The Multifaceted Relationship between the COVID-19 Pandemic and the Food System
Abstract
:1. Introduction
2. Materials and Methods
3. Persistence, Detection, and Disinfection Methods of SARS-CoV-2 in the Food System
3.1. Persistence on Food
3.2. Detection of SARS-CoV-2 in Foods
3.3. Persistence on Food Packaging and Work Surfaces
3.4. Disinfection Methods
4. Impact of COVID-19 on the Food System
4.1. Impact on the Home Environment
4.2. Impact on Commercial Activities
4.3. Impact on Food Access
4.4. Impact on Food Loss and Food Waste
5. Outbreaks of COVID-19 Linked to Food Production Systems
5.1. Favorable Factors
5.2. Prevention Measures
5.3. Consequences of Food Production Outbreaks
6. Guidelines and Recommendations for the Food Sector
7. Lessons Learned for the Food System and Research Needs for the Future
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Machhi, J.; Herskovitz, J.; Senan, A.M.; Dutta, D.; Nath, B.; Oleynikov, M.D.; Blomberg, W.R.; Meigs, D.D.; Hasan, M.; Patel, M.; et al. The Natural History, Pathobiology, and Clinical Manifestations of SARS-CoV-2 Infections. J. Neuroimmune Pharmacol. 2020, 15, 359–386. [Google Scholar] [CrossRef] [PubMed]
- Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544. [Google Scholar] [CrossRef] [PubMed]
- WHO. Surveillance Case Definitions for Human Infection with Novel Coronavirus (nCoV): Interim Guidance v1, January 2020 (Report); hdl:10665/330376; World Health Organization: Geneva, Switzerland, 2020; Available online: https://apps.who.int/iris/handle/10665/330376 (accessed on 1 February 2022).
- WHO. Statement on the Second Meeting of the International Health Regulations (2005) Emergency Committee Regarding the Outbreak of Novel Coronavirus (2019-nCoV); World Health Organization (WHO): Geneva, Switzerland, 2020. [Google Scholar]
- WHO. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19—11 March 2020; World Health Organization (WHO): Geneva, Switzerland, 2020. [Google Scholar]
- Han, S.; Roy, P.K.; Hossain, M.I.; Byun, K.H.; Choi, C.; Ha, S.D. COVID-19 pandemic crisis and food safety: Implications and inactivation strategies. Trends Food Sci. Technol. 2021, 109, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Yang, X.-L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Coronavirus Disease 2019 (COVID-19); Situation Report, 32., 2019 (February); WHO: Geneva, Switzerland, 2020; pp. 1–16. Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200221-sitrep-32-covid-19.pdf (accessed on 1 February 2022).
- Lam, T.T.Y.; Jia, N.; Zhang, Y.W.; Shum, M.H.H.; Jiang, J.F.; Zhu, H.C.; Tong, Y.G.; Shi, Y.X.; Ni, X.B.; Liao, Y.S.; et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 2020, 583, 282–285. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, Y.; Tariq, A.; Jiang, X.; Ahmed, Z.; Zhihao, Z.; Idrees, M.; Azizullah, A.; Adnan, M.; Bussmann, R.W. Food as medicine: A possible preventive measure against coronavirus disease (COVID-19). Phytother. Res. PTR 2020, 34, 3124–3136. [Google Scholar] [CrossRef]
- Garcia, S.N.; Osburn, B.I.; Jay-Russell, M.T. One Health for Food Safety, Food Security, and Sustainable Food Production. Front. Sustain. Food Syst. 2020, 4, 1–9. [Google Scholar] [CrossRef]
- Taylor, L.H.; Latham, S.M.; Woolhouse, M.E.J. Risk factors for human disease emergence. Philos. Trans. R. Soc. B Biol. Sci. 2001, 356, 983–989. [Google Scholar] [CrossRef]
- Duda-Chodak, A.; Lukasiewicz, M.; Zięć, G.; Florkiewicz, A.; Filipiak-Florkiewicz, A. COVID-19 pandemic and food: Present knowledge, risks, consumers fears and safety. Trends Food Sci. Technol. 2020, 105, 145–160. [Google Scholar] [CrossRef]
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef]
- Worobey, M.; Levy, J.I.; Serrano, L.M.; Crits-Christoph, A.; Pekar, J.E.; Goldstein, S.A.; Rasmussen, A.L.; Kraemer, M.U.G.; Newman, C.; Koopmans, M.P.G.; et al. The Huanan Seafood Wholesale Market in Wuhan was the early epicenter of the COVID-19 pandemic. Science 2022, 377, 951–959. [Google Scholar] [CrossRef] [PubMed]
- CDC (Centers for Disease Control and Prevention). Food Safety and Coronavirus Disease 2019 (COVID-19). 2020. Available online: https://www.cdc.gov/foodsafety/newsletter/food-safety-and-Coronavirus.html (accessed on 1 February 2022).
- EFSA (European Food Safety Authority). Coronavirus: No Evidence that Food Is a Source or Transmission Route. Available online: https://www.efsa.europa.eu/en/news/coronavirus-no-evidence-food-source-or-transmission-route (accessed on 1 February 2020).
- FDA (Food and Drug Administration). Food Safety and the Coronavirus Disease 2019 (COVID-19). Available online: https://www.fda.gov/food/food-safety-during-emergencies/food-safety-and-coronavirus-disease-2019-covid-19 (accessed on 1 February 2022).
- Lu, L.C.; Quintela, I.; Lin, C.-H.; Lin, T.C.; Lin, C.-H.; Wu, V.C.H.; Lin, C.-S. A review of epidemic investigation on cold-chain food-mediated SARS-CoV-2 transmission and food safety consideration during COVID-19 pandemic. J. Food Saf. 2021, 41, e12932. [Google Scholar] [CrossRef] [PubMed]
- WHO (World Health Organization). COVID-19 and Food Safety: Guidance for Food Businesses: Interim Guidance. 2020. Available online: https://www.who.int/publications/i/item/covid-19-and-food-safety-guidance-for-food-businesses (accessed on 1 February 2022).
