Bacteria of Zoonotic Interest Identified on Edible Freshwater Fish Imported to Australia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Bacterial Species Selection
2.3. Diluent Preparation, Isolation, Enumeration and Identification
2.3.1. Antimicrobial Resistance
2.3.2. Isolate Identification
2.4. Data Analysis
3. Results
3.1. Species A from Country 22
3.1.1. Pseudomonas sp.
3.1.2. Micrococcus sp. and Staphylococcus aureus
3.1.3. Comamonas testosteroni (syn. Delftia testosteroni)
3.1.4. Rhizobium radiobacter
3.1.5. Salmonella sp.
3.2. Species B Fish from Country 20
3.2.1. Vibrio fluvialis
3.2.2. Salmonella sp.
3.2.3. Micrococcus sp. and S. aureus
3.3. Associations between Identified Biosecurity Breeches (Mud, Food Items or Vegetation) and Bacteria
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hishamunda, N.; Ridler, N.B.; Bueno, P.; Yap, W.G. Commercial aquaculture in Southeast Asia: Some policy lessons. Food Policy 2009, 34, 102–107. [Google Scholar] [CrossRef]
- Sapkota, A.; Sapkota, A.R.; Kucharski, M.; Burke, J.; McKenzie, S.; Walker, P.; Lawrence, R. Aquaculture practices and potential human health risks: Current knowledge and future priorities. Environ. Int. 2008, 34, 1215–1226. [Google Scholar] [CrossRef] [PubMed]
- Romero, J.; Feijoó, C.G.; Navarrete, P. Antibiotics in aquaculture–use, abuse and alternatives. Health Environ. Aquac. 2012, 159, 159–198. [Google Scholar]
- Alfiansah, Y.R.; Hassenrück, C.; Kunzmann, A.; Taslihan, A.; Harder, J.; Gärdes, A. Bacterial abundance and community composition in pond water from shrimp aquaculture systems with different stocking densities. Front. Microbiol. 2018, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.S.; Rakesh, D.; Dhiman, M.; Choudhary, P.; Debbarma, J.; Sahoo, S.; Mishra, C. Present status of fish disease management in freshwater aquaculture in India: State-of-the-art-review. J. Aquac. Fish. 2017, 1, 14–23. [Google Scholar]
- Ina-Salwany, M.; Al-saari, N.; Mohamad, A.; Mursidi, F.A.; Mohd-Aris, A.; Amal, M.; Kasai, H.; Mino, S.; Sawabe, T.; Zamri-Saad, M. Vibriosis in fish: A review on disease development and prevention. J. Aquat. Anim. Health 2019, 31, 3–22. [Google Scholar] [CrossRef]
- Mzula, A.; Wambura, P.N.; Mdegela, R.H.; Shirima, G.M. Present status of aquaculture and the challenge of bacterial diseases in freshwater farmed fish in Tanzania; A call for sustainable strategies. Aquac. Fish. 2021, 6, 247–253. [Google Scholar] [CrossRef]
- Rukanda, J.J.; Sigurgeirsson, O. Evaluation of aquaculture development in Tanzania. Nations Univ. Fish. Train. Programme Icel. 2016, 19, 1–39. [Google Scholar]
- Chenyambuga, S.; Mwandya, A.; Lamtane, H.; Madalla, N. Productivity and marketing of Nile tilapia (Oreochromis niloticus) cultured in ponds of small-scale farmers in Mvomero and Mbarali districts, Tanzania. Livest. Res. Rural. Dev. 2014, 26, 3–12. [Google Scholar]
- Zheng, Q.; Zhang, R.; Wang, Y.; Pan, X.; Tang, J.; Zhang, G. Occurrence and distribution of antibiotics in the Beibu Gulf, China: Impacts of river discharge and aquaculture activities. Mar. Environ. Res. 2012, 78, 26–33. [Google Scholar] [CrossRef]
- Granada, L.; Sousa, N.; Lopes, S.; Lemos, M.F. Is integrated multitrophic aquaculture the solution to the sectors’ major challenges?–a review. Rev. Aquac. 2016, 8, 283–300. [Google Scholar] [CrossRef]
- Santos, L.; Ramos, F. Antimicrobial resistance in aquaculture: Current knowledge and alternatives to tackle the problem. Int. J. Antimicrob. Agents 2018, 52, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Manage, P.M. Heavy use of antibiotics in aquaculture: Emerging human and animal health problems–a review. Sri Lanka J. Aquat. Sci. 2018, 23, 13–27. [Google Scholar] [CrossRef]
- Grema, H.A.; Kwaga, J.K.P.; Bello, M.; Umaru, O.H. Understanding fish production and marketing systems in North-western Nigeria and identification of potential food safety risks using value chain framework. Prev. Vet. Med. 2020, 181, 105038. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Silva, A.; e Barros, L.S.S. Food Safety and Fish Farming: Serious Issues for Brazil. Food Nutr. Sci. 2020, 11, 123–152. [Google Scholar]
- Ye, L.; Zhang, L.; Li, X.; Shi, L.; Huang, Y.; Wang, H.H. Antibiotic-resistant bacteria associated with retail aquaculture products from Guangzhou, China. J. Food Prot. 2013, 76, 295–301. [Google Scholar] [CrossRef]
- Defoirdt, T.; Sorgeloos, P.; Bossier, P. Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr. Opin. Microbiol. 2011, 14, 251–258. [Google Scholar] [CrossRef]
- Mog, M.; Ngasotter, S.; Tesia, S.; Waikhom, D.; Panda, P.; Sharma, S.; Varshney, S. Problems of antibiotic resistance associated with oxytetracycline use in aquaculture: A review. J. Entomol. Zool. Stud. 2020, 8, 1075–1082. [Google Scholar]
- Scarano, C.; Piras, F.; Virdis, S.; Ziino, G.; Nuvoloni, R.; Dalmasso, A.; De Santis, E.; Spanu, C. Antibiotic resistance of Aeromonas sp. strains isolated from Sparus aurata reared in Italian mariculture farms. Int. J. Food Microbiol. 2018, 284, 91–97. [Google Scholar] [CrossRef]
- Le, T.S.; Nguyen, T.H.; Vo, H.P.; Doan, V.C.; Nguyen, H.L.; Tran, M.T.; Tran, T.T.; Southgate, P.C.; Kurtböke, D.İ. Protective effects of bacteriophages against Aeromonas hydrophila causing motile Aeromonas septicemia (MAS) in striped Catfish. Antibiotics 2018, 7, 16. [Google Scholar] [CrossRef] [Green Version]
- Kari, Z.A.; Wee, W.; Hamid, N.K.A.; Mat, K.; Rusli, N.D.; Khalid, H.N.M.; Sukri, S.A.M.; Harun, H.C.; Dawood, M.A.; Hakim, A.H. Recent advances of phytobiotic utilization in carp farming: A review. Aquac. Nutr. 2022, 2022, 7626675. [Google Scholar] [CrossRef]
- García Beltrán, J.M.; Esteban, M.Á. Nature-identical compounds as feed additives in aquaculture. Fish Shellfish Immunol. 2022, 123, 409–416. [Google Scholar] [CrossRef]
- Nik Mohamad Nek Rahimi, N.; Natrah, I.; Loh, J.-Y.; Ervin Ranzil, F.K.; Gina, M.; Lim, S.-H.E.; Lai, K.-S.; Chong, C.-M. Phytocompounds as an alternative antimicrobial approach in aquaculture. Antibiotics 2022, 11, 469. [Google Scholar] [CrossRef] [PubMed]
- Yue, K.; Shen, Y. An overview of disruptive technologies for aquaculture. Aquac. Fish. 2022, 7, 111–120. [Google Scholar] [CrossRef]
- Chen, J.; Sun, R.; Pan, C.; Sun, Y.; Mai, B.; Li, Q.X. Antibiotics and food safety in aquaculture. J. Agric. Food Chem. 2020, 68, 11908–11919. [Google Scholar] [CrossRef] [PubMed]
- Burridge, L.; Weis, J.S.; Cabello, F.; Pizarro, J.; Bostick, K. Chemical use in salmon aquaculture: A review of current practices and possible environmental effects. Aquaculture 2010, 306, 7–23. [Google Scholar] [CrossRef]
- Bhat, R.A.H.; Thakuria, D.; Tandel, R.S.; Khangembam, V.C.; Dash, P.; Tripathi, G.; Sarma, D. Tools and techniques for rational designing of antimicrobial peptides for aquaculture. Fish Shellfish Immunol. 2022, 127, 1033–1050. [Google Scholar] [CrossRef]
- Nabilah Mohd Noor, N.; Hazirah Kamaruzaman, N.; Al-Gheethi, A.; Maya Saphira Radin Mohamed, R.; Hossain, M.S. Degradation of antibiotics in aquaculture wastewater by bio-nanoparticles: A critical review. Ain Shams Eng. J. 2022, 14, 101981. [Google Scholar] [CrossRef]
- Chari, N.; Felix, L.; Davoodbasha, M.; Ali, A.S.; Nooruddin, T. In vitro and in vivo antibiofilm effect of copper nanoparticles against aquaculture pathogens. Biocatal. Agric. Biotechnol. 2017, 10, 336–341. [Google Scholar] [CrossRef]
- Culot, A.; Grosset, N.; Gautier, M. Overcoming the challenges of phage therapy for industrial aquaculture: A review. Aquaculture 2019, 513, 734423. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Zhang, C.; Fan, L.; Qiu, L.; Wu, W.; Meng, S.; Hu, G.; Kamira, B.; Chen, J. Occurrence of antibiotics and their impacts to primary productivity in fishponds around Tai Lake, China. Chemosphere 2016, 161, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Sundberg, L.-R.; Ketola, T.; Laanto, E.; Kinnula, H.; Bamford, J.K.; Penttinen, R.; Mappes, J. Intensive aquaculture selects for increased virulence and interference competition in bacteria. Proc. Royal Soc. B 2016, 283, 20153069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.-H.; Chen, J.; Li, C.-H.; Lu, X.-J.; Zhang, D.-M.; Li, H.-Y.; Zhao, Z.-X.; Li, M.-Y. Detection of bacterial pathogens in aquaculture samples by DNA microarray analysis. Aquaculture 2012, 338, 29–35. [Google Scholar] [CrossRef]
- Cai, W.; Willmon, E.; Burgos, F.A.; Ray, C.L.; Hanson, T.; Arias, C.R. Biofilm and Sediment are Major Reservoirs of Virulent Aeromonas hydrophila (vAh) in Catfish Production Ponds. J. Aquat. Anim. Health 2019, 31, 112–120. [Google Scholar] [CrossRef]
- Hoai, T.D.; Trang, T.T.; Van Tuyen, N.; Giang, N.T.H.; Van Van, K. Aeromonas veronii caused disease and mortality in channel catfish in Vietnam. Aquaculture 2019, 513, 734425. [Google Scholar] [CrossRef]
- Reverter, M.; Sarter, S.; Caruso, D.; Avarre, J.-C.; Combe, M.; Pepey, E.; Pouyaud, L.; Vega-Heredía, S.; De Verdal, H.; Gozlan, R.E. Aquaculture at the crossroads of global warming and antimicrobial resistance. Nat. Commun. 2020, 11, 1870. [Google Scholar] [CrossRef] [Green Version]
- Van Huong, N.; Huu Cuong, T.; Thi Nang Thu, T.; Lebailly, P. Efficiency of different integrated agriculture aquaculture systems in the Red River Delta of Vietnam. Sustainability 2018, 10, 493. [Google Scholar] [CrossRef] [Green Version]
- Sasmal, D.; Borah, B.; Kumar, S.; Borah, D.; Bora, M.; Kalita, H. Improvement of farmer’s livelihood through rice-fish-duck integration at Namsai District of Arunachal Pradesh. J. Entomol. Zool. Stud. 2020, 8, 1582–1585. [Google Scholar]
- Debnath, B.; Kandpal, B.; Singh, R. Integrated fish farming modules for income enhancement in South Tripura: A comparative assessment of profitability. Indian J. Ext. Educ. 2020, 56, 228–232. [Google Scholar]
- Mallick, S.; Deka, R.S.; Hoque, J.; Deka, P.M. Krishi Vigyan Kendra′s Integrated Paddy-Cum-Fish Culture Practice (KVK Morigaon, Assam). Agric. Food Newsl. 2022, 4, 260–263. [Google Scholar]
- Newton, R.; Zhang, W.; Xian, Z.; McAdam, B.; Little, D.C. Intensification, regulation and diversification: The changing face of inland aquaculture in China. Ambio 2021, 50, 1739–1756. [Google Scholar] [CrossRef] [PubMed]
- Weiman, M.; Mengqing, L. Analysis of Feeds and Fertilizers for Sustainable Aquaculture Development in China. In Study and Analysis of Feeds and Fertilizers for Sustainable Aquaculture Development; FAO Fisheries Technical Paper: Rome, Italy, 2007; pp. 141–190. [Google Scholar]
