Sustainable Solvent-Free Selective Oxidation of Benzyl Alcohol Using Ru(0) Supported on Alumina
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Catalyst Characterization
3.3. Alcohol Oxidation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chan-Thaw, C.E.; Savara, A.; Villa, A. Selective Benzyl Alcohol Oxidation over Pd Catalysts. Catalysts 2018, 8, 431. [Google Scholar] [CrossRef] [Green Version]
- Mallat, T.; Baiker, A. Oxidation of Alcohols with Molecular Oxygen on Solid Catalysts. Chem. Rev. 2004, 104, 3037–3058. [Google Scholar] [CrossRef]
- Besson, M.; Gallezot, P. Selective oxidation of alcohols and aldehydes on metal catalysts. Catal. Today 2000, 57, 127–141. [Google Scholar] [CrossRef]
- Najafishirtari, S.; Friedel Ortega, K.; Douthwaite, M.; Pattisson, S.; Hutchings, G.J.; Bondue, C.J.; Tschulik, K.; Waffel, D.; Peng, B.; Deitermann, M.; et al. A Perspective on Heterogeneous Catalysts for the Selective Oxidation of Alcohols. Chem. Eur. J. 2021, 27, 16809–16833. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.E.; Ide, M.S.; Davis, R.J. Selective oxidation of alcohols and aldehydes over supported metal nanoparticles. Green Chem. 2013, 15, 17–45. [Google Scholar] [CrossRef]
- Dhakshinamoorthy, A.; Asiri, A.M.; Garcia, H. Tuneable nature of metal organic frameworks as heterogeneous solid catalysts for alcohol oxidation. Chem. Commun. 2017, 53, 10851–10869. [Google Scholar] [CrossRef]
- Sheldon, R.; Kochi, J. Activation of molecular oxygen by metal complexes. In Metal-Catalyzed Oxidations of Organic Compounds; Academic Press: New York, NY, USA, 1981. [Google Scholar]
- Weng, Z.; Liao, G.; Wang, J.; Jian, X. Selective oxidation of benzyl alcohol with hydrogen peroxide over reaction-controlled phase-transfer catalyst. Catal. Commun. 2007, 8, 1493–1496. [Google Scholar] [CrossRef]
- Schultz, M.J.; Sigman, M.S. Recent advances in homogeneous transition metal-catalyzed aerobic alcohol oxidations. Tetrahedron 2006, 62, 8227–8241. [Google Scholar] [CrossRef]
- Vinod, C.P.; Wilson, K.; Lee, A.F. Recent advances in the heterogeneously catalysed aerobic selective oxidation of alcohols. J. Chem. Technol. Biot. 2011, 86, 161–171. [Google Scholar] [CrossRef]
- Watanabe, H.; Asano, S.; Fujita, S.-I.; Yoshida, H.; Arai, M. Nitrogen-Doped, Metal-Free Activated Carbon Catalysts for Aerobic Oxidation of Alcohols. ACS Catal. 2015, 5, 2886–2894. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, C.; Wu, S.; Zhang, W.; Xue, W.; Zeng, Z. Synthesis of Benzaldehyde and Benzoic Acid by Selective Oxidation of Benzyl Alcohol with Iron(III) Tosylate and Hydrogen Peroxide: A Solvent-Controlled Reaction. Catal. Lett. 2018, 148, 3082–3092. [Google Scholar] [CrossRef]
- Shojaei, A.F.; Tabatabaeian, K.; Zanjanchi, M.A.; Moafi, H.F.; Modirpanah, N. Synthesis, characterization and study of catalytic activity of Silver doped ZnO nanocomposite as an efficient catalyst for selective oxidation of benzyl alcohol. J. Chem. Sci. 2015, 127, 481–491. [Google Scholar] [CrossRef]
- Kunene, A.; Leteba, G.; van Steen, E. Liquid Phase Oxidation of Benzyl Alcohol over Pt and Pt–Ni Alloy Supported on TiO2: Using O2 or H2O2 as Oxidant? Catal. Lett. 2022, 152, 1760–1768. [Google Scholar] [CrossRef]