- Nakat, Z.; Bou-Mitri, C. COVID-19 and the food industry: Readiness assessment. Food Control 2021, 121, 107661. [Google Scholar] [CrossRef] [PubMed]
- OSHA (Occupational Safety and Helath Administration). Guidance on Preparing Workplaces for COVID-19. 2020. Available online: https://www.osha.gov/Publications/OSHA3990.pdf (accessed on 2 February 2022).
- Bakalis, S.; Valdramidis, V.P.; Argyropoulos, D.; Ahrne, L.; Chen, J.; Cullen, P.J.; Cummins, E.; Datta, A.K.; Emmanouilidis, C.; Foster, T.; et al. Perspectives from CO+RE: How COVID-19 changed our food systems and food security paradigms. Curr. Res. Food Sci. 2020, 3, 166–172. [Google Scholar] [CrossRef]
- Olaimat, A.N.; Shahbaz, H.M.; Fatima, N.; Munir, S.; Holley, R.A. Food Safety During and After the Era of COVID-19 Pandemic. Front. Microbiol. 2020, 11, 1854. [Google Scholar] [CrossRef]
- Shao, D.; Shi, Z.; Wei, J.; Ma, Z. A brief review of foodborne zoonoses in China. Epidemiol. Infect. 2011, 139, 1497–1504. [Google Scholar] [CrossRef]
- Bengis, R.G.; Leighton, F.A.; Fischer, J.R.; Artois, M.; Mörner, T.; Tate, C.M. The role of wildlife in emerging and re-emerging zoonoses. OIE Rev. Sci. Tech. 2004, 23, 497–511. [Google Scholar] [CrossRef]
- La Rosa, G.; Bonadonna, L.; Lucentini, L.; Kenmoe, S.; Suffredini, E. Coronavirus in water environments: Occurrence, persistence and concentration methods—A scoping review. Water Res. 2020, 179, 115899. [Google Scholar] [CrossRef]
- Chatterjee, S.; Murallidharan, J.S.; Agrawal, A.; Bhardwaj, R. A review on coronavirus survival on impermeable and porous surfaces. Sādhanā 2021, 47, 5. [Google Scholar] [CrossRef]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Han, J.; Zhang, X.; He, S.; Jia, P. Can the coronavirus disease be transmitted from food? A review of evidence, risks, policies and knowledge gaps. Environ. Chem. Lett. 2021, 19, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Dong, Y.; Yan, H.; Zhao, C.; Li, X.; Liu, W.; He, M.; Tang, S.; Xi, S. Impact of temperature on the dynamics of the COVID-19 outbreak in China. Sci. Total Environ. 2020, 728, 138890. [Google Scholar] [CrossRef]
- Mycroft-West, C.; Su, D.; Elli, S.; Li, Y.; Guimond, S.; Miller, G.; Turnbull, J.; Yates, E.; Guerrini, M.; Fernig, D.; et al. The 2019 coronavirus (SARS-CoV-2) surface protein (Spike) S1 Receptor Binding Domain undergoes conformational change upon heparin binding. BioRxiv 2020. [Google Scholar] [CrossRef]
- Fisher, D.; Reilly, A.; Zheng, A.K.E.; Cook, A.; Anderson, D.E. Seeding of outbreaks of COVID-19 by contaminated fresh and frozen food. BioRxiv 2020. [Google Scholar] [CrossRef]
- Dai, M.; Li, H.; Yan, N.; Huang, J.; Zhao, L.; Xu, S.; Jiang, S.; Pan, C.; Liao, M. Long-term survival of salmon-attached SARS-CoV-2 at 4 °C as a potential source of transmission in seafood markets. BioRxiv 2020. [Google Scholar] [CrossRef]
- Dhakal, J.; Jia, M.; Joyce, J.D.; Moore, G.A.; Ovissipour, R.; Bertke, A.S. Survival of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Herpes Simplex Virus 1 (HSV-1) on Foods Stored at Refrigerated Temperature. Foods 2021, 10, 1005. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Taylor, T.M.; Senger, S.M.; Ovissipour, R.; Bertke, A.S. SARS-CoV-2 Remains Infectious on Refrigerated Deli Food, Meats, and Fresh Produce for up to 21 Days. Foods 2022, 11, 286. [Google Scholar] [CrossRef]
- Qian, J.; Yu, Q.; Jiang, L.; Yang, H.; Wu, W. Food cold chain management improvement: A conjoint analysis on COVID-19 and food cold chain systems. Food Control 2022, 137, 108940. [Google Scholar] [CrossRef]
- Pressman, P.; Naidu, A.S.; Clemens, R. COVID-19 and Food Safety: Risk Management and Future Considerations. Nutr. Today 2020, 55, 125–128. [Google Scholar] [CrossRef]
- Mullis, L.; Saif, L.J.; Zhang, Y.; Zhang, X.; Azevedo, M.S.P. Stability of bovine coronavirus on lettuce surfaces under household refrigeration conditions. Food Microbiol. 2012, 30, 180–186. [Google Scholar] [CrossRef]
- Van Doremalen, N.; Bushmaker, T.; Karesh, W.B.; Munster, V.J. Stability of Middle East Respiratory Syndrome Coronavirus in Milk. Emerg. Infect. Dis. 2014, 20, 1263. [Google Scholar] [CrossRef] [PubMed]