- FAO. Report of the FAO Workshop on the on-Farm Feeding and Feed Management in Aquaculture, Manila, Philippines, 13–15 September 2010; Food and Agriculture Organisation of the United Nations: Geneva, Switzerland, 2010; pp. 1–46. [Google Scholar]
- Chávez-Crooker, P.; Obreque-Contreras, J. Bioremediation of aquaculture wastes. Curr. Opin. Biotechnol. 2010, 21, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Rosa, J.; Lemos, M.F.L.; Crespo, D.; Nunes, M.; Freitas, A.; Ramos, F.; Pardal, M.Â.; Leston, S. Integrated multitrophic aquaculture systems–Potential risks for food safety. Trends Food Sci. Technol. 2020, 96, 79–90. [Google Scholar] [CrossRef]
- Foysal, M.; Momtaz, F.; Kawser, A.; Chaklader, M.; Siddik, M.; Lamichhane, B.; Tay, A.; Rahman, M.; Fotedar, R. Microbiome patterns reveal the transmission of pathogenic bacteria in hilsa fish (Tenualosa ilisha) marketed for human consumption in Bangladesh. J. Appl. Microbiol. 2019, 126, 1879–1890. [Google Scholar] [CrossRef]
- Preena, P.G.; Swaminathan, T.R.; Kumar, V.J.R.; Singh, I.S.B. Antimicrobial resistance in aquaculture: A crisis for concern. Biologia 2020, 75, 1497–1517. [Google Scholar] [CrossRef]
- Mahmudunnabi, G.; Majlish, A.N.K.; Momtaz, F.; Foysal, M.J.; Rahman, M.M.; Islam, K. Molecular detection and PCR-RFLP analysis using Pst1 and Alu1 of multidrug resistant Klebsiella pneumoniae causing urinary tract infection in women in the eastern part of Bangladesh. J. Genet. Eng. Biotechnol. 2018, 16, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Rahman, M.S.; Hassan, F.N.; Sarkar, S.; Islam, M.K.; Saha, P.; Alam, M.B.; Sultana, N.; Rahman, K.T.; Sumi, S.S. Antimicrobial resistance in uropathogen isolates from patients with urinary tract infections. Biomed. Res. Ther. 2015, 2, 263–269. [Google Scholar] [CrossRef]
- Slettemeås, J.S.; Urdahl, A.M.; Mo, S.S.; Johannessen, G.S.; Grave, K.; Norström, M.; Steinbakk, M.; Sunde, M. Imported food and feed as contributors to the introduction of plasmid-mediated colistin-resistant Enterobacteriaceae to a ‘low prevalence’ country. J. Antimicrob. Chemother. 2017, 72, 2675–2677. [Google Scholar] [CrossRef]
- Fang, J.; Shen, Y.; Qu, D.; Han, J. Antimicrobial resistance profiles and characteristics of integrons in Escherichia coli strains isolated from a large-scale centralized swine slaughterhouse and its downstream markets in Zhejiang, China. Food Control 2019, 95, 215–222. [Google Scholar] [CrossRef]
- Kenzaka, T.; Tani, K.; Nasu, M. High-frequency phage-mediated gene transfer in freshwater environments determined at single-cell level. ISME J. 2010, 4, 648–659. [Google Scholar] [CrossRef] [Green Version]
- von Wintersdorff, C.J.H.; Penders, J.; van Niekerk, J.M.; Mills, N.D.; Majumder, S.; van Alphen, L.B.; Savelkoul, P.H.M.; Wolffs, P.F.G. Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer. Front. Microbiol. 2016, 7, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waseem, H.; Ali, J.; Jamal, A.; Ali, M. Potential dissemination of antimicrobial resistance from small scale poultry slaughterhouses in Pakistan. Appl. Ecol. Environ. Res. 2019, 17, 3049–3063. [Google Scholar] [CrossRef]
- Noseda, B.; Islam, M.T.; Eriksson, M.; Heyndrickx, M.; De Reu, K.; Van Langenhove, H.; Devlieghere, F. Microbiological spoilage of vacuum and modified atmosphere packaged Vietnamese Pangasius hypophthalmus fillets. Food Microbiol. 2012, 30, 408–419. [Google Scholar] [CrossRef]
- Thi, A.N.T.; Noseda, B.; Samapundo, S.; Nguyen, B.L.; Broekaert, K.; Rasschaert, G.; Heyndrickx, M.; Devlieghere, F. Microbial ecology of Vietnamese Tra fish (Pangasius hypophthalmus) fillets during processing. Int. J. Food Microbiol. 2013, 167, 144–152. [Google Scholar]
- Thi, A.N.T.; Samapundo, S.; Devlieghere, F.; Heyndrickx, M. Microbiota of frozen Vietnamese catfish (Pangasius hypophthalmus) marketed in Belgium. Int. J. Food Contam. 2016, 3, 17. [Google Scholar]
- Yücel, N.; Balci, Ş. Prevalence of Listeria, Aeromonas, and Vibrio species in fish used for human consumption in Turkey. J. Food Prot. 2010, 73, 380–384. [Google Scholar] [CrossRef]
- Lyer, T.S.G.; Shrivastava, K.P. Incidence and low temperature survival of Salmonella in fishery products. Fish Technol. 1989, 26, 39–42. [Google Scholar]
- Heinitz, M.L.; Ruble, R.D.; Wagner, D.E.; Tatini, S.R. Incidence of Salmonella in fish and seafood. J. Food Prot. 2000, 63, 579–592. [Google Scholar] [CrossRef]
- Alkhunni, S.B.A.; Gaballah, M.S.M.; Gultepe, N. Pathogenic bacteria for human and fish isolated from fish farm in Kastamonu, Turkey. J. Aquac. Mar. Biol. 2017, 6, 157. [Google Scholar]
- Bohai, X.; Zhan, Y.; Yushen, W.; Taozhen, C. Studies on the Taxonomy of Pathogenic Bacteria of the Bacterial Hemorrhagic Septicemia in Cultured Fishes in Freshwater (Abstract only). Acta Hydrobiol. Sin. 1993, 3, 259–266. [Google Scholar]
- Budiati, T.; Rusul, G.; Wan-Abdullah, W.N.; Arip, Y.M.; Ahmad, R.; Thong, K.L. Prevalence, antibiotic resistance and plasmid profiling of Salmonella in catfish (Clarias gariepinus) and tilapia (Tilapia mossambica) obtained from wet markets and ponds in Malaysia. Aquaculture 2013, 372, 127–132. [Google Scholar] [CrossRef]
- Haenen, O.L.M.; Evans, J.J.; Berthe, F. Bacterial infections from aquatic species: Potential for and prevention of contact zoonoses. OIE Rev. Sci. Tech. 2013, 32, 497–507. [Google Scholar] [CrossRef]
- Lowry, T.; Smith, S.A. Aquatic zoonoses associated with food, bait, ornamental, and tropical fish. J. Am. Vet. Med. Assoc. 2007, 231, 876–880. [Google Scholar] [CrossRef]
- Bielecki, J. Emerging food pathogens and bacterial toxins. Acta Microbiol. Pol. 2003, 52, 17–22. [Google Scholar]
- De Keukeleire, S.; De Bel, A.; Jansen, Y.; Janssens, M.; Wauters, G.; Piérard, D. Yersinia ruckeri, an unusual microorganism isolated from a human wound infection. New Microbes New Infect. 2014, 2, 134–135. [Google Scholar] [CrossRef] [Green Version]
- Cooper, G.R.; Staples, E.D.; Iczkowski, K.A.; Clancy, C.J. Comamonas (Pseudomonas) testosteroni endocarditis. Cardiovasc. Pathol. 2005, 14, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Cartwright, M.J.; King, M.H.; Weinberg, R.S.; Guerry, R.K. Micrococcus endophthalmitis. Arch. Ophthalmol. 1990, 108, 1523–1524. [Google Scholar] [CrossRef] [PubMed]
- Aragone, M.; Maurizi, D.; Clara, L.; Estrada, J.N.; Ascione, A. Pseudomonas mendocina, an environmental bacterium isolated from a patient with human infective endocarditis. J. Clin. Microbiol. 1992, 30, 1583–1584. [Google Scholar] [CrossRef] [Green Version]
- Rapsinski, G.J.; Makadia, J.; Bhanot, N.; Min, Z. Pseudomonas mendocina native valve infective endocarditis: A case report. J. Med. Case Rep. 2016, 10, 275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levitski-Heikkila, T.V.; Ullian, M.E. Peritonitis with multiple rare environmental bacteria in a patient receiving long-term peritoneal dialysis. Am. J. Kidney Dis. 2005, 46, e119–e124. [Google Scholar] [CrossRef]
- Tsai, S. Rhizobium radiobacter peritonitis revisited: Catheter removal is not mandatory. Perit. Dial. Int. 2013, 33, 331–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Economou, V.; Gousia, P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug Resist. 2015, 8, 49–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bortolaia, V.; Espinosa-Gongora, C.; Guardabassi, L. Human health risks associated with antimicrobial-resistant enterococci and Staphylococcus aureus on poultry meat. Clin. Microbiol. Infect. 2016, 22, 130–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Australian Government. Imported Food Control Regulations 2019; Federal Register of Legislation, Ed.; Australian Government: Canberra, Australia, 2019; pp. 1–26. [Google Scholar]
- Australian Government. Imported Food Control Act 1992. In Number 227. Compilation 27; Federal Register of Legislation, Ed.; Australian Government: Canberra, Australia, 2021; pp. 1–83. [Google Scholar]
- Australian Government. Imported Food Control Order 2020. In In Force 25 November 2020; Federal Register of Legislation, Ed.; Australian Government: Canberra, Australia, 2020; pp. 1–11. [Google Scholar]
- ANZFSC. Standard 1.6.1–Microbiological limits in food. In Food Standards as Amended, Taking into Account Amendments up to Food Standards (Proposal P1048–Code Revision (2018)) Variation; Federal Register of Legislation: Canberra, Australia, 2018. [Google Scholar]
- WTO. Marrakesh Agreement Establishing the World Trade Organisation; Opened for Signature 15 April 1994, 1867 UNTS 3 (entered into force 1 January 1995) Annex 1A (‘Agreement on the Application of Sanitary and Phytosanitary Measures’); WTO: Geneva, Switzerland, 1995; In force 1 January 1995. [Google Scholar]
- Williams, M.; Hernandez-Jover, M.; Williams, T.; Shamsi, S. A risk scoring system for seafood supply chain breaches and examination of freshwater fish imported to Australia. Food Qual. Saf. 2021, 5, fyab004. [Google Scholar] [CrossRef]
- Saito, E.; Yoshida, N.; Kawano, J.; Shimizu, A.; Igimi, S. Isolation of Staphylococcus aureus from raw fish in relation to culture methods. J. Vet. Med. Sci. 2011, 73, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Wendling, Z.A.; Emerson, J.W.; Esty, D.C.; Levy, M.A.; de Sherbinin, A. The Environmental Performance Index; Yale Center for Environmental Law & Policy: New Haven, CT, USA, 2018; pp. 1–200. [Google Scholar]
- Odonkor, S.T.; Ampofo, J.K. Escherichia coli as an indicator of bacteriological quality of water: An overview. Microbiol. Res. 2013, 4, e2. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, J.G.; Nair, H.P.; O′Kane, C.; Walker, C.A. Prevalence of multidrug resistance in Pseudomonas spp. isolated from wild bird feces in an urban aquatic environment. Ecol. Evol. 2021, 11, 14303. [Google Scholar] [CrossRef]
- Odjadjare, E.; Ebowemen, M. Antibiogram of Pseudomonas isolates and potential public health impact of an abattoir effluent in Benin City, Nigeria. Afr. J. Clin. Exp. Microbiol. 2020, 21, 240–249. [Google Scholar]
- Sarkar, S.; Dey, S.K.; Nipu, M.A.I.; Brishti, P.S.; Billah, M.B. Microbiological assessment of Nile tilapia Oreochromis niloticus collected from different super shops and local market in Dhaka, Bangladesh. J. Fish. 2020, 8, 784–791. [Google Scholar] [CrossRef]
