Changes in Quality of Carya illinoinensis at Different Harvest Periods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Plant Material
2.2. Sampling Methods
2.3. Fruit Morphometry
2.4. Water Content
2.5. Pericarp Color and Index of Absorbance Difference
2.6. Respiration Intensity
2.7. Fruit Quality
2.8. Statistical Analysis
3. Results
3.1. Variations in Fruit Quality and Morphology of Pecans
3.2. Variation in Kernel Yield and Moisture Content of Pecan Fruit
3.3. Color Variations in Pecan Pericarp
3.4. Variation in Respiration Intensity of Pecan Fruit
3.5. Crude Fat
3.6. Soluble Sugar
3.7. Soluble Protein
3.8. Total Phenol
3.9. Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sparks, D. Adaptability of Pecan as a Species. HortScience 2005, 40, 1175–1189. [Google Scholar] [CrossRef]
- Jia, X.; Wang, T.; Zhang, J.; Wang, X.; Liu, Y.; Guo, Z. A Review of Progress in Caryaillinoensis. Chin. Agric. Sci. Bull. 2012, 28, 74–78. [Google Scholar] [CrossRef]
- Li, Y.; Le, D. Carya illinoensis fruit forest industry development thinking and cultivation key technology. J. For. Eng. 2015, 29, 1–4. [Google Scholar] [CrossRef]
- Domínguez-Avila, J.A.; Alvarez-Parrilla, E.; López-Díaz, J.A.; Maldonado-Mendoza, I.E.; Gómez-García, M.D.C.; De La Rosa, L.A. The Pecan Nut (Carya Illinoinensis) and Its Oil and Polyphenolic Fractions Differentially Modulate Lipid Metabolism and the Antioxidant Enzyme Activities in Rats Fed High-Fat Diets. Food Chem. 2015, 168, 529–537. [Google Scholar] [CrossRef]
- Cao, F.; Tan, P.; Peng, F. Research Progress of Vegetative Propagation Technology for Pecan (Carya illinoinensis). World For. Res. 2017, 30, 76–80. [Google Scholar] [CrossRef]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Lipophilic and Hydrophilic Antioxidant Capacities of Common Foods in the United States. J. Agric. Food Chem. 2004, 52, 4026–4037. [Google Scholar] [CrossRef]
- Vadivel, V.; Kunyanga, C.N.; Biesalski, H.K. Health Benefits of Nut Consumption with Special Reference to Body Weight Control. Nutrition 2012, 28, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Cheng, H.; Wang, Z.; Fu, S.; Si, J.; Yu, M.; Zhang, A. The Study of Total Polyphenols, Total Flavonoids and Antioxidant Capacity in Pecan [Carya illinoinensis (Wangenh.) K. Koch] Kernerls. J. Nucl. Agric. Sci. 2016, 30, 72–78. [Google Scholar] [CrossRef]
- Robbins, K.S.; Greenspan, P.; Pegg, R.B. Effect of Pecan Phenolics on the Release of Nitric Oxide from Murine RAW 264.7 Macrophage Cells. Food Chem. 2016, 212, 681–687. [Google Scholar] [CrossRef]
- Zhang, R.; Peng, F.; Li, Y. Pecan Production in China. Sci. Hortic. 2015, 197, 719–727. [Google Scholar] [CrossRef]
- Zhong, L.; Dong, X. Development Status and Countermeasures of Carya illinoensis and Oleaginous Peony in Jiangsu. J. Jiangsu For. Sci. Technol. 2018, 45, 46–50. [Google Scholar] [CrossRef]