- Yépiz-Gómez, M.S.; Gerba, C.P.; Bright, K.R. Survival of Respiratory Viruses on Fresh Produce. Food Environ. Virol. 2013, 5, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Blondin-Brosseau, M.; Harlow, J.; Doctor, T.; Nasheri, N. Examining the persistence of human Coronavirus 229E on fresh produce. Food Microbiol. 2021, 98, 103780. [Google Scholar] [CrossRef] [PubMed]
- Aboubakr, H.A.; Sharafeldin, T.A.; Goyal, S.M. Stability of SARS-CoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: A review. Transbound. Emerg. Dis. 2020, 68, 296–312. [Google Scholar] [CrossRef]
- Bailey, S.E.; Curcic, M.; Sobsey, M.D. Persistence of Coronavirus Surrogates on Meat and Fish Products during Long-Term Storage. Appl. Environ. Microbiol. 2022, 88, 12. [Google Scholar] [CrossRef]
- Yu, F.; Yan, L.; Wang, N.; Yang, S.; Wang, L.; Tang, Y.; Gao, G.; Wang, S.; Ma, C.; Xie, R.; et al. Quantitative Detection and Viral Load Analysis of SARS-CoV-2 in Infected Patients. Clin. Infect. Dis. 2020, 71, 793–798. [Google Scholar] [CrossRef]
- Chen, W.; Chen, C.-L.; Cao, Q.; Chiu, C.-H. Time course and epidemiological features of COVID-19 resurgence due to cold-chain food or packaging contamination. Biomed. J. 2022, 45, 432–438. [Google Scholar] [CrossRef]
- Pang, X.; Ren, L.; Wu, S.; Ma, W.; Yang, J.; Di, L.; Li, J.; Xiao, Y.; Kang, L.; Du, S.; et al. Cold-chain food contamination as the possible origin of COVID-19 resurgence in Beijing. Natl. Sci. Rev. 2020, 7, 1861–1864. [Google Scholar] [CrossRef]
- Liu, P.; Yang, M.; Zhao, X.; Guo, Y.; Wang, L.; Zhang, J.; Lei, W.; Han, W.; Jiang, F.; Liu, W.J.; et al. Cold-chain transportation in the frozen food industry may have caused a recurrence of COVID-19 cases in destination: Successful isolation of SARS-CoV-2 virus from the imported frozen cod package surface. Biosaf. Health 2020, 2, 199–201. [Google Scholar] [CrossRef]
- Han, S.; Liu, X. Can imported cold food cause COVID-19 recurrent outbreaks? A review. Environ. Chem. Lett. 2021, 20, 119–129. [Google Scholar] [CrossRef]
- Western Australian Government. COVID Safety Guidelines: Food and Licensed Venues; Phase 4 2020, Version 1.0 27; Western Australian Government: Perth, Australia, 2020; pp. 1–17.
- Sun, D. Handbook of Frozen Food Processing and Packaging, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Chin, A.W.H.; Chu, J.T.S.; Perera, M.R.A.; Hui, K.P.Y.; Yen, H.-L.; Chan, M.C.W.; Peiris, M.; Poon, L.L.M. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 2020, 1, e10. [Google Scholar] [CrossRef]
- Riddell, S.; Goldie, S.; Hill, A.; Eagles, D.; Drew, T.W. The effect of temperature on persistence of SARS-CoV-2 on common surfaces. Virol. J. 2020, 17, 145. [Google Scholar] [CrossRef] [PubMed]
- Kratzel, A.; Steiner, S.; Todt, D.; V’kovski, P.; Brueggemann, Y.; Steinmann, J.; Steinmann, E.; Thiel, V.; Pfaender, S. Temperature-dependent surface stability of SARS-CoV-2. J. Infect. 2020, 81, 452–482. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Fei, C.; Chen, Y.; Luo, S.; Yang, T.; Yang, L.; Liu, J.; Ji, X.; Wu, W.; Song, J. Investigating SARS-CoV-2 persistent contamination in different indoor environments. Environ. Res. 2021, 202, 111763. [Google Scholar] [CrossRef]
- Sobolik, J.S.; Sajewski, E.T.; Jaykus, L.-A.; Cooper, D.K.; Lopman, B.A.; Kraay, A.N.M.; Ryan, P.B.; Guest, J.L.; Webb-Girard, A.; Leon, J.S. Decontamination of SARS-CoV-2 from cold-chain food packaging provides no marginal benefit in risk reduction to food workers. Food Control 2022, 136, 108845. [Google Scholar] [CrossRef]
- Lewis, D. COVID-19 rarely spreads through surfaces. So why are we still deep cleaning. Nature 2021, 590, 26–28. [Google Scholar] [CrossRef]
- Kuehn, B.M. More Than 1 in 3 US Adults Use Disinfectants Unsafely. JAMA 2020, 324, 328. [Google Scholar] [CrossRef]
- Singh, M.; Sadat, A.; Abdi, R.; Colaruotolo, L.A.; Francavilla, A.; Petker, K.; Nasr, P.; Moraveji, M.; Cruz, G.; Huang, Y.; et al. Detection of SARS-CoV-2 on surfaces in food retailers in Ontario. Curr. Res. Food Sci. 2021, 4, 598–602. [Google Scholar] [CrossRef]
- CDC (Centers for Disease Control and Prevention). Science Brief: SARS-CoV-2 and Surface (Fomite) Transmission for Indoor Community Environments. 2020. Available online: https://www.cdc.gov/coronavirus/2019-ncov/more/science-and-research/surface-transmission.html#print. (accessed on 1 February 2022).