- Vierheilig, J.; Frick, C.; Mayer, R.; Kirschner, A.; Reischer, G.; Derx, J.; Mach, R.; Sommer, R.; Farnleitner, A. Clostridium perfringens is not suitable for the indication of fecal pollution from ruminant wildlife but is associated with excreta from nonherbivorous animals and human sewage. Appl. Environ. Microbiol. 2013, 79, 5089–5092. [Google Scholar] [CrossRef] [Green Version]
- Herigstad, B.; Hamilton, M.; Heersink, J. How to optimize the drop plate method for enumerating bacteria. J. Microbiol. Methods 2001, 44, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Hudzicki, J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol; American Society for Microbiology: Washington, DA, USA, 2009; pp. 1–23. [Google Scholar]
- WHO. Critically Important Antimicrobials for Human Medicine; World Health Organisation Department of Food Safety and Zoonoses: Geneva, Switzerland, 2018; pp. 1–52. [Google Scholar]
- Hussein, M.; Hassan, W. Efficacy of fosfomycin in controlling streptococcosis in Nile tilapia (Oreochromis niloticus). J. Vet. Med. Res. 2011, 21, 59–66. [Google Scholar] [CrossRef]
- Lee, S.W.; Najiah, M.; Wendy, W. Bacteria associated with golden pompano (Trachinotus blochii) broodstock from commercial hatchery in Malaysia with emphasis on their antibiotic and heavy metal resistances. Front. Agric. China 2010, 4, 251–256. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.-Q.; Li, J.; Ma, Y.-F.; Lin, J.; Xiao, Z.-R.; Yu, D.-J. Phenotypic and genotypic analysis of vancomycin-resistant Enterococci strains isolated from different water sources. Afr. J. Bacteriol. Res. 2016, 8, 8–13. [Google Scholar]
- Osman, K.M.; Ali, M.N.; Radwan, I.; ElHofy, F.; Abed, A.H.; Orabi, A.; Fawzy, N.M. Dispersion of the vancomycin resistance genes vanA and vanC of Enterococcus isolated from nile tilapia on retail sale: A public health hazard. Front. Microbiol. 2016, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Gibson, J.S.; Wai, H.; Oo, S.S.M.L.; Hmwe, E.M.M.; Wai, S.S.; Htun, L.L.; Lim, H.P.; Latt, Z.M.; Henning, J. Antimicrobials use and resistance on integrated poultry-fish farming systems in the Ayeyarwady Delta of Myanmar. Sci. Rep. 2020, 10, 1–7. [Google Scholar] [CrossRef]
- Gazal, L.E.d.S.; Brito, K.C.T.d.; Kobayashi, R.K.T.; Nakazato, G.; Cavalli, L.S.; Otutumi, L.K.; Brito, B.G.d. Antimicrobials and resistant bacteria in global fish farming and the possible risk for public health. Arq. Inst. Biológico 2020, 87, 1–11. [Google Scholar] [CrossRef]
- Yanong, R.P. Use of antibiotics in ornamental fish aquaculture. Inst. Food Agric. Sci. 2003, 84, 1–8. [Google Scholar] [CrossRef]
- Liu, M.; Sang, Y.; Zhang, J.; Li, J.; Yu, W.; Zhang, F.; Wang, X. Development of a broad-specific competitive ELISA for first-generation cephalosporin antibiotics in animal-derived foods samples. Bull. Environ. Contam. Toxicol. 2021, 107, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Kalasseril, S.G.; Krishnan, R.; Vattiringal, R.K.; Paul, R.; Mathew, P.; Pillai, D. Detection of New Delhi metallo-β-lactamase 1 and cephalosporin resistance genes among carbapenem-resistant Enterobacteriaceae in water bodies adjacent to hospitals in India. Curr. Microbiol. 2020, 77, 2886–2895. [Google Scholar] [CrossRef] [PubMed]
- Okoh, A.I.; Igbinosa, E.O. Antibiotic susceptibility profiles of some Vibrio strains isolated from wastewater final effluents in a rural community of the Eastern Cape Province of South Africa. BMC Microbiol. 2010, 10, 143. [Google Scholar] [CrossRef] [Green Version]
- Tall, B.; Fall, S.; Pereira, M.; Ramos-Valle, M.; Curtis, S.; Kothary, M.; Chu, D.; Monday, S.; Kornegay, L.; Donkar, T. Characterization of Vibrio fluvialis-like strains implicated in limp lobster disease. Appl. Environ. Microbiol. 2003, 69, 7435–7446. [Google Scholar] [CrossRef] [Green Version]
- Kaysner, C.A.; De Paola, A.J. BAM Chapter 9: Vibrio. In Bacteriological Analytical Manual; USA, Food and Drug Administration: Silver Spring, MD, USA, 2004; Volume 8. [Google Scholar]
- Lesmana, M.; Subekti, D.S.; Tjaniadi, P.; Simanjuntak, C.H.; Punjabi, N.H.; Campbell, J.R.; Oyofo, B.A. Spectrum of Vibrio species associated with acute diarrhea in North Jakarta, Indonesia. Diagn. Microbiol. Infect. Dis. 2002, 43, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals. In CLSI supplement VET01S, 5th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020; pp. 1–250. [Google Scholar]
- Reynolds, J. Kirby-Bauer (Antibiotic Sensitivity). In LibreTexts-Biology; Richland College: Dallas, TX, USA, 2020. [Google Scholar]
- Behera, B.; Mohanty, S.; Sahu, S.; Praharaj, A.K. In vitro Activity of fosfomycin against Multidrug-resistant urinary and nonurinary Gram-negative isolates. Indian J. Crit. Care Med. 2018, 22, 533. [Google Scholar] [PubMed]
- Beveridge, T.J. Use of the Gram stain in microbiology. Biotech. Histochem. 2001, 76, 111–118. [Google Scholar] [CrossRef]
- Bush, A.O.; Lafferty, K.D.; Lotz, J.M.; Shostak, A.W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 1997, 83, 575–583. [Google Scholar] [CrossRef]
- Smith, H.; Brown, A. Benson’s Microbiological Applications Laboratory Manual, 12th ed.; McGraw Hill: New York, NY, USA, 2011; pp. 1–576. [Google Scholar]
- Chanza, M.; Vidal, S.; Gimeno, C. Rhizobium radiobacter in pulmonary abscess associated with postgripal necrotizing pneumonia. Rev. Esp. Quim. 2017, 30, 50. [Google Scholar]
- BICON. Case: Finfish (Excluding Salmonid) for Human Consumption Effective: 07 April 2020. Available online: https://bicon.agriculture.gov.au/BiconWeb4.0/ImportConditions/Questions/EvaluateCase?elementID=0000067916&elementVersionID=360 (accessed on 15 April 2020).
- Saikia, D.J.; Chattopadhyay, P.; Banerjee, G.; Talukdar, B.; Sarma, D. Identification and pathogenicity of Pseudomonas aeruginosa DJ1990 on tail and fin rot disease in spotted snakehead. J. World Aquac. Soc. 2018, 49, 703–714. [Google Scholar] [CrossRef]
- Wu, X.; Pan, J.; Li, M.; Li, Y.; Bartlam, M.; Wang, Y. Selective enrichment of bacterial pathogens by microplastic biofilm. Water Res. 2019, 165, 114979. [Google Scholar] [CrossRef] [PubMed]
- Giovanelli, A.; da Silva, C.L.P.A.C.; Leal, G.B.E.; Baptista, D.F. Habitat preference of freshwater snails in relation to environmental factors and the presence of the competitor snail Melanoides tuberculatus (Müller, 1774). Mem. Inst. Oswaldo Cruz 2005, 100, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Sultana, M.; Härtig, C.; Planer-Friedrich, B.; Seifert, J.; Schlömann, M. Bacterial communities in Bangladesh aquifers differing in aqueous arsenic concentration. Geomicrobiol. J. 2011, 28, 198–211. [Google Scholar] [CrossRef]
- Austin, B.; Stobie, M. Recovery of Serratia plymuthica and presumptive Pseudomonas pseudoalcaligenes from skin lesions in rainbow trout, Oncorhynchus mykiss (Walbaum), otherwise infected with enteric redmouth. J. Fish Dis. 1992, 15, 541–543. [Google Scholar] [CrossRef]
- FSANZ. Advice on imported food. In Australian and New Zealand Food Standards Code; Food Standards Australia and New Zealand: Canberra, Australia, 2019; p. 1. [Google Scholar]
- Australian Government. Integrated Cargo System (ICS); Australian Border Force, Ed.; Australian Government: Canberra, Australia, 2020. [Google Scholar]
- FSANZ. The Australian and New Zealand Food Standards Code. In The Compendium of Microbiological Criteria for Food; Food Standards Australia and New Zealand: Canberra, Australia, 2018. [Google Scholar]
- WTO. Sanitary and Phytosanitary Measures signed Marrakesh on 15 April 1994. Entered into affect by World Trade Organization on 1 January 1995. In The WTO Agreement Series; World Trade Organisation, Ed.; World Trade Organisation: Geneva, Switzerland, 1994; pp. 1–50. [Google Scholar]
- Codex. Code of Practice for Fish and Fishery Products. In Codex International Food Safety Standards; Codex Alimentarius and the Food and Agriculture Organisation of the United Nations and World Health Organisation: Geneva, Switzerland, 2020; Volume CXC 52-2003 (Updated 2020), pp. 1–372. [Google Scholar]
- Codex. Codex food safety standards. In Code of Practice for Fish and Fishery Products; Food and Agriculture Organisation of the United Nations and World Health Organisation: Geneva, Switzerland, 2020; Volume CXC 52-2003 (previously CAC/RCP 52-2003), pp. 1–268. [Google Scholar]
- Miettinen, H.; Aarnisalo, K.; Salo, S.; Sjöberg, A.-M. Evaluation of surface contamination and the presence of Listeria monocytogenes in fish processing factories. J. Food Prot. 2001, 64, 635–639. [Google Scholar] [CrossRef]
- Rao, S.; Ngan, W.Y.; Chan, L.C.; Sekoai, P.T.; Fung, A.H.Y.; Pu, Y.; Yao, Y.; Habimana, O. Questioning the source of identified non-foodborne pathogens from food-contact wooden surfaces used in Hong Kong′s urban wet markets. One Health 2021, 13, 100300. [Google Scholar] [CrossRef]
- Albuquerque, W.F.; Macrae, A.; Sousa, O.V.; Vieira, G.H.F.; Vieira, R.H.S.F. Multiple drug resistant Staphylococcus aureus strains isolated from a fish market and from fish handlers. Braz. J. Microbiol. 2007, 38, 131–134. [Google Scholar] [CrossRef] [Green Version]
- Onjong, H.A.; Wangoh, J.; Njage, P.M.K. Semiquantitative analysis of gaps in microbiological performance of fish processing sector implementing current food safety management systems: A case study. J. Food Prot. 2014, 77, 1380–1389. [Google Scholar] [CrossRef] [PubMed]
- Simon, S.S.; Sanjeev, S. Prevalence of enterotoxigenic Staphylococcus aureus in fishery products and fish processing factory workers. Food Control 2007, 18, 1565–1568. [Google Scholar] [CrossRef]
- Nuñez, M. Micrococcus. In Encyclopedia of Food Microbiology; Batt, C.A., Tortorello, M.A., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 627–633. [Google Scholar]
- Huicab-Pech, Z.; MR, C.-C.; Lango-Reynoso, F. Pathogenic Bacteria in Oreochromis Niloticus Var. Stirling Tilapia Culture. Fish. Aquac. J. 2017, 8, 1000197. [Google Scholar]
- Wanja, D.W.; Mbuthia, P.G.; Waruiru, R.M.; Bebora, L.C.; Ngowi, H.A.; Nyaga, P.N. Antibiotic and Disinfectant Susceptibility Patterns of Bacteria Isolated from Farmed Fish in Kirinyaga County, Kenya. Int. J. Microbiol. 2020, 2020, 8897338. [Google Scholar] [CrossRef] [PubMed]
- Anihouvi, V.B.; Sakyi-Dawson, E.; Ayernor, G.S.; Hounhouigan, J.D. Microbiological changes in naturally fermented cassava fish (Pseudotolithus sp.) for lanhouin production. Int. J. Food Microbiol. 2007, 116, 287–291. [Google Scholar] [CrossRef]