- Dong, R. Study of Fruit Development of Carya illinoensis. J. West. China For. Sci. 2002, 3, 66–70. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, W.; Lu, K.; Zeng, S.; Yuan, J. Fruit morphology and quality variation patterns of four Carya illinoinensis varieties in Hunan province. Nonwood For. Res. 2022, 40, 52–60. [Google Scholar] [CrossRef]
- Tang, G.; Zhao, D.; Liu, B.; Zhang, X.; Yao, Y.; Cui, P.; Ma, Y. Introduction of several fine cultivars of Carya illinoensis suitable for cultivation in Shandong. J. Shandong For. Sci. Technol. 2020, 50, 88–89+91. [Google Scholar] [CrossRef]
- Chang, J.; Ren, H.; Yao, X.; Yang, S.; Zhang, S.; Zhang, C.; Wang, K. A Comparative Analysis of Nutritional Components and Fatty Acid Composition of 41 Pecan Varieties. J. Southwest Univ. (Nat. Sci.) 2021, 43, 20–30. [Google Scholar] [CrossRef]
- Deng, L.; Pan, H.; Ma, T.; Wei, Z.; Wang, F.; Qin, F.; Wei, L.; Wen, J.; Tan, Y.; Ou, J.; et al. Growing performance and quality characteristics of six thin-shelled pecan varieties planted in Hechi city of Guangxi. Nonwood For. Res. 2022, 40, 241–248. [Google Scholar] [CrossRef]
- Zuo, J.; He, Y.; Huang, J.; Zhai, M. Main Cultivars and High Yield Cultivation Techniques of Carya illinoensis in Jiangxi. Contemp. Hortic. 2023, 46, 103–105. [Google Scholar] [CrossRef]
- Zhu, F.; Guo, X.; Hu, J.; Zhang, K. Preliminary Study on Introduction Experiment of Carya illinoensis. Gansu Agric. 2015, 12, 46–48. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, M.; Zhang, L.; Zhou, Y.; Yu, K.; Zhou, C.; Gao, C. Analysis of Fruit Morphological Characteristics of Different Carya illinoensis. Shanxi J. Agric. Sci. 2022, 68, 70–73+94. [Google Scholar]
- Zhang, R.; Lv, F. Pecan Distribution, Cultural Regionalization and Cultivar Classification in USA. Nonwood For. Res. 2002, 20, 53–55. [Google Scholar] [CrossRef]
- Xi, X.; Fan, Z.; Zou, W.; Liao, Y.; Dong, R. Introduction of ten Carya illionoensis cultivars. J. Zhejiang A F Univ. 2006, 4, 382–387. [Google Scholar] [CrossRef]
- Fang, L.; Wu, W.; Li, Y.; Liu, Y.; Zhai, M.; Li, X. Study on fruit quality of different cultivars of Carya illinoensis planted in Nanjing area. Jiangsu Agric. Sci. 2010, 3, 166–169. [Google Scholar] [CrossRef]
- Sheng, J.; Zang, X.; Zhou, B.; Zhu, H.; Liu, G. Carya illinoinensis cultivars and cultivation technology suitable for Jiangsu planting. Jiangsu Agric. Sci. 2012, 40, 159–160. [Google Scholar] [CrossRef]
- Filho, A.C.; Poletto, T.; Muniz, M.F.B.; Baggiotto, C.; Poletto, I.; Filho, A.C.; Poletto, T.; Muniz, M.F.B.; Baggiotto, C.; Poletto, I. Sample Size for Evaluating the Weight and Diameter of Pecan Fruits. Ciênc Rural 2015, 45, 794–798. [Google Scholar] [CrossRef]
- LY/T 2703-2016; Quality Grade of Pecan Nuts and Kernels. Research Institute of Subtropical Forestry, Chinese Academy of Forestry: Hangzhou, China, 2016.