- Aday, S.; Aday, M.S. Impact of COVID-19 on the food supply chain. Food Qual. Saf. 2020, 4, 167–180. [Google Scholar] [CrossRef]
- Gruppo di Lavoro ISS Biocidi COVID-19. Raccomandazioni ad Interim sui Disinfettanti Nell’attuale Emergenza COVID-19: Presidi Medico Chirurgici e Biocidi; Rapporto ISS COVID-19 2020, n. 19/2020; Versione del 25 Aprile 2020; Istituto Superiore di Sanità: Roma, Italy, 2020. [Google Scholar]
- Najib, S.Y.; Ayipo, Y.O.; Shaaban, A.; Mordi, M.N.; Rabiu, A.; Abubakar, A.B.R.; Rahman, S.; Ahmad, R.; Meghla, B.A.; Adnan, N. Utilization of physical and chemical microbial load reduction agents for SARS-CoV-2: Toxicity and development of drug resistance implications. J. Appl. Pharm. Sci. 2022, 12, 1–28. [Google Scholar] [CrossRef]
- EPA (United States Environmental Protection Agency). Frequent Questions about Disinfectants and Coronavirus (COVID-19). Available online: https://www.epa.gov/coronavirus/frequent-questions-about-disinfectants-and-coronavirus-covid-19 (accessed on 1 February 2022).
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Kratzel, A.; Todt, D.; V’kovski, P.; Steiner, S.; Gultom, M.; Thao, T.T.N.; Ebert, N.; Holwerda, M.; Steinmann, J.; Niemeyer, D.; et al. Inactivation of Severe Acute Respiratory Syndrome Coronavirus 2 by WHO-Recommended Hand Rub Formulations and Alcohols. Emerg. Infect. Dis. 2020, 26, 1592–1595. [Google Scholar] [CrossRef] [PubMed]
- Hassandarvish, P.; Tiong, V.; Mohamed, N.A.; Arumugam, H.; Ananthanarayanan, A.; Qasuri, M.; Hadjiat, Y.; Abubakar, S. In vitro virucidal activity of povidone iodine gargle and mouthwash against SARS-CoV-2: Implications for dental practice. Br. Dent. J. 2020, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Xiling, G.; Yin, C.; Ling, W.; Xiaosong, W.; Jingjing, F.; Fang, L.; Xiaoyan, Z.; Yiyue, G.; Ying, C.; Lunbiao, C.; et al. In vitro inactivation of SARS-CoV-2 by commonly used disinfection products and methods. Sci. Rep. 2021, 11, 2418. [Google Scholar] [CrossRef]
- Pastorino, B.; Touret, F.; Gilles, M.; de Lamballerie, X.; Charrel, R.N. Heat Inactivation of Different Types of SARS-CoV-2 Samples: What Protocols for Biosafety, Molecular Detection and Serological Diagnostics? Viruses 2020, 12, 735. [Google Scholar] [CrossRef]
- Carraturo, F.; Del Giudice, C.; Morelli, M.; Cerullo, V.; Libralato, G.; Galdiero, E.; Guida, M. Persistence of SARS-CoV-2 in the environment and COVID-19 transmission risk from environmental matrices and surfaces. Environ. Pollut. 2020, 265, 115010. [Google Scholar] [CrossRef]
- BfR (German Federal Institute for Risk Assesment). Can the New Type of Coronavirus Be Transmitted via Food and Objects? Bundesinstitut Fur Risikobewertung 2020, 1–10. Available online: https://www.bfr.bund.de/en/can_the_new_type_of_coronavirus_be_transmitted_via_food_and_objects_-244090.html (accessed on 3 May 2022).
- Chitrakar, B.; Zhang, M.; Bhandari, B. Improvement strategies of food supply chain through novel food processing technologies during COVID-19 pandemic. Food Control 2021, 125, 108010. [Google Scholar] [CrossRef]
- Béné, C.; Bakker, D.; Chavarro, M.J.; Even, B.; Melo, J.; Sonneveld, A. Global assessment of the impacts of COVID-19 on food security. Glob. Food Secur. 2021, 31, 100575. [Google Scholar] [CrossRef]
- Marchant-Forde, J.N.; Boyle, L.A. COVID-19 Effects on Livestock Production: A One Welfare Issue. Front. Vet. Sci. 2020, 7, 1–16. [Google Scholar] [CrossRef]
- Di Renzo, L.; Gualtieri, P.; Pivari, F.; Soldati, L.; Attinà, A.; Cinelli, G.; Leggeri, C.; Caparello, G.; Barrea, L.; Scerbo, F.; et al. Eating habits and lifestyle changes during COVID-19 lockdown: An Italian survey. J. Transl. Med. 2020, 18, 229. [Google Scholar] [CrossRef] [PubMed]
- Górnicka, M.; Drywień, M.E.; Zielinska, M.A.; Hamułka, J. Dietary and Lifestyle Changes During COVID-19 and the Subsequent Lockdowns among Polish Adults: A Cross-Sectional Online Survey PLifeCOVID-19 Study. Nutrients 2020, 12, 2324. [Google Scholar] [CrossRef] [PubMed]
- Mucinhato, R.M.D.; da Cunha, D.T.; Barros, S.C.F.; Zanin, L.M.; Auad, L.I.; Weis, G.C.C.; de Freitas Saccol, A.L.; Stedefeldt, E. Behavioral predictors of household food-safety practices during the COVID-19 pandemic: Extending the theory of planned behavior. Food Control 2022, 134, 108719. [Google Scholar] [CrossRef] [PubMed]
- Sarda, B.; Delamaire, C.; Serry, A.-J.; Ducrot, P. Changes in home cooking and culinary practices among the French population during the COVID-19 lockdown. Appetite 2022, 168, 105743. [Google Scholar] [CrossRef]
- Faour-Klingbeil, D.; Osaili, T.M.; Al-Nabulsi, A.A.; Jemni, M.; Todd, E.C.D. An on-line survey of the behavioral changes in Lebanon, Jordan and Tunisia during the COVID-19 pandemic related to food shopping, food handling, and hygienic practices. Food Control 2021, 125, 107934. [Google Scholar] [CrossRef]
- Finger, J.A.F.F.; Lima, E.M.F.; Coelho, K.S.; Behrens, J.H.; Landgraf, M.; Franco, B.D.G.M.; Pinto, U.M. Adherence to food hygiene and personal protection recommendations for prevention of COVID-19. Trends Food Sci. Technol. 2021, 112, 847–852. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority); ECDC (European Centre for Disease Prevention and Control). The European Union One Health 2020 Zoonoses Report. EFSA J. 19 2021, 6971, 324. [Google Scholar] [CrossRef]