- Horner, W. Preservation of fish by curing (drying, salting and smoking). In Fish Processing Technology; Chapman and Hall: New York, NY, USA, 1997; pp. 21–39. [Google Scholar]
- Anihouvi, V.; Ayernor, G.; Hounhouigan, J.; Sakyi-Dawson, E. Quality characteristics of Lanhouin: A traditional processed fermented fish product in the Republic of Benin. African J. Food, Agric. Nutr. Dev. 2006, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Nerquaye-Tetteh, G.; Tete-Marmon, J.; Eyeson, K. Studies on Bomone, a Ghanaian fermented fish product. GJAS 1978, 11, 21–26. [Google Scholar]
- Adang, R.P.; Schouten, H.C.; van Tiel, F.H.; Blijham, G.H. Pneumonia due to Micrococcus spp. in a patient with acute myeloid leukaemia. Leukemia 1992, 6, 224–226. [Google Scholar]
- Ambler, M.; Homans, A.; O′Shea, P. An unusual central nervous system infection in a young immunocompromised host. Arch. Pathol. Lab. Med. 1986, 110, 497–501. [Google Scholar] [PubMed]
- Gupta, V.; Kumar, A.C.R.S.; Dhyani, A.; Chakravarty, S. Meningitis caused by Micrococcus luteus: Case report and review of literature. Int. J. Med Microbiol. Trop. Dis. 2019, 5, 63–64. [Google Scholar]
- Magee, J.T.; Burnett, I.A.; Hindmarch, J.M.; Spencer, R.C. Micrococcus and Stomatococcus spp. from human infections. J. Hosp. Infect. 1990, 16, 67–73. [Google Scholar] [CrossRef]
- Miltiadous, G.; Elisaf, M. Native valve endocarditis due to Micrococcus luteus: A case report and review of the literature. J. Med. Case Rep. 2011, 5, 251. [Google Scholar] [CrossRef] [Green Version]
- Salar, A.; Carratalà, J.; Fernández-Sevilla, A.; Marín, D.; Grañena, A. Pneumonia caused by Micrococcus species in a neutropenic patient with acute leukemia. Eur. J. Clin. Microbiol. Infect. Dis. 1997, 16, 546–548. [Google Scholar] [CrossRef]
- Selladurai, B.M.; Sivakumaran, S.; Aiyar, S.; Mohamad, A.R. Intracranial suppuration caused by Micrococcus luteus. Br. J. Neurosurg. 1993, 7, 205–207. [Google Scholar] [CrossRef]
- Khan, A.; Aung, T.T.; Chaudhuri, D. The First Case of Native Mitral Valve Endocarditis due to Micrococcus luteus and Review of the Literature. Case Rep. Cardiol. 2019, 2019, 5907319. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Zhu, Q.; Yang, Z.; Liang, Z. Clinical Characteristics of Patients with Micrococcus luteus Bloodstream Infection in a Chinese Tertiary-Care Hospital. Polish J. Microbiol. 2021, 70, 321–326. [Google Scholar] [CrossRef]
- Song, S.H.; Choi, H.S.; Ma, S.K.; Kim, S.W.; Shin, J.-H.; Bae, E.H. Micrococcus aloeverae-a rare cause of peritoneal dialysis-related peritonitis confirmed by 16S rRNA gene sequencing. J. Nippon Med. Sch. 2019, 86, 55–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farooq, S.; Farooq, R.; Nahvi, N. Comamonas testosteroni: Is it still a rare human pathogen. Case Rep. Gastroenterol. 2017, 11, 42–47. [Google Scholar] [CrossRef]
- Tiwari, S.; Nanda, M. Bacteremia caused by Comamonas testosteroni an unusual pathogen. J. Lab. Physicians 2019, 11, 87–90. [Google Scholar] [CrossRef]
- Liu, L.; Zhu, W.; Cao, Z.; Xu, B.; Wang, G.; Luo, M. High correlation between genotypes and phenotypes of environmental bacteria Comamonas testosteroni strains. BMC Genom. 2015, 16, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yani, A.; Amin, M.; Rohman, F.; Suarsini, E.; Putra, W.E. Profiling indigenous lead-reducing bacteria from Tempe Lake, South Sulawesi, Indonesia as bioremediation agents. Biodiversitas 2020, 21, 4778–4786. [Google Scholar] [CrossRef]
- Preena, P.; Arathi, D.; Raj, N.S.; Arun Kumar, T.; Arun Raja, S.; Reshma, R.; Raja Swaminathan, T. Diversity of antimicrobial-resistant pathogens from a freshwater ornamental fish farm. Lett. Appl. Microbiol. 2020, 71, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Wamala, S.P.; Mugimba, K.K.; Mutoloki, S.; Evensen, Ø.; Mdegela, R.; Byarugaba, D.K.; Sørum, H. Occurrence and antibiotic susceptibility of fish bacteria isolated from Oreochromis niloticus (Nile tilapia) and Clarias gariepinus (African catfish) in Uganda. Fish Aquat. Sci. 2018, 21, 6. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.D.; Gradon, J.D. Bacteremia due to Comamonas species possibly associated with exposure to tropical fish. South. Med. J. 2003, 96, 815–818. [Google Scholar] [CrossRef] [PubMed]
- Tsui, T.-L.; Tsao, S.-M.; Liu, K.-S.; Chen, T.-Y.; Wang, Y.-L.; Teng, Y.-H.; Lee, Y.-T. Comamonas testosteroni infection in Taiwan: Reported two cases and literature review. J. Microbiol. Immunol. Infect. 2011, 44, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zaiden, N.; Cao, B. The Core- and Pan-Genomic Analyses of the Genus Comamonas: From Environmental Adaptation to Potential Virulence. Front. Microbiol. 2018, 9, 3096. [Google Scholar] [CrossRef] [PubMed]
- Abraham, J.M.; Simon, G.L. Comamonas testosteroni bacteremia: A case report and review of the literature. Infect Dis. Clin. Pract. 2007, 15, 272–273. [Google Scholar] [CrossRef]
- Farshad, S.; Norouzi, F.; Aminshahidi, M.; Heidari, B.; Alborzi, A. Two cases of bacteremia due to an unusual pathogen, Comamonas testosteroni in Iran and a review literature. J. Infect. Dev. Ctries. 2012, 6, 521–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gul, M.; Ciragil, P.; Bulbuloglu, E.; Aral, M.; Alkis, S.; Ezberci, F. Comamonas testosteroni bacteremia in a patient with perforated acute appendicitis. Acta Microbiol. Immunol. Hung. 2007, 54, 317–321. [Google Scholar] [CrossRef]
- Cetin, S.; Baslarli, S.; Celik, B.; Celik, I. A Case of Pneumonia Caused by Comamonas testosteroni in the Pediatric Intensive Care Unit. Eurasian J. Med. Oncol. 2018, 2, 251–253. [Google Scholar]
- Spiers, A.J.; Buckling, A.; Rainey, P.B. The causes of Pseudomonas diversity. Microbiology 2000, 146, 2345–2350. [Google Scholar] [CrossRef] [Green Version]
- Gomila, M.; Peña, A.; Mulet, M.; Lalucat, J.; García-Valdés, E. Phylogenomics and systematics in Pseudomonas. Front. Microbiol. 2015, 6, 214. [Google Scholar] [CrossRef] [Green Version]
- Newaj-Fyzul, A.; Mutani, A.; Ramsubhag, A.; Adesiyun, A. Prevalence of bacterial pathogens and their anti-microbial resistance in tilapia and their pond water in Trinidad. Zoonoses Public Health 2008, 55, 206–213. [Google Scholar] [CrossRef]
- Monghit-Camarin, M.-A.A.; Cruz-Lacierda, E.R.; Pakingking, R., Jr.; Cuvin-Aralar, M.L.; Traifalgar, R.F.; Añasco, N.C.; Austin, F.; Lawrence, M. Bacterial microbiota of hatchery-reared freshwater prawn Macrobrachium rosenbergii (de Man, 1879). Asian Fish. Sci. 2020, 33, 241–248. [Google Scholar] [CrossRef]
- Udikovic-Kolic, N.; Wichmann, F.; Broderick, N.A.; Handelsman, J. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization. Proc. Natl. Acad. Sci. USA 2014, 111, 15202–15207. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.; Rahman, M.; Mondal, S.; Shadat Mondal, A.; Chowdhury, M. Isolation of some emergent bacterial pathogens recovered from captured and culture fisheries in Bangladesh. Bangladesh Res. Publ. J. 2011, 6, 77–90. [Google Scholar]
- Sarter, S.; Kha Nguyen, H.N.; Hung, L.T.; Lazard, J.; Montet, D. Antibiotic resistance in Gram-negative bacteria isolated from farmed catfish. Food Control 2007, 18, 1391–1396. [Google Scholar] [CrossRef]
- Boss, R.; Overesch, G.; Baumgartner, A. Antimicrobial resistance of Escherichia coli, Enterococci, Pseudomonas aeruginosa, and Staphylococcus aureus from raw fish and seafood Imported into Switzerland. J. Food Prot. 2016, 79, 1240–1246. [Google Scholar] [CrossRef]
- Gufe, C.; Canaan Hodobo, T.; Mbonjani, B.; Majonga, O.; Marumure, J.; Musari, S.; Jongi, G.; Makaya, P.V.; Machakwa, J. Antimicrobial Profiling of Bacteria Isolated from Fish Sold at Informal Market in Mufakose, Zimbabwe. Int. J. Microbiol. 2019, 2019, 8759636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Festus, F.I.; Damilola, M. Occurrence, antibiotic susceptibility pattern and physiological studies of Pseudomonas species isolated from ready to eat foods in Ibadan, Oyo State, Nigeria. J. Appl. Life Sci. Int. 2018, 18, 1–9. [Google Scholar] [CrossRef]
- Yi, S.; Li, J.; Zhu, J.; Lin, Y.; Fu, L.; Chen, W.; Li, X. Effect of tea polyphenols on microbiological and biochemical quality of Collichthys fish ball. J. Sci. Food Agric. 2011, 91, 1591–1597. [Google Scholar] [CrossRef]
- Geraldine, A.R.; Rosidah, R.; Herawati, H.; Bioshina, I.B. Isolation and identification of potential pathogenic bacteria in living carp (Cyprinus carpio Linnaeus, 1758) sold in supermarkets in Cimahi City, Java. World News Nat. Sci. 2020, 32, 21–35. [Google Scholar]
- Abadi, A.S.; Hismayasari, I.B.; Supriatna, I.; Yani, A.; Sayuti, M. The mass death of Nile tilapia (Oreochromis niloticus) in Sorong District, West Papua, Indonesia. Aquac Aquar Conserv Legis 2020, 13, 1906–1916. [Google Scholar]
- Chi, C.-Y.; Lai, C.-H.; Fung, C.-P.; Wang, J.-H. Pseudomonas mendocina spondylodiscitis: A case report and literature review. Scand. J. Infect. Dis. 2005, 37, 950–953. [Google Scholar] [CrossRef]
- Chiu, L.Q.; Wang, W. A case of unusual Gram-negative bacilli septic arthritis in an immunocompetent patient. Singap. Med. J. 2013, 54, e164–e168. [Google Scholar] [CrossRef] [Green Version]
- Gani, M.; Rao, S.; Miller, M.; Scoular, S. Pseudomonas mendocina bacteremia: A case study and review of literature. Am. J. Case Rep. 2019, 20, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Nseir, W.; Taha, H.; Abid, A.; Khateeb, J. Pseudomonas mendocina sepsis in a healthy man. Isr. Med. Assoc. J. 2011, 13, 375–376. [Google Scholar]
- Ioannou, P.; Vougiouklakis, G. A Systematic Review of Human Infections by Pseudomonas mendocina. Trop. Med. Infect. Dis. 2020, 5, 71. [Google Scholar] [CrossRef]
- Flores Ribeiro, A.; Bodilis, J.; Alonso, L.; Buquet, S.; Feuilloley, M.; Dupont, J.-P.; Pawlak, B. Occurrence of multi-antibiotic resistant Pseudomonas spp. in drinking water produced from karstic hydrosystems. Sci. Total Environ. 2014, 490, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Hossain, Z. Bacteria: Pseudomonas. In Encyclopedia of Food Safety; Motarjemi, Y., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 490–500. [Google Scholar]
- Froese, R.; Pauly, D. FishBase, Version February 2018. Available online: https://www.fishbase.se/search.php (accessed on 1 February 2019).
