8394 | 0.1398 | 1.7831 |
SNV | 0.9269 | 0.1074 | 0.8775 | 0.1225 | 2.0570 | |
SG | 0.9378 | 0.1042 | 0.8449 | 0.1352 | 1.8561 | |
SG-SD | 0.9015 | 0.1254 | 0.8715 | 0.1308 | 1.5823 | |
Thai fragrant rice blended with Yunhui rice | ||||||
SPXY | MMN | 0.8881 | 0.1484 | 0.8433 | 0.1833 | 1.7068 |
SNV | 0.9613 | 0.0796 | 0.8767 | 0.1354 | 2.0491 | |
SG | 0.9731 | 0.0649 | 0.9496 | 0.0963 | 3.0049 | |
SG-FD | 0.9463 | 0.0897 | 0.8738 | 0.1359 | 2.0281 | |
KS | SNV | 0.9397 | 0.0930 | 0.8749 | 0.1442 | 2.0108 |
SG | 0.9814 | 0.0521 | 0.9338 | 0.1055 | 2.7382 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Song, J.; He, H.; Yu, Y.; Wang, R.; Huang, Y.; Li, Z. Quantitative Analysis of High-Price Rice Adulteration Based on Near-Infrared Spectroscopy Combined with Chemometrics. Foods 2024, 13, 3241. https://doi.org/10.3390/foods13203241
Chen M, Song J, He H, Yu Y, Wang R, Huang Y, Li Z. Quantitative Analysis of High-Price Rice Adulteration Based on Near-Infrared Spectroscopy Combined with Chemometrics. Foods. 2024; 13(20):3241. https://doi.org/10.3390/foods13203241
Chicago/Turabian StyleChen, Mengting, Jiahui Song, Haiyan He, Yue Yu, Ruoni Wang, Yue Huang, and Zhanming Li. 2024. "Quantitative Analysis of High-Price Rice Adulteration Based on Near-Infrared Spectroscopy Combined with Chemometrics" Foods 13, no. 20: 3241. https://doi.org/10.3390/foods13203241
APA StyleChen, M., Song, J., He, H., Yu, Y., Wang, R., Huang, Y., & Li, Z. (2024). Quantitative Analysis of High-Price Rice Adulteration Based on Near-Infrared Spectroscopy Combined with Chemometrics. Foods, 13(20), 3241. https://doi.org/10.3390/foods13203241