- Ziosi, V.; Noferini, M.; Fiori, G.; Tadiello, A.; Trainotti, L.; Casadoro, G.; Costa, G. A New Index Based on Vis Spectroscopy to Characterize the Progression of Ripening in Peach Fruit. Postharvest Biol. Technol. 2008, 49, 319–329. [Google Scholar] [CrossRef]
- Farneti, B.; Gutierrez, M.S.; Novak, B.; Busatto, N.; Ravaglia, D.; Spinelli, F.; Costa, G. Use of the Index of Absorbance Difference (IAD) as a Tool for Tailoring Post-Harvest 1-MCP Application to Control Apple Superficial Scald. Sci. Hortic. 2015, 190, 110–116. [Google Scholar] [CrossRef]
- Singanusong, R.; Mason, R.L.; D’Arcy, B.R.; Nottingham, S.M. Compositional Changes of Australia-Grown Western Schley Pecans [Carya Illinoinensis (Wangenh.) K. Koch] during Maturation. J. Agric. Food Chem. 2003, 51, 406–412. [Google Scholar] [CrossRef]
- Mo, S.; Qian, C. Colorimetric determination of soluble sugars in fruits. J. Fruit Sci. 1992, 1, 59–62. [Google Scholar] [CrossRef]
- Qu, C.; Shen, S.; Wang, X.; Cui, Y.; Song, W. Method research of measuring soluble protein contents of plant rough extraction using Coomassie Brilliant Blue. J. Suzhou Univ. Nat. Sci. Ed. 2006, 2, 82–85. [Google Scholar] [CrossRef]
- Siano, F.; Moccia, S.; Picariello, G.; Russo, G.; Sorrentino, G.; Di Stasio, M.; La Cara, F.; Volpe, M. Comparative Study of Chemical, Biochemical Characteristic and ATR-FTIR Analysis of Seeds, Oil and Flour of the Edible Fedora Cultivar Hemp (Cannabis Sativa L.). Molecules 2018, 24, 83. [Google Scholar] [CrossRef]
- Gong, B.; Jiang, L.; Ma, H.; Wang, J. Effect of Harvest Date on Cold Storage and Postharvest Physiology of Green Walnut Fruits. Food Sci. 2014, 35, 343–347. [Google Scholar] [CrossRef]
- Gao, R.; Hu, Y.; Yang, Y.; Gong, F.; Wang, W.; Wang, H.; Wang, X.; Chen, X.; Xu, L.; Li, L.; et al. Dynamic changes of major physicochemical characteristics of Longnan “Jinlong 2” walnut with maturity. China Oils Fats 2021, 48, 1–11. [Google Scholar] [CrossRef]
- Wu, J. The effects of different harvest time on the quality of walnut fruits. J. Shanxi. Agric. Univ. (Nat. Sci.) 2018, 38, 50–54. [Google Scholar] [CrossRef]
- Jia, X.; Luo, H.; Zhai, M.; Qian, M.; Liu, Y.; Li, Y.; Guo, Z.; Qiao, Y. Dynamic changes and correlation analysis of nutrient contents in ‘Pawnee’ pecan (Carya illinoinensis). J. Fruit Sci. 2016, 33, 1120–1130. [Google Scholar] [CrossRef]
- Chang, J.; Ren, H.; Yao, X.; Yang, S.; Wang, K.; Zhang, C. Dynamic development and nutrient accumulation regularity in Carya illinoensis ‘Mahan’ nut. Nonwood For. Res. 2019, 37, 90–94+127. [Google Scholar] [CrossRef]
- Hao, J.; Wang, R.; Luo, S.; Chen, H.; Hu, H. Preliminary Study on Effect of Harvesting Times on the Quality of Six Walnut Varieties in Yecheng County. Nucl. Agric. Sci. 2023, 37, 649–659. [Google Scholar] [CrossRef]
- Jia, X.; Luo, H.; Zhai, M.; Li, Y.; Guo, Z.; Qiao, Y. Dynamic analysis of pecan (Carya illinoensis ‘Pawnee’) nut development. J. Fruit Sci. 2015, 32, 247–253. [Google Scholar] [CrossRef]
- Chen, W.; Liu, X.; Deng, Q.; Peng, F.; He, H.; Li, X. Nut development and fatty acid accumulation in Carya illinoensis. Nonwood For. Res. 2016, 34, 50–55. [Google Scholar] [CrossRef]
Cultivar | Provinces | Geographic Location | Climatic Characteristics | Frost-Free Period | Ripening Period |