- Hélène, M.; Anne-Laure, M.; Estelle, J.-B. Atypical bacteria in the CF airways: Diversity, clinical consequences, emergence and adaptation. In Cystic Fibrosis–Renewed Hopes through Research; InTech: Rijeka, Croatia, 2012; pp. 225–252. [Google Scholar]
- Coenye, T.; Goris, J.; Spilker, T.; Vandamme, P.; LiPuma, J.J. Characterization of unusual bacteria isolated from respiratory secretions of cystic fibrosis patients and description of Inquilinus limosus gen. nov., sp. nov. J. Clin. Microbiol. 2002, 40, 2062–2069. [Google Scholar] [CrossRef] [Green Version]
- Balasoiu, A.T.; Zlatian, O.M.; Ghenea, A.E.; Davidescu, L.; Lungu, A.; Golli, A.L.; Udriștoiu, A.-L.; Balasoiu, M. A Rare Case of Endophthalmitis with Rhizobium radiobacter, Soon after a Resolved Keratitis: Case Report. Antibiotics 2022, 11, 905. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-L.; Zhao, L.-D.; Li, L.-J.; Zhou, M.-J. Septic shock caused by Rhizobium radiobacter in an elderly woman: A case report. Medicine 2019, 98, 49. [Google Scholar] [CrossRef]
- Christakis, G.B.; Alexaki, P.; Alivizatos, A.S.; Chalkiopoulou, I.; Athanasiou, A.E.; Zarkadis, I.K. Primary bacteraemia caused by Rhizobium radiobacter in a patient with solid tumours. J. Med. Microbiol. 2006, 55, 1453–1456. [Google Scholar] [CrossRef] [Green Version]
- Dunne, W.M.; Tillman, J.; Murray, J.C. Recovery of a strain of Agrobacterium radiobacter with a mucoid phenotype from an immunocompromised child with bacteremia. J. Clin. Microbiol. 1993, 31, 2541–2543. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.-C.; Teng, L.-J.; Hsueh, P.-R.; Yuan, A.; Tsai, K.-C.; Tang, J.-L.; Tien, H.-F. Clinical and Microbiological Characteristics of Rhizobium radiobacter Infections. Clin. Infect. Dis. 2004, 38, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Minguela, J.; De-Pablos, M.; Castellanos, T.; Ruiz-de-Gauna, R. Peritonitis by Rhizobium radiobacter. Perit. Dial. Int. 2006, 26, 112–115. [Google Scholar] [CrossRef] [PubMed]
- Otag, F.; Tezcan, S.; Ozturhan, H.; Aslan, G.; Kuyucu, N.; Emekdas, G. Emerging non-fermenter gram negative pathogens in paediatric patients: Rhizobium radiobacter bacteremia. J. Pediatr. Infect. 2007, 1, 143–146. [Google Scholar]
- Altun, E.; Kaya, B.; Taktakoğlu, O.; Karaer, R.; Paydas, S.; Balal, M.; Seyrek, N. Comamonas testosteroni peritonitis secondary to dislocated intrauterine device and laparoscopic intervention in a continuous ambulatory peritoneal dialysis patient. Perit. Dial. Int. 2013, 33, 576–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arda, B.; Aydemir, S.; Yamazhan, T.; Hassan, A.; Tünger, A.; Serter, D. Comamonas testosteroni meningitis in a patient with recurrent cholesteatoma: Case report. Apmis 2003, 111, 474–476. [Google Scholar] [CrossRef] [PubMed]
- Le Moal, G.; Paccalin, M.; Breux, J.-P.; Roblot, F.; Roblot, P.; Becq-Giraudon, B. Central venous catheter-related infection due to Comamonas testosteroni in a woman with breast cancer. Scand. J. Infect. Dis. 2001, 33, 627–628. [Google Scholar]
- Nseir, W.; Khateeb, J.; Awawdeh, M.; Ghali, M. Catheter-related bacteremia caused by Comamonas testosteroni in a hemodialysis patient. Hemodial. Int. 2011, 15, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Orsini, J.; Tam, E.; Hauser, N.; Rajayer, S. Polymicrobial Bacteremia Involving Comamonas testosteroni. Case Rep. Med. 2014, 2014, 578127. [Google Scholar] [CrossRef] [Green Version]
- Parolin, M.; Baraldi, M.; Valentini, E.; Murer, L.; Vidal, E. Comamonas testosteroni-associated peritonitis in a pediatric peritoneal dialysis patient. World J. Nephrol. 2016, 5, 220–223. [Google Scholar] [CrossRef]
- Ruziaki, W.A.; Hashami, H.A. Unusual pathogen Comamonas testosteroni sepsis following gastroenteritis in a 12 months old child: Case report and literature review. Am. J. Med. Case Rep. 2017, 5, 148–150. [Google Scholar] [CrossRef] [Green Version]
- Tartar, A.S.; Tartar, T. A Rare Pathogen in Acute Appendicitis: Two Cases with Comamonas testeroni Infection and Literature Review. J. Pediatr. Infect. Dis. 2020, 15, 110–112. [Google Scholar] [CrossRef]
- Yasayancan, N.; Inonu Koseoglu, H. The 20th Comamonas testosteroni Bacteremia Case in the Literature from Turkey: Mortal and Polymicrobial A Case Report and Literature Review. Eurasian J. Med. Oncol 2017, 1, 168–171. [Google Scholar] [CrossRef]
- Newman, J. Review of septic arthritis throughout the antibiotic era. Ann. Rheum. Dis. 1976, 35, 198–205. [Google Scholar] [CrossRef]
- Nordstrom, K.M.; McGinley, K.J.; Cappiello, L.; Zechman, J.M.; Leyden, J.J. Pitted Keratolysis: The Role of Micrococcus sedentarius. Arch. Dermatol. 1987, 123, 1320–1325. [Google Scholar] [CrossRef]
- Souhami, L.; Feld, R.; Tuffnell, P.G.; Feller, T. Micrococcus luteus pneumonia: A case report and review of the literature. Med. Pediatr. Oncol. 1979, 7, 309–314. [Google Scholar] [CrossRef]
- von Eiff, C.; Kuhn, N.; Herrmann, M.; Weber, S.; Peters, G. Micrococcus luteus as a cause of recurrent bacteremia. Pediatr. Infect. Dis. J. 1996, 15, 711–713. [Google Scholar] [CrossRef]
- Goldberg, M.E.; Blyth, M. Pseudomonas mendocina bacteremia in a hemodialysis patient with a central venous catheter. Cureus 2020, 12, e10853. [Google Scholar] [CrossRef]
- Greenough, N.; Gerry, D. First UK Case Report of a Patient with Pseudomonas mendocina Bacteraemia. Clin. Infect. Pract. 2021, 10, 100065. [Google Scholar] [CrossRef]
- Howe, T.S.; Erlich, G.; Koh, J.S.B.; Ng, A.C.M.; Costerton, W. A case of an atypical femoral fracture associated with bacterial biofilm—Pathogen or bystander? Osteoporos. Int. 2013, 24, 1765–1766. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-R.; Lien, C.-Y.; Tsai, W.-C.; Lai, W.-A.; Hsu, C.-W.; Tsai, N.-W.; Chang, C.-C.; Lu, C.-H.; Chien, C.-C.; Chang, W.-N. The clinical characteristics of adult bacterial meningitis caused by non-Pseudomonas (Ps.) aeruginosa Pseudomonas species: A clinical comparison with Ps. aeruginosa meningitis. Kaohsiung J. Med. Sci. 2018, 34, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Johansen, H.; Kjeldsen, K.; Høiby, N. Pseudomonas mendocina as a cause of chronic infective endocarditis in a patient with situs inversus. Clin. Microbiol. Infect. 2001, 7, 650–652. [Google Scholar] [CrossRef] [Green Version]
- Jerónimo, T.M.; Guedes, A.M.; Stieglmair, S.; Guerreiro, R.; Laranjo, C.; Bernardo, I.; Neves, P.L. Pseudomonas mendocina: The first case of peritonitis on peritoneal dialysis. Nefrologia 2017, 37, 647–649. [Google Scholar] [CrossRef] [PubMed]
- Mert, A.; Yilmaz, M.; Ozaras, R.; Kocak, F.; Dagsali, S. Native valve endocarditis due to Pseudomonas mendocina in a patient with mental retardation and a review of literature. Scand. J. Infect. Dis. 2007, 39, 615–616. [Google Scholar] [CrossRef]
- Suel, P.; Martin, P.; Berthelot, G.; Robaday, S.; Etienne, M.; Chibani, A. A case of Pseudomonas mendocina endocarditis. Med. Mal. Infect. 2010, 41, 109–110. [Google Scholar] [CrossRef]
- Hage, J.; Schoch, P.; Cunha, B. Pseudomonas pseudoalcaligenes Peritoneal Dialysis–Associated Peritonitis. Perit. Dial. Int. 2013, 33, 223–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ledger, W.J.; Headington, J.T. Isolation of Pseudomonas pseudoalcaligenes from an infection of a pregnant uterus. Int. J. Gynaecol. Obstet. 1972, 10, 87–89. [Google Scholar] [CrossRef]
- Amaya, R.A.; Edwards, M.S. Agrobacterium radiobacter bacteremia in pediatric patients: Case report and review. Pediatr. Infect. Dis. J. 2003, 22, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Bhansali, V.D.; Kalane, S.U.; Mandke, H.; Joe, G. Rhizobium radiobacter–A rare organism causing central line-associated bloodstream infection in a preterm neonate. Indian J. Child Health 2020, 7, 418–420. [Google Scholar] [CrossRef]
- Boceska, B.K.; Osmani, D.; Basovska, B.P.; Petreska, V.K.; Trajkova, Z.A.; Jovanovska, A.; Kocheva, S. Rhizobium radiobacter bacteremia in a two-year-old patient with an acute lymphoblastic leukemia: A case report. Arch. Public Health 2020, 12, 91–94. [Google Scholar]
- Detrait, M.; D’Hondt, L.; André, M.; Lonchay, C.; Holemans, X.; Maton, J.P.; Canon, J.L. Agrobacterium radiobacter bacteremia in oncologic and geriatric patients: Presentation of two cases and review of the literature. Int. J. Infect. Dis. 2008, 12, e7–e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenner, B.J.; Kumar, A.; Tan, N.Y.; Ang, M. Case of isolated Rhizobium radiobacter contact lens-related infectious keratitis: A plant microbe now emerging as a human pathogen. Am. J. Ophthalmol. Case Rep. 2019, 15, 100476. [Google Scholar] [CrossRef] [PubMed]
- Landron, C.; Moal, G.l.; Roblot, F.; Grignon, B.; Bonnin, A.; Becq-Giraudon, B. Central venous catheter-related infection due to Agrobacterium radiobacter: A report of 2 cases. Scand. J. Infect. Dis. 2002, 34, 693–694. [Google Scholar] [CrossRef]
- Lui, S.; Lo, W. Agrobacterium radiobacter peritonitis in a Chinese patient on CAPD. Perit. Dial. Int. 2005, 25, 95. [Google Scholar] [CrossRef] [PubMed]
- Misra, R.; Prasad, K.N.; Singh, K.; Bhadauria, D.; Sharma, R. Rhizobium radiobacter peritonitis: The first case report from India and review. JMM Case Rep. 2014, 1, e004051. [Google Scholar] [CrossRef]
- Paphitou, N.; Rolston, K. Catheter-related bacteremia caused by Agrobacterium radiobacter in a cancer patient: Case report and literature review. Infection 2003, 31, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Patel, W.; Aboud, M.; Alnafisah, H.; Razak, A. Rhizobium Radiobacter Sepsis in a Neonate: A Case Report and Literature Review. J. Neonatol. 2022, 36, 240–243. [Google Scholar] [CrossRef]
- Roy, S.; Basuli, D.; Rahman, E.U.; Adapa, S.; Reddy, S.N. Rhizobium radiobacter-Induced Peritonitis: A Case Report and Literature Analysis. J. Med. Cases 2022, 13, 471–474. [Google Scholar] [CrossRef]
- Cartwright, K.; Evans, B. Salmon as a food-poisoning vehicle-two successive Salmonella outbreaks. Epidemiol. Infect. 1988, 101, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, H.; Gericke, B.; Klepp, M.; Fellmann, G.; Rabsch, W. Ausbruch von Salmonella paratyphi B-infektionen im zusammenhang mit dem genuss von räucherfisch. Das Gesundheitswesen 1994, 56, 211–214. [Google Scholar]
- Allton, D.R.; Forgione, M.A., Jr.; Gros, S.P. Cholera-like presentation in Vibrio fluvialis enteritis. South. Med. J. 2006, 99, 765–772. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Bhattacharjee, S.; Bal, B.; Pal, R.; Niyogi, S.K.; Sarkar, K. Is Vibrio fluvialis emerging as a pathogen with epidemic potential in coastal region of eastern India following cyclone Aila? J. Health Popul. Nutr. 2010, 28, 311–317. [Google Scholar]
- Boĭko, A.V. The etiological structure of acute intestinal infections caused by noncholera Vibrios in the Volga delta. Zh. Mikrobiol. Epidemiol. Immunobiol. 2000, 1, 15–17. [Google Scholar]
- Cabrera Rodríguez, L.E.; Palma Monroy, S.; Morier, L.; Ramírez Álvarez, M.M.; Fernández Abreu, A.; Castro Escarpulli, G.; Longa Briceño, A.; Bravo Fariñas, L. Severe otitis due to Vibrio fluvialis in a patient with AIDS: First report in the world. Rev. Cuba. Med. Trop. 2005, 57, 154–155. [Google Scholar]
- Chen, P.-J.; Tseng, C.-C.; Chan, H.-T.; Chao, C.-M. Acute Otitis due to Vibrio fluvialis after Swimming. Case Rep. Emerg. Med. 2012, 2012, 838904. [Google Scholar] [PubMed] [Green Version]