- Mignogna, C.; Costanzo, S.; Ghulam, A.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L.; Bonaccio, M. Impact of Nationwide Lockdowns Resulting from the First Wave of the COVID-19 Pandemic on Food Intake, Eating Behaviors, and Diet Quality: A Systematic Review. Adv. Nutr. 2022, 13, 388–423. [Google Scholar] [CrossRef]
- Mertens, E.; Sagastume, D.; Sorić, T.; Brodić, I.; Dolanc, I.; Jonjić, A.; Delale, E.A.; Mavar, M.; Missoni, S.; Čoklo, M.; et al. Food Choice Motives and COVID-19 in Belgium. Foods 2022, 11, 842. [Google Scholar] [CrossRef]
- Caso, D.; Guidetti, M.; Capasso, M.; Cavazza, N. Finally, the chance to eat healthily: Longitudinal study about food consumption during and after the first COVID-19 lockdown in Italy. Food Qual. Prefer. 2022, 95, 104275. [Google Scholar] [CrossRef]
- Li, S.; Kallas, Z.; Rahmani, D. Did the COVID-19 lockdown affect consumers’ sustainable behaviour in food purchasing and consumption in China? Food Control 2020, 132, 108352. [Google Scholar] [CrossRef]
- Janssen, M.; Chang, B.P.I.; Hristov, H.; Pravst, I.; Profeta, A.; Millard, J. Changes in Food Consumption During the COVID-19 Pandemic: Analysis of Consumer Survey Data from the First Lockdown Period in Denmark, Germany, and Slovenia. Front. Nutr. 2021, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Wunsch, K.; Kienberger, K.; Niessner, C. Changes in Physical Activity Patterns Due to the COVID-19 Pandemic: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 2250. [Google Scholar] [CrossRef] [PubMed]
- Muscogiuri, G.; Barrea, L.; Savastano, S.; Colao, A. Nutritional recommendations for COVID-19 quarantine. Eur. J. Clin. Nutr. 2020, 74, 850–851. [Google Scholar] [CrossRef]
- Abouzid, M.; El-Sherif, D.M.; Eltewacy, N.K.; Dahman, N.B.H.; Okasha, S.A.; Ghozy, S.; Islam, S.M.S.; Elburki, A.R.F.; Ali, A.A.M.; Hasan, M.A.; et al. Influence of COVID-19 on lifestyle behaviors in the Middle East and North Africa Region: A survey of 5896 individuals. J. Transl. Med. 2021, 19, 129. [Google Scholar] [CrossRef]
- Bakaloudi, D.R.; Jeyakumar, D.T.; Jayawardena, R.; Chourdakis, M. The impact of COVID-19 lockdown on snacking habits, fast-food and alcohol consumption: A systematic review of the evidence. Clin. Nutr. 2021; in press. [Google Scholar] [CrossRef]
- Izzo, L.; Santonastaso, A.; Cotticelli, G.; Federico, A.; Pacifico, S.; Castaldo, L.; Colao, A.; Ritieni, A. An Italian Survey on Dietary Habits and Changes during the COVID-19 Lockdown. Nutrients 2021, 13, 1197. [Google Scholar] [CrossRef]
- IIAS (Istituto Italiano Alimenti Surgelati). I Consumi dei Prodotti Surgelati. Rapporto. 2020. Available online: https://www.istitutosurgelati.it/wp-content/uploads/2021/07/IIAS_REPORTCONSUMI2020_low.pdf (accessed on 1 February 2022).
- Attwood, S.; Hajat, C. How will the COVID-19 pandemic shape the future of meat consumption? Public Health Nutr. 2020, 23, 3116–3120. [Google Scholar] [CrossRef]
- Mussell, A.; Bilyea, T.; Hedley, D. Agri-food supply chains and COVID-19: Balancing resilience and vulnerability. Agri-Food Econ. Syst. 2020, 1–6. [Google Scholar]
- Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int. J. Surg. 2020, 78, 185–193. [Google Scholar] [CrossRef]
- De Souza, T.S.P.; Miyahira, R.F.; Matheus, J.R.V.; de Brito Nogueira, T.B.; Maragoni-Santos, C.; Barros, F.F.C.; Costa Antunes, A.E.; Fai, A.E.C. Food services in times of uncertainty: Remodeling operations, changing trends, and looking into perspectives after the COVID-19 pandemic. Trends Food Sci. Technol. 2022, 120, 301–307. [Google Scholar] [CrossRef]
- Dudek, M.; Śpiewak, R. Effects of the COVID-19 Pandemic on Sustainable Food Systems: Lessons Learned for Public Policies? The Case of Poland. Agriculture 2022, 12, 61. [Google Scholar] [CrossRef]
- Zhu, X.; Yuan, X.; Zhang, Y.; Liu, H.; Wang, J.; Sun, B. The global concern of food security during the COVID-19 pandemic: Impacts and perspectives on food security. Food Chem. 2022, 370, 130830. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Kim, S.; Park, C.Y. Food Security in Asia and the Pacific amid the COVID-19 Pandemic. ADB Briefs 2020, 139, 1–15. [Google Scholar] [CrossRef]
- Khan, M.; Alroomi, A.; Nikolopoulos, K. Supply Chain Disruptions and Consumer Behavior Change from COVID-19: Empirical Evidence and Long-Term Implications for Supermarkets in the UK. J. Humanit. Arts Soc. Sci. 2022, 6, 28–42. [Google Scholar] [CrossRef]
- Dasgupta, S.; Robinson, E.J.Z. Impact of COVID-19 on food insecurity using multiple waves of high frequency household surveys. Sci. Rep. 2022, 12, 1865. [Google Scholar] [CrossRef]
- Kent, K.; Alston, L.; Murray, S.; Honeychurch, B.; Visentin, D. The Impact of the COVID-19 Pandemic on Rural Food Security in High Income Countries: A Systematic Literature Review. Int. J. Environ. Res. Public Health 2022, 19, 3235. [Google Scholar] [CrossRef]