- Göksu, H.; Burhan, H.; Mustafov, S.D.; Şen, F. Oxidation of Benzyl Alcohol Compounds in the Presence of CarbonHybrid Supported Platinum Nanoparticles (Pt@CHs) in Oxygen Atmosphere. Sci. Rep. 2020, 10, 5439. [Google Scholar] [CrossRef] [Green Version]
- Lukato, S.; Wendt, O.F.; Wallenberg, R.; Kasozi, G.N.; Naziriwo, B.; Persson, A.; Folkers, L.C.; Tebandeke, E. Selective oxidation of benzyl alcohols with molecular oxygen as the oxidant using Ag-Cu catalysts supported on polyoxometalates. Results Chem. 2021, 3, 100150. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Q.; Wang, Y.; Wan, H. Size-Dependent Catalytic Activity of Supported Palladium Nanoparticles for Aerobic Oxidation of Alcohols. Adv. Synth. Catal. 2008, 350, 453–464. [Google Scholar] [CrossRef]
- Nowicka, E.; Althahban, S.; Leah, T.D.; Shaw, G.; Morgan, D.; Kiely, C.J.; Roldan, A.; Hutchings, G.J. Benzyl alcohol oxidation with Pd-Zn/TiO2: Computational and experimental studies. Sci. Technol. Adv. Mater. 2019, 20, 367–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sankar, M.; He, Q.; Morad, M.; Pritchard, J.; Freakley, S.J.; Edwards, J.K.; Taylor, S.H.; Morgan, D.J.; Carley, A.F.; Knight, D.W.; et al. Synthesis of Stable Ligand-free Gold–Palladium Nanoparticles Using a Simple Excess Anion Method. ACS Nano 2012, 6, 6600–6613. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Cao, Y.; Zhao, L.; Wang, Y.; He, Z.; Xing, W.; Bai, P.; Mintova, S.; Yan, Z. Formation of PdO on Au–Pd bimetallic catalysts and the effect on benzyl alcohol oxidation. J. Catal. 2019, 375, 32–43. [Google Scholar] [CrossRef]
- Li, X.; Feng, J.; Perdjon, M.; Oh, R.; Zhao, W.; Huang, X.; Liu, S. Investigations of supported Au-Pd nanoparticles on synthesized CeO2 with different morphologies and application in solvent-free benzyl alcohol oxidation. Appl. Surf. Sci. 2020, 505, 144473. [Google Scholar] [CrossRef]
- Liu, J.; Zou, S.; Wu, J.; Kobayashi, H.; Zhao, H.; Fan, J. Green catalytic oxidation of benzyl alcohol over Pt/ZnO in base-free aqueous medium at room temperature. Chin. J. Catal. 2018, 39, 1081–1089. [Google Scholar] [CrossRef]
- Pagliaro, M.; Campestrini, S.; Ciriminna, R. Ru-based oxidation catalysis. Chem. Soc. Rev. 2005, 34, 837–845. [Google Scholar] [CrossRef]
- Gore, E.S. Ruthenium Catalysed Oxidations of Organic Compounds. Platin. Met. Rev. 1983, 27, 111–125. [Google Scholar]
- Griffith, W.P. The chemistry of ruthenium oxidation complexes. In Ruthenium Oxidation Complexes: Their Uses as Homogenous Organic Catalysts; Griffith, W.P., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 1–134. [Google Scholar] [CrossRef]
- Dey, S.; Dhal, G.C. Applications of Rhodium and Ruthenium Catalysts for CO Oxidation: An Overview. Polytechnica 2020, 3, 26–42. [Google Scholar] [CrossRef]
- Kamdar, J.M.; Grotjahn, D.B. An Overview of Significant Achievements in Ruthenium-Based Molecular Water Oxidation Catalysis. Molecules 2019, 24, 494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matarrese, R.; Aneggi, E.; Castoldi, L.; Llorca, J.; Trovarelli, A.; Lietti, L. Simultaneous removal of soot and NOx over K-and Ba-doped ruthenium supported catalysts. Catal. Today 2016, 267, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Mao, D.; Xu, Z.; Zheng, S. Strong Ru-CeO2 interaction boosts catalytic activity and stability of Ru supported on CeO2 nanocube for soot oxidation. J. Catal. 2022, 411, 122–134. [Google Scholar] [CrossRef]