---|---|---|---|---|---|
Jinhua 1 | Yunnan [12] | 97°31′~106°11′ E, 21°8′~29°15′ N | The climate is semi-humid, situated in the central subtropical zone. The mean annual temperature is 16.5 °C, with an average annual precipitation of 1056 mm. | 301 d | Mid-October to early November |
Pawnee | Hunan [13] | 110°59′~110°40′ E, 26°40′~27°6′ N | It has a subtropical monsoon climate with an average annual temperature of 16.6 °C and an average annual precipitation of 1491 mm. | 290 d | Around 20 October |
Mahan | |||||
Pawnee | Shandong [14] | 115°16′~116°32′ E, 35°47′~37°02′ N | The region exhibits a temperate monsoon climate, with an average annual temperature of 13.5 °C and an average annual precipitation of 540.4 mm. | 208 d | Mid-October to early November |
Mahan | Mid-late October to early November | ||||
Mahan | Zhejiang [15] | 118°01′~123°10′ E, 27°02′~31°11′ N | The region has a subtropical monsoon climate with an average annual temperature of 17.3 °C and an average annual precipitation of 1406 mm. | 257 d | Around October |
Pawnee | Guangxi [16] | 107°5′~107°43′ E, 24°13′~24°51′ N | The region has a subtropical monsoon climate with an average annual temperature of 19.9 °C and an average annual precipitation of 1389.1 mm. | 290 d | Mid to late September |
Shawnee | Late September to early October | ||||
Mahan | Mid to late October | ||||
caddo | Early to mid October | ||||
Pawnee | Jiangxi [17] | 113°34′~118°28′ E, 24°29′~30°04′ N | The region has a subtropical, warm, and humid monsoon climate, with an average annual temperature of 19.1 °C and an average annual precipitation of 1576.3 mm. | 214 d | Mid-September |
Wichita | Mid-October | ||||
Shawnee | Early to mid-October | ||||
Chengyin 15 | Gansu [18] | 104°01′~106°35′ E, 32°35′~34°32′ N | The region has a warm temperate continental climate with an average annual temperature of 11.9 °C and an average annual precipitation of 639 mm. | 210 d | Between 20 September and 2 October |
Xinyin 5 | Henan [19] | 110°21′~116°39′ E, 31°23′~36°22′ N | The region has a subtropical warm and humid climate with an average annual temperature of 15.3 °C and an average annual rainfall of 1109.1 mm. | 221 d | September to October |
Cultivar | Harvest Dates | Green Fruit Weight/g | De-Greened Wet Fruit Weight g | Transverse Diameter (mm) | Vertical Diameter (mm) | Fruit Shape Index |
---|---|---|---|---|---|---|
Pawnee | September 15 | 41.64 ± 2.51 a | 13.14 ± 0.89 a | 34.20 ± 1.03 b | 61.20 ± 2.02 b | 0.56 ± 0.03 ab |
September 20 | 42.35 ± 3.69 a | 13.08 ± 0.56 a | 35.05 ± 2.10 ab | 63.73 ± 2.57 ab | 0.55 ± 0.01 b | |
September 25 | 41.26 ± 2.29 a | 12.45 ± 0.65 a | 38.05 ± 1.00 a | 65.26 ± 1.52 a | 0.59 ± 0.01 a | |
September 30 | 35.88 ± 2.47 b | 12.76 ± 0.46 a | 36.50 ± 0.22 ab | 63.24 ± 0.53 ab | 0.58 ± 0.01 ab | |
October 9 | 30.17 ± 3.16 c | 13.05 ± 0.61 a | 38.22 ± 2.67 a | 64.74 ± 2.29 ab | 0.59 ± 0.02 a | |
Wichita | October 9 | 23.64 ± 3.86 a | 11.23 ± 1.14 a | 30.95 ± 1.14 b | 51.98 ± 4.10 a | 0.60 ± 0.03 a |
October 14 | 25.26 ± 3.81 a | 12.07 ± 1.09 a | 32.69 ± 1.05 a | 56.49 ± 5.98 a | 0.58 ± 0.05 a | |
October 19 | 29.06 ± 3.94 a | 12.30 ± 0.68 a | 32.61 ± 0.42 a | 56.99 ± 1.41 a | 0.57 ± 0.01 a | |
October 24 | 27.07 ± 3.95 a | 11.29 ± 0.70 a | 31.66 ± 0.65 ab | 57.54 ± 5.86 a | 0.55 ± 0.05 a | |