- Marti, L.; Puertas, R.; García-Álvarez-Coque, J.M. The effects on European importers’ food safety controls in the time of COVID-19. Food Control 2021, 125, 107952. [Google Scholar] [CrossRef]
- Torero, M. Prepare food systems for a long-haul fight against COVID-19. In IFPRI Book Chapters; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2020. [Google Scholar]
- Leung, C.W.; Kullgren, J.T.; Malani, P.N.; Singer, D.C.; Kirch, M.; Solway, E.; Wolfson, J.A. Food insecurity is associated with multiple chronic conditions and physical health status among older US adults. Prev. Med. Rep. 2020, 20, 101211. [Google Scholar] [CrossRef]
- Choi, S.L.; Men, F. Food insecurity associated with higher COVID-19 infection in households with older adults. Public Health 2021, 200, 7–14. [Google Scholar] [CrossRef]
- Ahmed, A.U.; Quisumbing, A.R.; Nasreen, M.; Hoddinott, J.; Bryan, E. Comparing Food and Cash Transfers to the Ultra Poor in Bangladesh; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2009. [Google Scholar] [CrossRef]
- Tendall, D.M.; Joerin, J.; Kopainsky, B.; Edwards, P.; Shreck, A.; Le, Q.B.; Kruetli, P.; Grant, M.; Six, J. Food system resilience: Defining the concept. Glob. Food Secur. 2015, 6, 17–23. [Google Scholar] [CrossRef]
- Béné, C. Resilience of local food systems and links to food security—A review of some important concepts in the context of COVID-19 and other shocks. Food Secur. 2020, 12, 805–822. [Google Scholar] [CrossRef] [PubMed]
- Ministero della Salute. Misure Straordinarie per la Rideterminazione della Shelf-Life dei Prodotti Alimentari. Available online: https://www.aulss7.veneto.it (accessed on 1 February 2022).
- HLPE (High Level Panel of Experts). Impacts of COVID-19 on food security and nutrition: Developing effective policy responses to address the hunger and malnutrition pandemic. HLPE Issues Pap. 2020, 1–24. [Google Scholar] [CrossRef]
- Skawińska, E.; Zalewski, R.I. Economic Impact of Temperature Control during Food Transportation—A COVID-19 Perspective. Foods 2022, 11, 467. [Google Scholar] [CrossRef]
- Mercier, S.; Villeneuve, S.; Mondor, M.; Uysal, I. Time–Temperature Management Along the Food Cold Chain: A Review of Recent Developments. Compr. Rev. Food Sci. Food Saf. 2017, 16, 647–667. [Google Scholar] [CrossRef]
- McKellar, R.C.; LeBlanc, D.I.; Rodríguez, F.P.; Delaquis, P. Comparative simulation of Escherichia coli O157:H7 behaviour in packaged fresh-cut lettuce distributed in a typical Canadian supply chain in the summer and winter. Food Control 2014, 35, 192–199. [Google Scholar] [CrossRef]
- Chenarides, L.; Richards, T.J.; Rickard, B. COVID-19 impact on fruit and vegetable markets: One year later. Can. J. Agric. Econ./Rev. Can. D’agroeconomie 2021, 69, 203–214. [Google Scholar] [CrossRef]
- Richards, T.J.; Rickard, B. COVID-19 impact on fruit and vegetable markets. Can. J. Agric. Econ. Rev. Can. D’agroeconomie 2020, 68, 189–194. [Google Scholar] [CrossRef]
- Rude, J. COVID-19 and the Canadian cattle/beef sector: Some preliminary analysis. Can. J. Agric. Econ. Rev. Can. D’agroeconomie 2020, 68, 207–213. [Google Scholar] [CrossRef]
- Rude, J. COVID-19 and the Canadian cattle/beef sector: A second look. Can. J. Agric. Econ. /Rev. Can. D’agroeconomie 2021, 69, 233–241. [Google Scholar] [CrossRef]
- Hu, L.; Gao, J.; Yao, L.; Zeng, L.; Liu, Q.; Zhou, Q.; Zhang, H.; Lu, D.; Fu, J.; Liu, Q.S.; et al. Evidence of Foodborne Transmission of the Coronavirus (COVID-19) through the Animal Products Food Supply Chain. Environ. Sci. Technol. 2021, 55, 2713–2716. [Google Scholar] [CrossRef] [PubMed]
- Middleton, J.; Reintjes, R.; Lopes, H. Meat plants-a new front line in the COVID-19 pandemic. BMJ 2020, 370, 1–2. [Google Scholar] [CrossRef]
- Carleton, T.; Meng, K.C. Causal empirical estimates suggest COVID-19 transmission rates are highly seasonal. MedRxiv 2020. [Google Scholar] [CrossRef]
- Beck, S.H.; Castillo, A.; Kinney, K.A.; Zuniga, A.; Mohammad, Z.; Lacey, R.E.; King, M.D. Monitoring of Pathogenic Bioaerosols in Beef Slaughter Facilities Based on Air Sampling and Airflow Modeling. Appl. Eng. Agric. 2019, 35, 1015–1036. [Google Scholar] [CrossRef]
- Dyal, J.W.; Grant, M.P.; Broadwater, K.; Bjork, A.; Waltenburg, M.A.; Gibbins, J.D.; Hale, C.; Silver, M.; Fischer, M.; Steinberg, J.; et al. COVID-19 Among Workers in Meat and Poultry Processing Facilities―19 States, April 2020. MMWR. Morb. Mortal. Wkly. Rep. 2020, 69, 557–561. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.A.; Boulos, C.; Almond, D. Livestock plants and COVID-19 transmission. Proc. Natl. Acad. Sci. USA 2020, 117, 31706–31715. [Google Scholar] [CrossRef]
- Djekic, I.; Nikolić, A.; Uzunović, M.; Marijke, A.; Liu, A.; Han, J.; Brnčić, M.; Knežević, N.; Papademas, P.; Lemoniati, K.; et al. COVID-19 pandemic effects on food safety—Multi-country survey study. Food Control 2021, 122, 107800. [Google Scholar] [CrossRef]
- Reiley, L. Meat Processing Plants are Closing due to COVID-19 Outbreaks. Beef Shortfalls May Follow. 2020. Available online: https://www.washingtonpost.com/business/2020/04/16/meat-processing-plants-are-closing-due-covid-19-outbreaks-beef-shortfalls-mayfollow/ (accessed on 1 February 2022).