- Qin, X.; Chen, X.; Chen, M.; Zhang, J.; He, H.; Zhang, C. Highly efficient Ru/CeO2 catalysts for formaldehyde oxidation at low temperature and the mechanistic study. Catal. Sci. Technol. 2021, 11, 1914–1921. [Google Scholar] [CrossRef]
- Mao, J.X.; Jiang, J.; Wang, H.K.; Yang, L.J.; Wang, Y.N.; Geng, J.; Wang, X.Z.; Hu, Z. Immobilizing Ruthenium Nanoparticles onto Nitrogen-Doped Carbon Nanotubes for Aerobic Oxidation of Benzyl Alcohol under Ambient Pressure. Chin. J. Inorg. Chem. 2012, 28, 2508–2512. [Google Scholar]
- Opre, Z.; Ferri, D.; Krumeich, F.; Mallat, T.; Baiker, A. Aerobic oxidation of alcohols by organically modified ruthenium hydroxyapatite. J. Catal. 2006, 241, 287–295. [Google Scholar] [CrossRef]
- Shan, Y.Y.; Yu, C.; Zhang, X.; Zhang, M.D.; Dong, Q.; Qiu, J.S. Fabrication of a Ru-NiAl layered double hydroxide-oxidized CNT hybrid catalyst for the selective oxidation of benzyl alcohol to benzaldehyde. New Carbon. Mater. 2018, 33, 109–115. [Google Scholar]
- Yang, X.M.; Wang, X.N.; Qiu, J.S. Aerobic oxidation of alcohols over carbon nanotube-supported Ru catalysts assembled at the interfaces of emulsion droplets. Appl. Catal. A Gen. 2010, 382, 131–137. [Google Scholar] [CrossRef]
- Yasu-eda, T.; Kitamura, S.; Ikenaga, N.; Miyake, T.; Suzuki, T. Selective oxidation of alcohols with molecular oxygen over Ru/CaO-ZrO2 catalyst. J. Mol. Catal. A Chem. 2010, 323, 7–15. [Google Scholar] [CrossRef]
- Zadam, B.; Obaid, D.; Mayoufi, A.; Beaunier, P.; Launay, F.; El Berrichi, F.Z. Aerobic oxidation of alcohols using ruthenium supported on DD3 kaolin. Res. Chem. Intermediat. 2019, 45, 1281–1293. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Mizuno, N. Supported Ruthenium Catalyst for the Heterogeneous Oxidation of Alcohols with Molecular Oxygen. Angew. Chem. Int. Ed. 2002, 41, 4538–4542. [Google Scholar] [CrossRef]
- Zhao, J.P.; Hernandez, W.Y.; Zhou, W.J.; Yang, Y.; Vovk, E.I.; Capron, M.; Ordomsky, V. Selective Oxidation of Alcohols to Carbonyl Compounds over Small Size Colloidal Ru Nanoparticles. Chemcatchem 2020, 12, 238–247. [Google Scholar] [CrossRef] [Green Version]
- Goodman, D.W.; Peden, C.; Chen, M. CO oxidation on ruthenium: The nature of the active catalytic surface. Surf. Sci. 2007, 601, 54212. [Google Scholar] [CrossRef]
- Ramirez-Barria, C.S.; Isaacs, M.; Parlett, C.; Wilson, K.; Guerrero-Ruiz, A.; Rodriguez-Ramos, I. Ru nanoparticles supported on N-doped reduced graphene oxide as valuable catalyst for the selective aerobic oxidation of benzyl alcohol. Catal. Today 2020, 357, 8–14. [Google Scholar] [CrossRef]
- Nagy, G.; Gal, T.; Sranko, D.F.; Safran, G.; Maroti, B.; Sajo, I.E.; Schmidt, F.P.; Beck, A. Selective aerobic oxidation of benzyl alcohol on alumina supported Au-Ru and Au-Ir catalysts. Mol. Catal. 2020, 492, 110917. [Google Scholar] [CrossRef]
- Aneggi, E.; Campagnolo, F.; Segato, J.; Zuccaccia, D.; Baratta, W.; Llorca, J.; Trovarelli, A. Solvent-free selective oxidation of benzyl alcohol using Ru loaded ceria-zirconia catalysts. Mol. Catal. 2023, 540, 113049. [Google Scholar] [CrossRef]
- Clarke, C.J.; Tu, W.-C.; Levers, O.; Bröhl, A.; Hallett, J.P. Green and Sustainable Solvents in Chemical Processes. Chem. Rev. 2018, 118, 747–800. [Google Scholar] [CrossRef] [PubMed]