- Chowdhury, G.; Pazhani, G.P.; Dutta, D.; Guin, S.; Dutta, S.; Ghosh, S.; Izumiya, H.; Asakura, M.; Yamasaki, S.; Takeda, Y. Vibrio fluvialis in patients with diarrhea, Kolkata, India. Emerging Infect. Dis. 2012, 18, 1868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, K.-C.; Wen-Wei Hsu, R. Vibrio fluvialis Hemorrhagic Cellulitis and Cerebritis. Clin. Infect. Dis. 2005, 40, 75–77. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.-H.; Cheng, C.C.; Huang, T.; Hsu, R. Necrotizing fasciitis and primary sepsis caused by Vibrio fluvialis: A case report. Inj. Extra 2005, 36, 546–549. [Google Scholar] [CrossRef] [Green Version]
- Huq, M.; Alam, A.; Brenner, D.J.; Morris, G.K. Isolation of Vibrio-like group, EF-6, from patients with diarrhea. J. Clin. Microbiol. 1980, 11, 621–624. [Google Scholar] [CrossRef] [Green Version]
- Klontz, K.C.; Desenclos, J.C.A. Clinical and epidemiological features of sporadic infections with Vibrio fluvialis in Florida, USA. J. Diarrhoeal Dis. Res. 1990, 8, 24–26. [Google Scholar]
- Lai, C.-H.; Hwang, C.-K.; Chin, C.; Lin, H.-H.; Wong, W.-W.; Liu, C.-Y. Severe watery diarrhoea and bacteraemia caused by Vibrio fluvialis. J. Infect. 2006, 52, e95–e98. [Google Scholar] [CrossRef]
- Lee, J.Y.; Park, J.S.; Oh, S.H.; Kim, H.R.; Lee, J.N.; Shin, J.H. Acute infectious peritonitis caused by Vibrio fluvialis. Diagn. Microbiol. Infect. Dis. 2008, 62, 216–218. [Google Scholar] [CrossRef]
- Liu, W.L.; Chiu, Y.H.; Chao, C.M.; Hou, C.C.; Lai, C.C. Biliary tract infection caused by Vibrio fluvialis in an immunocompromised patient. Infection 2011, 39, 495–496. [Google Scholar] [CrossRef]
- Usta, J.; Araj, G.; Taleb, R. An unusual urinary tract infection caused by Vibrio fluvialis. J. Infect. Dev. Ctries. 2018, 12, 673–675. [Google Scholar] [CrossRef] [PubMed]
- Chao, C.-M.; Tsai, T.-C.; Lai, C.-C. Secondary peritonitis due to Rhizobium radiobacter. Surg. Infect. 2014, 15, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Mantadakis, E.; Kondi, A.; Christidou, A.; Kalmanti, M. Agrobacterium radiobacter bacteremia in a child with acute lymphoblastic leukemia. World J. Clin. Pediatr. 2010, 6, 181–184. [Google Scholar] [CrossRef]
- Edmond, M.B.; Riddler, S.A.; Baxter, C.M.; Wicklund, B.M.; Pasculle, A.W. Agrobacterium radiobacter: A recently recognized opportunistic pathogen. Clin. Infect. Dis. 1993, 16, 388–391. [Google Scholar] [CrossRef]
- Rothe, H.; Rothenpieler, U. Peritonitis due to multiresistant Rhizobium radiobacter. Perit. Dial. Int. 2007, 27, 214–215. [Google Scholar] [CrossRef] [PubMed]
- Al-Sunaiher, A.E.; Ibrahim, A.S.; Al-Salamah, A.A. Association of Vibrio species with disease incidence in some cultured fishes in the Kingdom of Saudi Arabia. World Appl. Sci. J. 2010, 8, 653–660. [Google Scholar]
- Adebayo-Tayo, B.; Okonko, I.; Esen, C.; Odu, N.; Onoh, C.; Igwiloh, N. Incidence of potentially pathogenic Vibrio spp. in fresh seafood from Itu Creek in Uyo, Akwa Ibom State, Nigeria. World Appl. Sci. J. 2011, 15, 985–991. [Google Scholar]
- Ramamurthy, T.; Chowdhury, G.; Pazhani, G.; Shinoda, S. Vibrio fluvialis: An emerging human pathogen. Front. Microbiol. 2014, 5, 91. [Google Scholar] [CrossRef] [Green Version]
- Biswas, J.; Jainab, T.; Hossain, M.; Yasmin, M.; Nessa, J.; Ahsan, C.R. Characterization of ctx gene Negative Vibrio fluvialis Organisms Isolated from the Environment. Bangladesh J. Microbiol. 2019, 36, 91–97. [Google Scholar] [CrossRef]
- Brenner, D.; Hickman-Brenner, F.; Lee, J.; Steigerwalt, A.; Fanning, G.; Hollis, D.; Farmer, J.; Weaver, R.; Joseph, S.; Seidler, R. Vibrio furnissii a new species isolated from human feces and the environment. J. Clin. Microbiol. 1983, 18, 816–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Igbinosa, E.O.; Obi, L.C.; Tom, M.; Okoh, A.I. Detection of potential risk of wastewater effluents for transmission of antibiotic resistance from Vibrio species as a reservoir in a peri-urban community in South Africa. Int. J. Environ. Health Res. 2011, 21, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Kesy, K.; Oberbeckmann, S.; Kreikemeyer, B.; Labrenz, M. Spatial environmental heterogeneity determines young biofilm assemblages on microplastics in Baltic Sea mesocosms. Front. Microbiol. 2019, 10, 1665. [Google Scholar] [CrossRef] [Green Version]
- Abdellrazeq, G.S.; Khaliel, S.A. Molecular characterization and antimicrobial susceptibility of vibrios isolated from healthy and diseased aquacultured freshwater fishes. Glob. Vet. 2014, 13, 397–407. [Google Scholar]
- Matter, A.F.; El Asely, A.M.; Shaheen, A.A.; El-Gawad, E.; El-Abd, H.; Abbass, A.A. Phenotypic and molecular characterization of bacterial pathogens isolated from diseased freshwater fishes. Int. J. Fish. Aquat. Stud 2018, 6, 34–41. [Google Scholar]
- Li, A.; Yang, W.; Hu, J.; Wang, W.; Cai, T.; Wang, J. Optimization by orthogonal array design and humoral immunity of the bivalent vaccine against Aeromonas hydrophila and Vibrio fluvialis infection in crucian carp (Carassius auratus L.). Aquac. Res. 2006, 37, 813–820. [Google Scholar] [CrossRef]
- Mishra, P.; Samanta, M.; Mohanty, S.; Maiti, N. Characterization of Vibrio species isolated from freshwater fishes by ribotyping. Indian J. Microbiol. 2010, 50, 101–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pushpita, M.; Samanta, M.; Maiti, N.K.; Sarangi, N. Characterization of extracellular cytotoxic protein of Vibrio spp. isolated from freshwater carps and prawns. Indian J. Fish. 2009, 56, 307–311. [Google Scholar]
- Al-Hussainy, K.S.; Al-Tememy, M.S.; Al-Gboory, A.O. Effect of some environmental condition Vibrio cholerae and Vibrio fluvialis bacteria isolating from fish proffered in local markets of Basrah and Nasiriyah city. Diyala Ag. Sci. J 2017, 9, 1–15. [Google Scholar]
- Hickman-Brenner, F.; Brenner, D.; Steigerwalt, A.; Schreiber, M.; Holmberg, S.; Baldy, L.; Lewis, C.; Pickens, N.; Farmer, J. Vibrio fluvialis and Vibrio furnissii isolated from a stool sample of one patient. J. Clin. Microbiol. 1984, 20, 125–127. [Google Scholar] [CrossRef] [Green Version]
- Oluyinka, O.; Airede, K.; Olateju, K.; Stephen, O.; Izevbigie, N.; Iloh, K.; Igbokwe, O.; Osuorah, C.D.I. Incidence, bacteriological profile and antibiotic sensitivity pattern of neonatal sepsis in a tertiary health facility in Abuja, North-central Nigeria. Prepint, Research Square 2020. [Google Scholar] [CrossRef]
- Abdollahi, M.; Beyzaei, H.; Hashemi, S.; Ghasemi, B. Comparative antibacterial activity of synthetic N,S-Heterocyclic derivatives, MgO nanoparticles, and glycine on zoonotic Vibrio fluvialis. J. Rep. Pharm. Sci. 2019, 8, 155–160. [Google Scholar]
- Lowy, F. Staphylococcus aureus infections. N. Engl. J. Med. 1998, 339, 520–532. [Google Scholar] [CrossRef]
- Rasigade, J.-P.; Vandenesch, F. Staphylococcus aureus: A pathogen with still unresolved issues. Infect. Genet. Evol. 2014, 21, 510–514. [Google Scholar] [CrossRef]
- Sichewo, P.R.; Gono, R.K.; Sizanobuhle, J. Isolation and identification of pathogenic bacteria in edible fish: A case study of Fletcher Dam in Gweru, Zimbabwe. Int. J. Sci. Res. 2013, 2, 269–273. [Google Scholar]
- Nguyen, D.T.A.; Kanki, M.; Nguyen, P.D.; Le, H.T.; Ngo, P.T.; Tran, D.N.M.; Le, N.H.; Dang, C.V.; Kawai, T.; Kawahara, R.; et al. Prevalence, antibiotic resistance, and extended-spectrum and AmpC β-lactamase productivity of Salmonella isolates from raw meat and seafood samples in Ho Chi Minh City, Vietnam. Int. J. Food Microbiol. 2016, 236, 115–122. [Google Scholar] [CrossRef]
- Hennekinne, J.-A. Chapter 7-Staphylococcus aureus as a Leading Cause of Foodborne Outbreaks Worldwide. In Staphylococcus aureus; Fetsch, A., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 129–146. [Google Scholar] [CrossRef]
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [Green Version]
- Fowler Jr, V.G.; Boucher, H.W.; Corey, G.R.; Abrutyn, E.; Karchmer, A.W.; Rupp, M.E.; Levine, D.P.; Chambers, H.F.; Tally, F.P.; Vigliani, G.A. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N. Engl. J. Med. 2006, 355, 653–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belthur, M.V.; Birchansky, S.B.; Verdugo, A.A.; Mason Jr, E.O.; Hulten, K.G.; Kaplan, S.L.; Smith, E.B.; Phillips, W.A.; Weinberg, J. Pathologic fractures in children with acute Staphylococcus aureus osteomyelitis. J. Bone Jt. Surg. 2012, 94, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.-R.; Kim, T.; Kim, M.-C.; Sup Sung, H.; Kim, M.-N.; Kim, M.J.; Kim, S.H.; Lee, S.-O.; Choi, S.-H.; Woo, J.H. Sternoclavicular septic arthritis caused by Staphylococcus aureus: Excellent results from medical treatment and limited surgery. Infect. Dis. 2019, 51, 694–700. [Google Scholar] [CrossRef]
- Ferry, T.; Leboucher, G.; Fevre, C.; Herry, Y.; Conrad, A.; Josse, J.; Batailler, C.; Chidiac, C.; Medina, M.; Lustig, S. Salvage debridement, antibiotics and implant retention (“DAIR”) with local injection of a selected cocktail of bacteriophages: Is it an option for an elderly patient with relapsing Staphylococcus aureus prosthetic-joint infection? Open Forum Infect. Dis. 2018, 5, ofy269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumon, Z.E.; Berenson, C.S.; Sellick, J.A.; Bulman, Z.P.; Tsuji, B.T.; Mergenhagen, K.A. Successful cure of daptomycin-non-susceptible, vancomycin-intermediate Staphylococcus aureus prosthetic aortic valve endocarditis directed by synergistic in vitro time-kill study. Infect. Dis. 2019, 51, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Murray, R. Staphylococcus aureus infective endocarditis: Diagnosis and management guidelines. Intern. Med. J. 2005, 35, S25–S44. [Google Scholar] [CrossRef] [PubMed]
- Schmid, D.; Gschiel, E.; Mann, M.; Huhulescu, S.; Ruppitsch, W.; Bohm, G.; Pichler, J.; Lederer, I.; Höger, G.; Heuberger, S. Outbreak of acute gastroenteritis in an Austrian boarding school, September 2006. Euro. Surveil. 2007, 12, 7–8. [Google Scholar] [CrossRef] [Green Version]
- Sung, K.; Kim, J.Y.; Lee, Y.J.; Hwang, E.H.; Park, J.H. High incidence of Staphylococcus aureus and norovirus gastroenteritis in infancy: A single-center, 1-year experience. Pediatr. Gastroenterol. Hepatol. Nutr. 2014, 17, 140. [Google Scholar] [CrossRef] [Green Version]
- Gales, A.C.; Sader, H.S.; Andrade, S.S.; Lutz, L.; Machado, A.; Barth, A.L. Emergence of linezolid-resistant Staphylococcus aureus during treatment of pulmonary infection in a patient with cystic fibrosis. Int. J. Antimicrob. Agents 2006, 27, 300–302. [Google Scholar] [CrossRef]
- Yari, Z.; Mahdavi, S.; Khayati, S.; Ghorbani, R.; Isazadeh, A. Evaluation of antibiotic resistance patterns in Staphylococcus aureus isolates collected from urinary tract infections in women referred to Shahid Beheshti educational and therapeutic center in Maragheh city, year 2016. Med. J. Tabriz Univ. Med. Sci. Health Serv. 2019, 41, 106–112. [Google Scholar] [CrossRef]
- Diamantopoulos, P.T.; Psichogiou, M.; Pantazatou, A.; Zervakis, K.; Rougala, N.; Giannakopoulou, N.; Daikos, G.; Viniou, N.-A. Staphylococcus aureus meningitis in a patient with mantle cell lymphoma under treatment with ibrutinib. Ann. Hematol. 2017, 96, 1049. [Google Scholar] [CrossRef] [PubMed]
- Shahini Shams-Abadi, M.; Halaji, M.; Hoseini-Alfatemi, S.; Gholipour, A.; Mojtahedi, A.; Sedigh Ebrahim-Saraie, H. Epidemiology of toxic shock syndrome toxin-1 harboring Staphylococcus aureus obtained from clinical samples in Iran: A systematic review and meta-analysis. Ann Ig 2018, 30, 391–400. [Google Scholar]