- Pokora, R.; Kutschbach, S.; Weigl, M.; Braun, D.; Epple, A.; Lorenz, E.; Grund, S.; Hecht, J.; Hollich, H.; Rietschel, P.; et al. Investigation of superspreading COVID-19 outbreak events in meat and poultry processing plants in Germany: A cross-sectional study. PLoS ONE 2021, 16, e0242456. [Google Scholar] [CrossRef]
- Waltenburg, M.A.; Victoroff, T.; Rose, C.E.; Butterfield, M.; Jervis, R.H.; Fedak, K.M.; Gabel, J.A.; Feldpausch, A.; Dunne, E.M.; Austin, C.; et al. Update: COVID-19 Among Workers in Meat and Poultry Processing Facilities—United States, April-May 2020. MMWR. Morb. Mortal. Wkly. Rep. 2020, 69, 887–892. [Google Scholar] [CrossRef]
- BfR (German Federal Institute for Risk Assessment). Meat Products and Coronavirus: Transmission Unlikely. Bundesinstitut Fur Risikobewertung 2020. Available online: https://www.bfr.bund.de/cm/349/meat-products-and-coronavirus-transmission-unlikely.pdf (accessed on 1 February 2022).
- Rizou, M.; Galanakis, I.M.; Aldawoud, T.M.S.; Galanakis, C.M. Safety of foods, food supply chain and environment within the COVID-19 pandemic. Trends Food Sci. Technol. 2020, 102, 293–299. [Google Scholar] [CrossRef] [PubMed]
- World Economic Forum (8 August 2022), COVID Action Platform. Available online: https://www.weforum.org/agenda/2022/08/covid19-coronavirus-pandemic-omicron-8-august/ (accessed on 22 August 2022).
- WHO (World Health Organization). COVID-19: Physical Distancing. 2020. Available online: https://www.who.int/westernpacific/emergencies/covid-19/information/physical-distancing (accessed on 2 February 2022).
- CDC (Centers for Disease Control and Prevention). COVID-19 Overview and Infection Prevention and Control Priorities in non-U.S. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/non-us-settings/overview/index.html (accessed on 1 February 2022).
- Bourouiba, L. Turbulent Gas Clouds and Respiratory Pathogen Emissions: Potential Implications for Reducing Transmission of COVID-19. J. Am. Med. Assoc. 2020, 323, 1837–1838. [Google Scholar] [CrossRef] [PubMed]
- Gruppo di Lavoro ISS Sanità Pubblica Veterinaria e Sicurezza Alimentare COVID-19. Indicazioni ad Interim Sull’igiene degli Alimenti durante l’Epidemia da Virus SARS-CoV-2; Rapporto ISS COVID-19 n. 17/2020, Versione del 19 Aprile 2020; Istituto Superiore di Sanità: Roma, Italy, 2020. [Google Scholar]
- Gruppo di Lavoro ISS Sanità Pubblica Veterinaria e Sicurezza Alimentare COVID-19. Indicazioni ad Interim sul Contenimento del Contagio da SARS-CoV-2 e sull’Igiene degli Alimenti nell’Ambito della Ristorazione e Somministrazione di Alimenti—Gruppo di Lavoro ISS Sanità Pubblica Veterinaria e Sicurezza Alimentare COVID-19; Rapporto ISS COVID-19, n. 32/2020, Versione del 27 Maggio 2020; Istituto Superiore di Sanità: Roma, Italy, 2020. [Google Scholar]
- Vandenhaute, H.; Gellynck, X.; De Steur, H. COVID-19 Safety Measures in the Food Service Sector: Consumers’ Attitudes and Transparency Perceptions at Three Different Stages of the Pandemic. Foods 2022, 11, 810. [Google Scholar] [CrossRef]
- Rivera-Ferre, M.G.; López-i-Gelats, F.; Ravera, F.; Oteros-Rozas, E.; di Masso, M.; Binimelis, R.; El Bilali, H. The two-way relationship between food systems and the COVID19 pandemic: Causes and consequences. Agric. Syst. 2021, 191, 103134. [Google Scholar] [CrossRef]
- Bisoffi, S.; Ahrné, L.; Aschemann-Witzel, J.; Báldi, A.; Cuhls, K.; DeClerck, F.; Duncan, J.; Hansen, H.O.; Hudson, R.L.; Kohl, J.; et al. COVID-19 and Sustainable Food Systems: What Should We Learn Before the Next Emergency. Front. Sustain. Food Syst. 2021, 5, 650987. [Google Scholar] [CrossRef]
- Saqr, M.; Wasson, B. COVID-19: Lost opportunities and lessons for the future. Int. J. Health Sci. 2020, 14, 4–6. Available online: https://pubmed.ncbi.nlm.nih.gov/32536841 (accessed on 1 February 2022).