- Anastas, P.T.; Allen, D.T. Twenty-Five Years of Green Chemistry and Green Engineering: The End of the Beginning. Acs Sustain Chem Eng 2016, 4, 5820. [Google Scholar] [CrossRef] [Green Version]
- Anastas, P.; Han, B.; Leitner, W.; Poliakoff, M. “Happy silver anniversary”: Green Chemistry at 25. Green Chem. 2016, 18, 12–13. [Google Scholar] [CrossRef]
- Hessel, V.; Tran, N.N.; Asrami, M.R.; Tran, Q.D.; Van Duc Long, N.; Escribà-Gelonch, M.; Tejada, J.O.; Linke, S.; Sundmacher, K. Sustainability of green solvents—Review and perspective. Green Chem. 2022, 24, 410–437. [Google Scholar] [CrossRef]
- Sheldon, R.A. Sustainable chemistry in practice. Nat. Rev. Methods Prim. 2022, 2, 61. [Google Scholar] [CrossRef]
- Sheldon, R.A. Metrics of Green Chemistry and Sustainability: Past, Present, and Future. ACS Sustain. Chem. Eng. 2018, 6, 32–48. [Google Scholar] [CrossRef] [Green Version]
- Constable, D.J.C.; Curzons, A.D.; Cunningham, V.L. Metrics to ‘green’ chemistry—Which are the best? Green Chem. 2002, 4, 521–527. [Google Scholar] [CrossRef]
- Sheldon, R.A. The E factor 25 years on: The rise of green chemistry and sustainability. Green Chem. 2017, 19, 18–43. [Google Scholar] [CrossRef]
- Mulvihill, M.J.; Beach, E.S.; Zimmerman, J.B.; Anastas, P.T. Green Chemistry and Green Engineering: A Framework for Sustainable Technology Development. Annu. Rev. Environ. Resour. 2011, 36, 271–293. [Google Scholar] [CrossRef] [Green Version]
- Grunwaldt, J.-D.; Caravati, M.; Baiker, A. Oxidic or Metallic Palladium: Which Is the Active Phase in Pd-Catalyzed Aerobic Alcohol Oxidation? J. Phys. Chem. B 2006, 110, 25586–25589. [Google Scholar] [CrossRef]
- Panagiotopoulou, P.; Verykios, X.E. Metal–support interactions of Ru-based catalysts under conditions of CO and CO2 hydrogenation. In Catalysis; The Royal Society of Chemistry: London, UK, 2020; Volume 32, pp. 1–23. [Google Scholar]
- Villani, K.; Kirschhock, C.E.A.; Liang, D.; Van Tendeloo, G.; Martens, J.A. Catalytic Carbon Oxidation Over Ruthenium-Based Catalysts. Angew. Chem. Int. Ed. 2006, 45, 3106–3109. [Google Scholar] [CrossRef] [PubMed]
- Mishra, D.K.; Lee, H.J.; Kim, J.; Lee, H.-S.; Cho, J.K.; Suh, Y.-W.; Yi, Y.; Kim, Y.J. MnCo2O4 spinel supported ruthenium catalyst for air-oxidation of HMF to FDCA under aqueous phase and base-free conditions. Green Chem. 2017, 19, 1619–1623. [Google Scholar] [CrossRef]
- Barbier, J.; Delanoë, F.; Jabouille, F.; Duprez, D.; Blanchard, G.; Isnard, P. Total oxidation of acetic acid in aqueous solutions over noble metal catalysts. J. Catal. 1998, 177, 378–385. [Google Scholar] [CrossRef]
- Ayusheev, A.B.; Taran, O.P.; Seryak, I.A.; Podyacheva, O.Y.; Descorme, C.; Besson, M.; Kibis, L.S.; Boronin, A.I.; Romanenko, A.I.; Ismagilov, Z.R.; et al. Ruthenium nanoparticles supported on nitrogen-doped carbon nanofibers for the catalytic wet air oxidation of phenol. Appl. Catal. B Environ. 2014, 146, 177–185. [Google Scholar] [CrossRef]
- Poirier, M.G.; Trudel, J.; Guay, D. Partial oxidation of methane over ruthenium catalysts. Catal. Lett. 1993, 21, 99–111. [Google Scholar] [CrossRef]
- Mitsui, T.; Tsutsui, K.; Matsui, T.; Kikuchi, R.; Eguchi, K. Support effect on complete oxidation of volatile organic compounds over Ru catalysts. Appl. Catal. B Environ. 2008, 81, 56–63. [Google Scholar] [CrossRef]