October 29 | 26.07 ± 4.61 a | 12.09 ± 1.19 a | 32.48 ± 0.69 ab | 56.84 ± 5.10 a | 0.57 ± 0.04 a |
Cultivar | Harvest Dates | Kernel Color | Fullness | Intactness |
---|---|---|---|---|
Pawnee | September 15 | Light yellow | Empty | ≥1/2 |
September 20 | Light yellow | Fuller | ≥1/2 | |
September 25 | Golden yellow, partly dark brown | fullness | ≥1/2 | |
September 30 | Golden yellow, partly dark brown | fullness | ≥1/2 | |
October 9 | Dark brown | Shrinkage | ≥1/2 | |
Wichita | October 9 | Light yellow | Empty | ≥1/2 |
October 14 | Light yellow | Fuller | ≥1/2 | |
October 19 | Light yellow | fullness | ≥1/2 | |
October 24 | Golden yellow, partly light yellow | fullness | ≥1/2 | |
October 29 | Golden yellow, partly dark brown | Fullness, partly shrinkage | ≥1/2 |
Green Fruit Weight | De-Greened Wet Fruit Weight | Kernel Rate | Water Content | Transverse Diameter | Vertical Diameter | Fruit Shape Index | Respiratory Intensity | ∆E | IAD | Soluble Sugar | Crude Fat | Soluble Protein | Total Phenol | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Green fruit weight | 1 | |||||||||||||
De-greened wet fruit weight | 0.676 ** | 1 | ||||||||||||
Kernel rate | 0.064 | −0.102 | 1 | |||||||||||
Water content | −0.744 ** | −0.500 ** | −0.454 * | 1 | ||||||||||
Transverse diameter | 0.652 ** | 0.578 ** | 0.314 | −0.761 ** | 1 | |||||||||
Vertical diameter | 0.793 ** | 0.706 ** | 0.309 | −0.788 ** | 0.845 ** | 1 | ||||||||
Fruit shape index | −0.409 * | −0.378 * | −0.080 | 0.225 | 0.049 | −0.491 ** | 1 | |||||||
Respiratory intensity | 0.600 ** | 0.214 | −0.341 | −0.181 | 0.073 | 0.141 | −0.117 | 1 | ||||||
∆E | 0.067 | 0.070 | 0.551 ** | −0.422 | 0.559 * | 0.420 * | 0.122 | −0.378 * | 1 | |||||
IAD | 0.692 ** | 0.264 | −0.061 | −0.430 * | 0.186 | 0.248 | −0.150 | 0.731 ** | −0.233 | 1 | ||||
Soluble sugar | 0.016 | 0.025 | −0.056 | −0.017 | 0.362 * | 0.101 | 0.397 * | −0.246 | 0.353 | −0.019 | 1 | |||
Crude fat | −0.446 * | −0.152 | 0.422 * | −0.013 | 0.038 | -0.028 | 0.103 | −0.705 ** | 0.437 * | −0.418 * | 0.310 | 1 | ||
Soluble protein | −0.446 * | −0.330 | 0.112 | 0.337 | −0.424 * | −0.398 * | 0.061 | −0.389 * | −0.027 | −0.340 | −0.209 | 0.199 | 1 | |
Total phenol | −0.446 * | −0.115 | 0.101 | 0.166 | 0.168 | −0.104 | 0.459 * | −0.471 ** | 0.201 | −0.524 ** | 0.397 * | 0.450 * | −0.239 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Cui, L.; Zhang, Q.; Zhang, T.; Qian, Y.; Xiao, H.; Zhu, H. Changes in Quality of Carya illinoinensis at Different Harvest Periods. Foods 2024, 13, 2553. https://doi.org/10.3390/foods13162553
Jiang X, Cui L, Zhang Q, Zhang T, Qian Y, Xiao H, Zhu H. Changes in Quality of Carya illinoinensis at Different Harvest Periods. Foods. 2024; 13(16):2553. https://doi.org/10.3390/foods13162553
Chicago/Turabian StyleJiang, Xinchen, Li Cui, Qiuqin Zhang, Tao Zhang, Yaming Qian, Hongmei Xiao, and Haijun Zhu. 2024. "Changes in Quality of Carya illinoinensis at Different Harvest Periods" Foods 13, no. 16: 2553. https://doi.org/10.3390/foods13162553
APA StyleJiang, X., Cui, L., Zhang, Q., Zhang, T., Qian, Y., Xiao, H., & Zhu, H. (2024). Changes in Quality of Carya illinoinensis at Different Harvest Periods. Foods, 13(16), 2553. https://doi.org/10.3390/foods13162553