- Lu, J.; Gu, J.; Li, K.-B.; Xu, C.; Su, W.; Lai, Z.; Zhou, D.; Yu, C.; Xu, B.; Yang, Z. COVID-19 Outbreak Associated with Air Conditioning in Restaurant, Guangzhou, China, 2020. Emerg. Infect. Dis. 2020, 26, 1628–1631. [Google Scholar] [CrossRef]
- Li, Y.; Huang, X.; Yu, I.T.S.; Wong, T.W.; Qian, H. Role of air distribution in SARS transmission during the largest nosocomial outbreak in Hong Kong. Indoor Air 2005, 15, 83–95. [Google Scholar] [CrossRef]
- Blay-Palmer, A.; Carey, R.; Valette, E.; Sanderson, M.R. Post COVID-19 and food pathways to sustainable transformation. Agric. Hum. Values 2020, 37, 517–519. [Google Scholar] [CrossRef]
- Paul, S.K.; Moktadir, M.A.; Sallam, K.; Choi, T.-M.; Chakrabortty, R.K. A recovery planning model for online business operations under the COVID-19 outbreak. Int. J. Prod. Res. 2021, 1–23. [Google Scholar] [CrossRef]
- Shahed, K.S.; Azeem, A.; Ali, S.M.; Moktadir, M.A. A supply chain disruption risk mitigation model to manage COVID-19 pandemic risk. Environ. Sci. Pollut. Res. 2021, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Galanakis, C.M. The food systems in the era of the coronavirus (COVID-19) pandemic crisis. Foods 2020, 9, 523. [Google Scholar] [CrossRef] [PubMed]
- Halloran, A.; Wood, A.; Sellberg, M. What Can the COVID-19 Pandemic Teach us about Resilient Nordic Food Systems. 2020. Available online: https://pub.norden.org/nord2020-038/ (accessed on 24 August 2022).
- European Green Deal the EU’s Goal of Climate Neutrality by 2050. Available online: https://www.consilium.europa.eu/en/policies/green-deal/ (accessed on 24 August 2022).
- Rowan, N.J.; Galanakis, C.M. Unlocking challenges and opportunities presented by COVID-19 pandemic for cross-cutting disruption in agri-food and green deal innovations: Quo Vadis? Sci. Total Environ. 2020, 748, 141362. [Google Scholar] [CrossRef] [PubMed]
- Buck, B.H.; Troell, M.F.; Krause, G.; Angel, D.L.; Grote, B.; Chopin, T. State of the art and challenges for offshore integrated multi-trophic aquaculture (IMTA). Front. Mar. Sci. 2018, 5, 165. [Google Scholar] [CrossRef]
- Paul, S.K.; Chowdhury, P.; Moktadir, M.A.; Lau, K.H. Supply chain recovery challenges in the wake of COVID-19 pandemic. J. Bus. Res. 2021, 136, 316–329. [Google Scholar] [CrossRef]
- Paul, S.K.; Moktadir, M.A.; Ahsan, K. Key supply chain strategies for the post-COVID-19 era: Implications for resilience and sustainability. Int. J. Logist. Manag. 2021. [Google Scholar] [CrossRef]
- Patterson, G.T.; Thomas, L.F.; Coyne, L.A.; Rushton, J. Moving health to the heart of agri-food policies; mitigating risk from our food systems. Glob. Food Sec. 2020, 26, 100424. [Google Scholar] [CrossRef]
- Bhunnoo, R. The need for a food-systems approach to policy making. Lancet 2019, 393, 1097–1098. [Google Scholar] [CrossRef]
- Ceianu, C.S.; Ungureanu, A.; Nicolescu, G.; Cernescu, C.; Nitescu, L.; Tardei, G.; Petrescu, A.; Pitigoi, D.; Martin, D.; Ciulacu-Purcarea, V.; et al. West Nile Virus Surveillance in Romania: 1997–2000. Viral Immunol. 2001, 14, 251–262. [Google Scholar] [CrossRef]
- Stehling-Ariza, T.; Rosewell, A.; Moiba, S.A.; Yorpie, B.B.; Ndomaina, K.D.; Jimissa, K.S.; Leidman, E.; Rijken, D.J.; Basler, C.; Wood, J.; et al. The impact of active surveillance and health education on an Ebola virus disease cluster—Kono District, Sierra Leone, 2014–2015. BMC Infect. Dis. 2016, 16, 611. [Google Scholar] [CrossRef] [Green Version]
Areas of Interest | Lessons Learned |
---|---|
Primary and secondary sectors (production and industry) |
|
Service sector (restaurants and supermarkets) |
|
Home environment |
|
Society |
|
Food trade |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paparella, A.; Purgatorio, C.; Chaves-López, C.; Rossi, C.; Serio, A. The Multifaceted Relationship between the COVID-19 Pandemic and the Food System. Foods 2022, 11, 2816. https://doi.org/10.3390/foods11182816
Paparella A, Purgatorio C, Chaves-López C, Rossi C, Serio A. The Multifaceted Relationship between the COVID-19 Pandemic and the Food System. Foods. 2022; 11(18):2816. https://doi.org/10.3390/foods11182816
Chicago/Turabian StylePaparella, Antonello, Chiara Purgatorio, Clemencia Chaves-López, Chiara Rossi, and Annalisa Serio. 2022. "The Multifaceted Relationship between the COVID-19 Pandemic and the Food System" Foods 11, no. 18: 2816. https://doi.org/10.3390/foods11182816
APA StylePaparella, A., Purgatorio, C., Chaves-López, C., Rossi, C., & Serio, A. (2022). The Multifaceted Relationship between the COVID-19 Pandemic and the Food System. Foods, 11(18), 2816. https://doi.org/10.3390/foods11182816