- Yi, X.-T.; Li, C.-Y.; Wang, F.; Xu, J.; Xue, B. The solvent-free and aerobic oxidation of benzyl alcohol catalyzed by Pd supported on carbon nitride/CeO2 composites. New J. Chem. 2022, 46, 7108–7117. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, Z.; Ma, C.; Zheng, J.; Zhang, N.; Li, Y.; Chen, B.H. Tuning Surface Properties and Catalytic Performances of Pt–Ru Bimetallic Nanoparticles by Thermal Treatment. Chemcatchem 2015, 7, 245–249. [Google Scholar] [CrossRef]
- Alsaiari, R.; Rizk, M.A.; Musa, E.; Alqahtani, H.; Alqadri, F.; Mohamed, M.; Alsaiari, M.; Alkorbi, A.; Shedaiwa, I.; Alkorbi, F. Supported Ruthenium Catalysts for Oxidation of Benzyl Alcohol under Solvent-Free Conditions. J. Chem. Soc. Pak. 2022, 44, 322–329. [Google Scholar] [CrossRef]
- Jenkins, R.; Snyder, R.L. Introduction to X-ray Powder Diffractometry; Wiley: New York, NY, USA, 1996. [Google Scholar]
Name | Composition | Surface Area (m2/g) | Crystallite Size (nm) a | mmol H2/g |
---|---|---|---|---|
Al | Al2O3 | 184 | 10 | / |
AlRu | 2%Ru/Al2O3 | 176 | 10 | 0.37 |
AlRu-R b | 2%Ru/Al2O3 | 175 | 10 | / |
Zr | ZrO2 | 64 | 14 | / |
ZrRu | 2%Ru/ZrO2 | 58 | 14 | 0.22 |
ZrRu-R b | 2%Ru/ZrO2 | 58 | 14 | / |
Sample | Ru/(Zr + Al) % Atomic | Ru 3d5/2 eV |
---|---|---|
ZrRu | 0.020 | 280.8 (RuO2) |
ZrRu-R | 0.022 | 280.1 (Ru) |
AlRu | 0.011 | 280.8 (RuO2) |
AlRu-R | 0.036 | 280.0 (Ru) |
Catalyst | Catalyst (mg) | Alcohol (mmol) | O2 | T (°C) | Time (h) | Conv (%) | Select (%) | Ref. |
---|---|---|---|---|---|---|---|---|
Pd/SiO2-Al2O3 | 100 | 48.5 | 3 mL/min | 70 | 10 | 97 | 98 | [17] |
Ru | 20 | 27.7 | 10 atm | 100 | 5 | 93 | 90 | [38] |
Au-Pd/CeO2 rod | 50 | 144 | 3 atm | 120 | 3 | 78 | 88 | [21] |
Pd/CN-1.0/CeO2 | 50 | 51.2 | 20 mL/min | 90 | 5 | 77 | >99 | [60] |
AlRu-R | 200 | 9.6 | 1 atm | 90 | 24 | 62 | 100 | this study |
CZRu | 200 | 9.6 | 1 atm | 90 | 24 | 61 | 100 | [42] |
1%Au–Pd/TiO2 | 20 | 18.5 | 1 atm | 120 | 1 | 56 | 74 | [19] |
1%Pd–Zn /TiO2 | 20 | 18.5 | 1 atm | 120 | 1 | 55 | 81 | [18] |
PtRu/C | 100 | 193 | 10 atm | 100 | 8 | 17 | 99 | [61] |
Ru/TiO2 | 120 | 96.6 | 1 atm | 110 | 3 | 10 | 98 | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aneggi, E.; Campagnolo, F.; Zuccaccia, D.; Baratta, W.; Llorca, J.; Trovarelli, A. Sustainable Solvent-Free Selective Oxidation of Benzyl Alcohol Using Ru(0) Supported on Alumina. Inorganics 2023, 11, 177. https://doi.org/10.3390/inorganics11050177
Aneggi E, Campagnolo F, Zuccaccia D, Baratta W, Llorca J, Trovarelli A. Sustainable Solvent-Free Selective Oxidation of Benzyl Alcohol Using Ru(0) Supported on Alumina. Inorganics. 2023; 11(5):177. https://doi.org/10.3390/inorganics11050177
Chicago/Turabian StyleAneggi, Eleonora, Filippo Campagnolo, Daniele Zuccaccia, Walter Baratta, Jordi Llorca, and Alessandro Trovarelli. 2023. "Sustainable Solvent-Free Selective Oxidation of Benzyl Alcohol Using Ru(0) Supported on Alumina" Inorganics 11, no. 5: 177. https://doi.org/10.3390/inorganics11050177
APA StyleAneggi, E., Campagnolo, F., Zuccaccia, D., Baratta, W., Llorca, J., & Trovarelli, A. (2023). Sustainable Solvent-Free Selective Oxidation of Benzyl Alcohol Using Ru(0) Supported on Alumina. Inorganics, 11(5), 177. https://doi.org/10.3390/inorganics11050177