- Pigłowski, M. Pathogenic and Non-Pathogenic Microorganisms in the Rapid Alert System for Food and Feed. Int. J. Environ. Res. Public Health 2019, 16, 477. [Google Scholar] [CrossRef] [Green Version]
- Wray, D.; Davies, R.H. Salmonella infections in cattle. In Salmonella in Domestic Animals; Barrow, P., Methner, U., Eds.; CABI: Oxfordshire, UK, 2000; pp. 169–190. [Google Scholar]
- Gopinath, S.; Carden, S.; Monack, D. Shedding light on Salmonella carriers. Trends Microbiol. 2012, 20, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Loewenstein, M.S. An outbreak of salmonellosis propagated by person-to-person transmission on an Indian reservation. Am. J. Epidemiol. 1975, 102, 257–262. [Google Scholar] [CrossRef]
- Trung, N.; Carrique-Mas, J.; Nghia, N.; Tu, L.; Mai, H.; Tuyen, H.; Campbell, J.; Nhung, N.; Nhung, H.; Minh, P. Non-Typhoidal Salmonella Colonization in Chickens and Humans in the Mekong Delta of Vietnam. Zoonoses Public Health 2017, 64, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Thomson, R.M.; Henderson, H.J.; Smith-Palmer, A. An outbreak of Salmonella Ssaintpaul in a Scottish childcare facility: The influence of parental under-reporting. BMC Infect. Dis. 2019, 19, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyatt, L.E.; Nickelson, R.; Vanderzant, C. Occurrence and control of Salmonella in freshwater catfish. J. Food Sci. 1979, 44, 1067–1073. [Google Scholar] [CrossRef]
- Noor Uddin, G.M.; Larsen, M.H.; Barco, L.; Minh Phu, T.; Dalsgaard, A. Clonal occurrence of Salmonella Weltevreden in cultured shrimp in the Mekong Delta, Vietnam. PLoS ONE 2015, 10, e0134252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiko, A.; Tasisa, K.; Agga, G.E. Helminthiasis and gram negative enteric bacteria in freshwater fish from selected lakes of Haramaya District, Ethiopia. Fish. Aquac. J. 2018, 9, 1–7. [Google Scholar] [CrossRef]
- Andrews, W.; Wilson, C.; Poelma, P.; Romero, A. Bacteriological survey of the channel catfish (Ictalurus punctatus) at the retail level. J. Food Sci. 1977, 42, 359–363. [Google Scholar] [CrossRef]
- Andrews, W.H.; Bruce, V.R.; June, G.; Satchell, F.; Sherrod, P. Salmonella, Chapter 5. In U.S. Food and Drug Administration, Bacteriological Analytical Manual; USA, FDA, AOAC International: Gaithersburg, MD, USA, 1992; p. 1. [Google Scholar]
- D′Aoust, J.-Y.; Sewell, A.; Daley, E.; Greco, P. Antibiotic resistance of agricultural and foodborne Salmonella isolates in Canada: 1986–1989. J. Food Prot. 1992, 55, 428–434. [Google Scholar] [CrossRef]
- Khan, A.A.; Cheng, C.-M.; Van, K.T.; West, C.S.; Nawaz, M.; Khan, S. Characterization of class 1 integron resistance gene cassettes in Salmonella enterica serovars Oslo and Bareily from imported seafood. J. Antimicrob. Chemother. 2006, 58, 1308–1310. [Google Scholar] [CrossRef] [Green Version]
- Pal, A.; Marshall, D.L. Comparison of culture media for enrichment and isolation of Salmonella spp. from frozen Channel catfish and Vietnamese basa fillets. Food Microbiol. 2009, 26, 317–319. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Datta, A.R.; Ayers, S.; Friedman, S.; Walker, R.D.; White, D.G. Antimicrobial-resistant Salmonella serovars isolated from imported foods. Int. J. Food Microbiol. 2003, 84, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Amagliani, G.; Brandi, G.; Schiavano, G.F. Incidence and role of Salmonella in seafood safety. Food Res. Int. 2012, 45, 780–788. [Google Scholar] [CrossRef]
- Francis, S.; Rowland, J.; Rattenbury, K.; Powell, D.; Rogers, W.; Ward, L.; Palmer, S. An outbreak of paratyphoid fever in the UK associated with a fish-and-chip shop. Epidemiol. Infect. 1989, 103, 445–448. [Google Scholar] [CrossRef]
- Saharan, V.V.; Verma, P.; Singh, A.P. High prevalence of antimicrobial resistance in Escherichia coli, Salmonella spp. and Staphylococcus aureus isolated from fish samples in India. Aquac. Res. 2020, 51, 1200–1210. [Google Scholar] [CrossRef]
- VT Nair, D.; Venkitanarayanan, K.; Kollanoor Johny, A. Antibiotic-resistant Salmonella in the food supply and the potential role of antibiotic alternatives for control. Foods 2018, 7, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Wu, Q.; Zhang, J.; Huang, J.; Chen, L.; Liu, S.; Yu, S.; Cai, S. Prevalence, enumeration, and characterization of Salmonella isolated from aquatic food products from retail markets in China. Food Control 2015, 57, 308–313. [Google Scholar] [CrossRef]
Species A (Country 22) Packaging Observations | Sample ID | Species B (Country 20) Packaging Observations | Sample ID |
---|---|---|---|
BAG 1 Gills and lower jaw removed in all fish. Intestine still in most. Natural diet with cricket legs. Mud in intestine/gills. Total of 500 g | S334-Bag water S335-S345 | BAG 1 Clean and individual fillets well glazed. Total of 1 kg | S878-Bag water S879-S885 |
BAG 2 Natural diet in all. Intestine in most. No brains in any. Bag water clear. Quite well cleaned. Total of 500 g | S431-S441 S446-Bag water | BAG 2 Clean and individual fillets well glazed. Total of 1 kg | S894-Bag water S895-S900 |
BAG 3 Moderately clean. No brains in any. Total of 500 g | S464-S474 S476- Bag water | BAG 3 Clean and individual fillets well glazed. Total of 1 kg | S908-Bag water S909-S915 |
BAG 4 Fish all very dirty. Gills full of mud and debris. Intestine/gills all in. Remnants of brains. Debris in bag water, bits of crustacean shells and vegetation. Natural diet. Total of 500 g | S649-Bag water S650-S660 | BAG 4 Clean and individual fillets well glazed. Total of 1 kg | S1007-Bag water S1008-S1015 |
BAG 5 Natural diet. Vegetation. Filthy intestine and gills in all. Mud in gills and full of debris. Bits of brain left in. Total of 500 g | S681-Bag water S686-S691 | BAG 5 Clean and individual fillets well glazed. Total of 1 kg | S1023-Bag-water S1046-S1052 |
BAG 6 Very well cleaned and gutted. Most of brains gone. No natural diet. Total of 500 g | S699-Bag water S700-S709 | BAG 6 Clean and individual fillets well glazed. Total of 1 kg | S1031-Bag water S1032-S1038 |
Fish Number (n =) | Bacterial Genera or Species | Number of Contaminated Fish | CFU Mean Contaminated Fish cfu/g | Recovery Rate (%) |
---|---|---|---|---|
Sp. A from Country 22 (n = 66) from six separate bags | Micrococcus sp. | 32 | 50.0 | 48.5 |
Staphylococcus aureus | 1 | 27.0 * | 1.5 | |
Comamonas testosteroni | 27 | 61.7 | 40.9 | |
Pseudomonas sp. (including P. mendocina and P. pseudoalcaligenes) | 34 | 104.0 | 51.5 | |
Salmonella sp. | 1 | 32.0 * | 1.5 | |
Rhizobium radiobacter | 3 | 7.6 | 4.5 | |
Sp. B from Country 20 (n = 47) from six separate bags | Salmonella sp. | 6 | 41.6 | 12.7 |
Micrococcus sp. | 3 | 4.6 | 6.4 | |
Staphylococcus aureus | 1 | 1.0 * | 2.1 | |
Vibrio fluvialis | 10 | 13.9 | 21.3 |
Growth Media | Bacterium | Colony Growth on Media | Gram Stain | Biochemical Tests | Other Confirmatory Tests | Diagnostic Anti-Microbial Resistance |
---|---|---|---|---|---|---|
Species A | ||||||
CFC | Pseudomonas sp. | Rapid growing mucoid, slightly pigmented, pale metallic green, round, convex | Gram negative rods with flagellar | Catalase + Oxidase + Coagulase − | Cefovecin Cefoxitin Vancomycin | |
Pseudomonas mendocina | Rapid growing mucoid, slightly pigmented, pale metallic green, round, convex | Gram negative rods with flagellar | Confirmed RNF Plus n= 6/15 | Glucose oxidation | ||
Pseudomonas pseudoalcaligenes | Rapid growing mucoid, slightly pigmented, pale metallic green, round, convex | Gram negative rods with flagellar | Confirmed RNF Plus n= 9/15 | Glucose alkalisation | ||
BP | Micrococcus sp. | Medium sized, shiny black, convex | Gram-positive cocci, paired/and or groups of four | Coagulase slide/tube – Catalase + Oxidase + | ||
Staphylococcus aureus | Small, black, dry to mucoid, slightly raised but flat, distinct yellow halo surrounding colonies | Gram-positive cocci, clustered/bunched | Coagulase slide/tube + Catalase + Oxidase − | |||
TSC | Comamonas testosteroni | Medium sized, mucoid, convex, dark cream to light brown in the centre of colony | Gram negative, small rod shaped | Confirmed RNF Plus n = 12/12 | Glucose alkalisation Lactose-fermentation − Catalase + Oxidase + | |
MH | Rhizobium radiobacter | Pale yellowish, slightly dry, round to slightly irregular colonies | Gram negative, rod shaped | Confirmed RNF Plus n = 3/3 | Lactose-fermentation + Catalase + Oxidase + | Vancomycin |
SAL | Salmonella sp. | Very small, convex, slightly mucoid colonies | Gram stain negative, rod shaped | Confirmed Salmonella Latex Test n = 1/1 | Catalase + Oxidase + | |
Species B | ||||||
SAL | Vibrio fluvialis | Large purple flat dense mucoid on SAL. MH characteristic growth | Gram stain negative, small rod-shaped some curved | Confirmed RNF Plus n = 10/10 | Catalase + Oxidase + DNAse activity + Lysine decarboxylase − | Colistin Cephalothin |
SAL | Salmonella sp. | Very small, convex, slightly mucoid colonies | Gram stain negative, rod shaped | Confirmed Salmonella Latex Test n = 6/6 | Catalase + Oxidase + | |
BP | Micrococcus sp. | Medium sized, shiny black, convex | Gram-positive cocci, paired/and or groups of four | Coagulase slide/tube − Catalase + Oxidase + | ||
Staphylococcus aureus | Small, black, dry to mucoid, slightly raised but flat, distinct yellow halo surrounding colonies | Gram-positive cocci, clustered/bunched | Coagulase slide/tube + Catalase + Oxidase − |
Bacteria | CVN | FOX | CIP | FOS | VAN | CT/KF | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | S | I | R | S | I | R | S | I | R | S | I | R | S | I | R | S | I | R |
C. testosteroni | 100 | - | - | 100 | - | - | 100 | - | - | 100 | - | - | 100 | - | - | - | - | - |
Micrococcus sp. * | - | - | 100 | 100 | - | - | 100 | - | - | 100 | - | - | - | 2.8 | 97.2 | - | - | - |
Micrococcus sp. # | - | - | 100 | 100 | - | - | 100 | - | - | 100 | - | - | - | - | 100 | - | - | - |
Pseudomonas sp. | - | - | 100 | - | - | 100 | 94.2 | 5.8 | - | 100 | - | - | - | - | 100 | - | - | - |
P. mendocina | - | - | 100 | - | - | 100 | 100 | - | - | 100 | - | - | - | - | 100 | - | - | - |
P. pseudoalcaligenes | - | - | 100 | - | - | 100 | 88.9 | 11.1 | - | 100 | - | - | - | - | 100 | - | - | - |
R. radiobacter | - | - | 100 | - | - | 100 | 100 | - | - | - | - | 100 | - | - | 100 | - | - | - |
Salmonella sp. * | - | - | 100 | - | - | 100 | - | - | 100 | - | - | 100 | - | - | 100 | - | - | - |
Salmonella sp. # | - | 16.6 | 83.3 | - | - | 100 | 50 | 50 | - | - | - | 100 | - | - | 100 | - | - | - |
S. aureus * | - | - | 100 | 100 | - | - | 100 | - | - | 100 | - | - | - | - | 100 | - | - | - |
S. aureus # | - | - | 100 | - | - | 100 | - | - | 100 | - | - | 100 | - | - | 100 | - | - | - |
Vibrio fluvialis | 70 | 20 | 10 | - | - | 100 | 90 | 10 | - | 80 | 10 | 10 | - | - | 100 | - | - | 100 |
Species | Predictor Variable | Term | Occurrence |
---|---|---|---|
S. aureus | Mud | Mud absent | 2.74% (73) |
Mud present | 0% (28) | ||
Nat Diet | Components of natural diet present | 3.23% (62) | |
Components of natural diet absent | 0% (39) | ||
Veg | Vegetation recovered | 2.22% (90) | |
Vegetation absent | 0% (11) | ||
Salmonella sp. | Mud | Mud absent | 9.59% (73) |
Mud present | 0% (28) | ||
Nat Diet | Components of natural diet present | 11.29% (62) | |
Components of natural diet absent | 0% (39) | ||
Veg | Vegetation recovered | 7.78% (90) | |
Vegetation absent | 0% (11) | ||
V. fluvialis | Mud | Mud absent | 9.59% (73) |
Mud present | 0% (28) | ||
Nat Diet | Components of natural diet present | 9.59% (73) | |
Components of natural diet absent | 0% (28) | ||
Veg | Vegetation recovered | 11.29% (62) | |
Vegetation absent | 0% (39) | ||
Fish | Pangasiidae | 7.78% (90) | |
Channidae | 0% (11) | ||
R. radiobacter | Fish | Pangasiidae | 0% (41) |
Channidae | 5.08% (59) | ||
Pseudomonas spp. | Fish | Pangasiidae | 0% (41) |
Channidae | 53.33% (60) |
Bacteria Species | Predictor | Levels | Occurrence (N) | Odds Ratio (95% CI) | p Value |
---|---|---|---|---|---|
Pseudomonas spp. | Mud | Mud absent | 19.18% (73) | <0.001 | |
Mud present | 64.29% (28) | 7.586 (2.954, 20.726) | |||
NatDiet | Nat diet (0) | 14.52% (62) | <0.001 | ||
Nat diet (1) | 58.97% (39) | 8.465 (3.374, 22.939) | |||
Veg | Veg (0) | 25.56% (90) | <0.001 | ||
Veg (1) | 81.82% (11) | 13.109 (3.104, 90.265) | |||
Salmonella sp. | Fish | Sp. B | 14.63% (41) | 0.010 | |
Sp. A | 1.67% (60) | 0.099 (0.005, 0.611) | |||
Micrococcus sp. | Fish | Sp. B | 7.32% (41) | <0.001 | |
Sp. A | 48.33% (60) | 11.849 (3.758, 52.803) |
Bacteria Identified | Source of Infection | Patient Details | Clinical Notes | Region Infection Was Identified |
---|---|---|---|---|
Comamonas testosteroni | Central venous catheter | 54-year-old female | Bacteraemia | Washington, USA [155] |
Intrauterine device | 29-year-old female | Peritonitis | Turkey [189] | |
Unknown | 50-year-old male | Purulent meningitis | Turkey [190] | |
Contamination of the distilled water used to decontaminate aspiration catheter possibility | 10-year-old male | Pneumonia leading to death | Turkey [158] | |
Community acquired possibly from small skin wounds | 49-year-old male | Endocarditis | USA [68] | |
Unknown but possible hospital acquired | 19-year-old female and 10-year-old male | Bacteraemia | Iran [156] | |
Community acquired in situ colostomy | 65-year-old female | Gastroenteritis | India [146] | |
In dwelling central venous catheter | 75-year-old female | Bacteraemia | France [191] | |
Indwelling catheter | 64-year-old female | Bacteraemia leading to death | Israel [192] | |
Community acquired possibly right shoulder rotator cuff tendinitis. | 80-year-old female | Bacteraemia | USA [193] | |
Incidental dislocation of an intrauterine device | 4-year-old female | Peritonitis | Italy [194] | |
Community acquired | 1-year old female | Sepsis following gastroenteritis | Oman [195] | |
Community acquired from handling diseased tropical fish | 89-year-old male | Bacteraemia | Unknown [152] | |
Community acquired | 14-year-old male and one child | Appendicitis | Turkey [196] | |
Contaminated food and water speculated | 46-year-old female | Bacteraemia | India [147] | |
Community acquired from leg injury from a fish fin | 54-year-old male | Leg cellulitis and bacteraemia | Taiwan [153] | |
Community acquired | 73-year-old male | Intra-abdominal infection | Taiwan [153] | |
Hospital acquired | 68-year-old male | Bacteraemia leading to death | Turkey [197] | |
Micrococcusspecies | Community transmission | 26-year-old female | Micrococcal pneumonia leading to death | Netherlands [136] |
Community transmission via Broviac catheter | 13-year-old female | Death | N/S [137] | |
Community acquired through eye injury | 30-year-old | Micrococcus endophthalmitis | USA [69] | |
Community transmission | 1-year old male | Micrococcal meningitis with neurological sequalae | India [138] | |
Community acquired from peritoneal dialysis catheters | 6 patients | N/S | United Kingdom [139] | |
Unknown but possible introduced during previous surgery | 74-year-old female | Aortic valve endocarditis, recurring septicaemia | Greece [140] | |
Unknown | 2 patients | Septic arthritis | United Kingdom [198] | |
Community acquired | 8 patients | Pitted keratolysis of the foot | United Kingdom [199] | |
Community transmission | 22-year-old male | Micrococcal pneumonia leading to death | Spain [141] | |
Community transmission via tooth cavity | 37-year-old female | Intracranial suppuration | Malaysia [142] | |
Community transmission | 69-year-old male | Micrococcal pneumonia | Canada [200] | |
Via catheter a possibility | 16-year-old female | Bacteraemia | Germany [201] | |
Pseudomonas mendocina | Community acquired via thorn pricks of hands | 63-year-old male | Infective endocarditis | Argentina [70] |
Community acquired suspected via trivial wound | 65-year-old male | Lumbar spondylodiscitis | Taiwan [172] | |
Community acquired via foot wound | 34-year-old male | Septic arthritis | Singapore [173] | |
Suspected related to the open wound | 64-year-old male | Bacteraemia | USA [174] | |
Likely community acquired via a central venous catheter | 72-year-old male | Bacteraemia | New Orleans USA [202] | |
Unknown | 64-year-old male | Bacteraemia | United Kingdom [203] | |
Community acquired | 86-year-old female | Atypical fracture of the femur. | Unknown [204] | |
Community acquired | 55-year-old male | Meningitis | Taiwan [205] | |
Unknown | 66-year-old female | Meningitis | Taiwan [205] | |
Hospital acquired | 79-year-old male | Meningitis | Taiwan [205] | |
Community acquired | 79-year-old female | Meningitis | Taiwan [205] | |
N/S | 28-year-old woman | Infective endocarditis | Denmark [206] | |
Unknown | 63-year-old man | Peritonitis | Portugal [207] | |
Community acquired | 36-year-old male | Native mitral valve endocarditis | Turkey [208] | |
Community acquired from drinking water of pet bird | 31-year-old male | Sepsis | Israel [175] | |
Leg wounds likely source | 57-year-old male | Native mitral valve endocarditis | USA [71] | |
Unknown | 79-year-old female | Endocarditis | France [209] | |
Pseudomonas pseudoalcaligenes | Dialysis portal | 29-year-old female | Peritonitis | New York, USA [210] |
Unknown | 17-year-old pregnant female | Stillborn foetus | USA [211] | |
Rhizobium radiobacter | Community transmission via central venous catheter | 6-year-old female and 10-year-old male | Bacteraemia | Texas, USA [212] |
Community acquired after leaf contacted eye | 42-year-old female | Corneal abscess | Romania [182] | |
Hospital acquired via central venous catheter | 34 weeks premature baby | Bacteraemia | India [213] | |
Hospital acquired likely via implicated central venous catheter | 2-year-old male | Bacteraemia | Macedonia [214] | |
Normal environment | 64-year-old male | Pulmonary abscess | Valencia, Spain [111] | |
Hospital acquired from unknown source | 19-year-old male | Bacteraemia | Greece [184] | |
Via central venous catheter | 42-year-old female | Bacteraemia | Belgium [215] | |
Community acquired | 80-year-old male | Bacteraemia | Belgium [215] | |
Community acquired via transcutaneous catheter | 3.5-year-old male | Bacteraemia | Texas, USA [185] | |
Community acquired via contact lens whilst bathing and swimming | 26-year-old female | Keratitis | China [216] | |
Hospital acquired | 2-year-old, 37-year-old females and 21, 46, 53, 59, 79-year-old males | Catheter-related bacteraemia | Taiwan [186] | |
Community acquired | 61-year-old female | Pneumonia | Taiwan [186] | |
Central venous catheter community and hospital acquired | 73-year-old female and 53-year-old male | Bacteraemia | France [217] | |
Community acquired plant and soil via peritoneal dialysis | 41-year-old male | Peritonitis x 2 leading to death | USA [72] | |
Via peritoneal dialysis catheter community acquired | 43-year-old male | Peritonitis | China [218] | |
Community acquired via a peritoneal dialysis catheter | 63-year-old male | Relapsing peritonitis | Spain [187] | |
Community acquired | 54-year-old male | Peritonitis | India [219] | |
Hospital acquired via ventilator humidifier water and water-chamber of ventilator | 6 hospitalised patients; 6 months to 11 years of age | Bacteraemia | Turkey [188] | |
Community acquired via central venous catheter | 64-year-old male | Bacteraemia | USA [220] | |
Hospital acquired | Healthy preterm neonate | Sepsis | Saudi Arabia [221] | |
Hospital acquired via peritoneal dialysis | 66-year-old male | Peritonitis | USA [222] | |
Community acquired from plant and soil | 42-year-old male | Peritonitis | Taiwan [73] | |
Community acquired from plant and soil | 87-year-old female | Septic shock | China [183] | |
Salmonellaspecies | Consumption of salmon | Multiple persons outbreak | Gastroenteritis | United Kingdom [223] |
Consumption of smoked halibut | Multiple persons outbreak | Febrile gastroenteritis | Germany [224] | |
Vibrio fluvialis | Shellfish | 72-year-old male | Cholera-like diarrhoea | Mississippi USA [225] |
Following tidal wave | 3,529 cases | Watery diarrhoea. | West Bengal eastern India [226] | |
Contaminated freshwater and fish from these waters | Regular outbreaks during summer months | Acute enteric infections | Volga Russia [227] | |
Swimming in contaminated water | Unknown | Waterborne otitis | Cuba [228] | |
Swimming in contaminated water | 40-year-old female | Waterborne otitis | Taiwan [229] | |
Contaminated water or food | 43 patients with diarrhoea | Diarrhoea | Kolkata, India [230] | |
Brackish water | 45-year-old male | Haemorrhagic cellulitis and cerebritis leading to amputation. Secondary to wound infection | Taiwan [231] | |
Collecting fish in infected water with abrasion on leg | 47-year-old male | Necrotising fasciitis and primary sepsis leading to amputation | Taiwan [232] | |
Unknown | Outbreak of 10,674 patients | Diarrhoea | Dacca and Matlab Bazaar, Bangladesh [233] | |
Cooked fish, raw oysters, shrimp | Twelve patients | Gastroenteritis, a wound in one patient, and a caecostomy drainage specimen in one patient | Florida, USA [234] | |
Unknown | 65-year-old male | Severe watery diarrhoea requiring parenteral hyperalimentation | Taiwan [235] | |
Unknown | 52-year-old female | Acute infectious peritonitis | Republic of Korea [236] | |
Trivial cutaneous lesion or through gastrointestinal translocation after ingestion of undercooked seafood. | 88-year-old female | Biliary tract infection | Taiwan [237] | |
Two cultures from home tap water coming from well revealed heavy growth | 52-year old female | Urinary tract infection | Beirut, Lebanon [238] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, M.; Shamsi, S.; Williams, T.; Hernandez-Jover, M. Bacteria of Zoonotic Interest Identified on Edible Freshwater Fish Imported to Australia. Foods 2023, 12, 1288. https://doi.org/10.3390/foods12061288
Williams M, Shamsi S, Williams T, Hernandez-Jover M. Bacteria of Zoonotic Interest Identified on Edible Freshwater Fish Imported to Australia. Foods. 2023; 12(6):1288. https://doi.org/10.3390/foods12061288
Chicago/Turabian StyleWilliams, Michelle, Shokoofeh Shamsi, Thomas Williams, and Marta Hernandez-Jover. 2023. "Bacteria of Zoonotic Interest Identified on Edible Freshwater Fish Imported to Australia" Foods 12, no. 6: 1288. https://doi.org/10.3390/foods12061288
APA StyleWilliams, M., Shamsi, S., Williams, T., & Hernandez-Jover, M. (2023). Bacteria of Zoonotic Interest Identified on Edible Freshwater Fish Imported to Australia. Foods, 12(6), 1288. https://doi.org/10.3390/foods12061288