Nitrogen-Doped Carbon Flowers with Fe and Ni Dual Metal Centers for Effective Electroreduction of Oxygen
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals
3.2. Sample Preparation
3.3. Characterization
3.4. Electrochemical Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ozoemena, K.I.; Chen, S. Nanomaterials for Fuel Cell Catalysis, 1st ed.; Nanostructure Science and Technology Series; Springer International Publishing: Cham, Switzerland, 2016; 583p. [Google Scholar] [CrossRef]
- Wang, W.; Lei, B.; Guo, S.J. Engineering Multimetallic Nanocrystals for Highly Efficient Oxygen Reduction Catalysts. Adv. Energy Mater. 2016, 6, 1600236. [Google Scholar] [CrossRef]
- He, G.Q.; Song, Y.; Liu, K.; Walter, A.; Chen, S.; Chen, S.W. Oxygen Reduction Catalyzed by Platinum Nanoparticles Supported on Graphene Quantum Dots. ACS Catal. 2013, 3, 831–838. [Google Scholar] [CrossRef]
- Ustarroz, J.; Ornelas, I.M.; Zhang, G.H.; Perry, D.; Kang, M.; Bentley, C.L.; Walker, M.; Unwin, P.R. Mobility and Poisoning of Mass-Selected Platinum Nanoclusters during the Oxygen Reduction Reaction. ACS Catal. 2018, 8, 6775–6790. [Google Scholar] [CrossRef] [Green Version]
- Niu, W.H.; Li, L.G.; Chen, S.W. Recent Progress in Template-Assisted Synthesis of Nitrogen-Doped Porous Carbons for Oxygen Electroreduction. J. Electrochem. 2017, 23, 110–122. [Google Scholar] [CrossRef]
- Peng, Y.; Lu, B.Z.; Chen, S.W. Carbon-Supported Single Atom Catalysts for Electrochemical Energy Conversion and Storage. Adv. Mater. 2018, 30, 1801995. [Google Scholar] [CrossRef]
- Wang, Y.X.; Su, H.Y.; He, Y.H.; Li, L.G.; Zhu, S.Q.; Shen, H.; Xie, P.F.; Fu, X.B.; Zhou, G.Y.; Feng, C.; et al. Advanced Electrocatalysts with Single-Metal-Atom Active Sites. Chem. Rev. 2020, 120, 12217–12314. [Google Scholar] [CrossRef]
- Behan, J.A.; Mates-Torres, E.; Stamatin, S.N.; Dominguez, C.; Iannaci, A.; Fleischer, K.; Hoque, M.K.; Perova, T.S.; Garcia-Melchor, M.; Colavita, P.E. Untangling Cooperative Effects of Pyridinic and Graphitic Nitrogen Sites at Metal-Free N-Doped Carbon Electrocatalysts for the Oxygen Reduction Reaction. Small 2019, 15, 1902081. [Google Scholar] [CrossRef]
- Wang, N.; Lu, B.Z.; Li, L.G.; Niu, W.H.; Tang, Z.H.; Kang, X.W.; Chen, S.W. Graphitic Nitrogen Is Responsible for Oxygen Electroreduction on Nitrogen-Doped Carbons in Alkaline Electrolytes: Insights from Activity Attenuation Studies and Theoretical Calculations. ACS Catal. 2018, 8, 6827–6836. [Google Scholar] [CrossRef]
- Niu, W.H.; Li, L.G.; Liu, X.J.; Wang, N.; Liu, J.; Zhou, W.J.; Tang, Z.H.; Chen, S.W. Mesoporous N-Doped Carbons Prepared with Thermally Removable Nanoparticle Templates: An Efficient Electrocatalyst for Oxygen Reduction Reaction. J. Am. Chem. Soc. 2015, 137, 5555–5562. [Google Scholar] [CrossRef]
- Lu, B.Z.; Smart, T.J.; Qin, D.D.; Lu, J.E.; Wang, N.; Chen, L.M.; Peng, Y.; Ping, Y.; Chen, S.W. Nitrogen and Iron-Codoped Carbon Hollow Nanotubules as High-Performance Catalysts toward Oxygen Reduction Reaction: A Combined Experimental and Theoretical Study. Chem. Mater. 2017, 29, 5617–5628. [Google Scholar] [CrossRef]
- Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S.Z. Building up a Picture of the Electrocatalytic Nitrogen Reduction Activity of Transition Metal Single-Atom Catalysts. J. Am. Chem. Soc. 2019, 141, 9664–9672. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.C.; Zou, L.L.; Sun, L.M.; Zhang, K.X.; Liu, Z.; Li, Y.W.; Li, C.X.; Zou, R.Q.; Yu, J.H.; Xu, Q. Single-Atom Iron Catalysts on Overhang-Eave Carbon Cages for High-Performance Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2020, 59, 7384–7389. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Lu, B.Z.; Chen, Y.; Wang, Y.; Zhang, Y.Q.; Davenport, J.L.; Chen, A.P.; Pao, C.W.; Liu, M.; Sun, Z.F.; et al. Nanowrinkled Carbon Aerogels Embedded with FeNx Sites as Effective Oxygen Electrodes for Rechargeable Zinc-Air Battery. Research 2019, 2019, 6813585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, B.Z.; Liu, Q.M.; Chen, S.W. Electrocatalysis of Single-Atom Sites: Impacts of Atomic Coordination. ACS Catal. 2020, 10, 7584–7618. [Google Scholar] [CrossRef]
- Lefevre, M.; Proietti, E.; Jaouen, F.; Dodelet, J.P. Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells. Science 2009, 324, 71–74. [Google Scholar] [CrossRef]
- Xiao, M.L.; Chen, Y.T.; Zhu, J.B.; Zhang, H.; Zhao, X.; Gao, L.Q.; Wang, X.; Zhao, J.; Ge, J.J.; Jiang, Z.; et al. Climbing the Apex of the ORR Volcano Plot via Binuclear Site Construction: Electronic and Geometric Engineering. J. Am. Chem. Soc. 2019, 141, 17763–17770. [Google Scholar] [CrossRef]
- Mercado, R.; Wahl, C.; Lu, J.E.; Zhang, T.J.; Lu, B.Z.; Zhang, P.; Lu, J.N.Q.; Allen, A.; Zhang, J.Z.; Chen, S.W. Nitrogen-Doped Porous Carbon Cages for Electrocatalytic Reduction of Oxygen: Enhanced Performance with Iron and Cobalt Dual Metal Centers. ChemCatChem 2020, 12, 3230–3239. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, S.Q.; Nichols, F.; Bridges, F.; Kan, S.T.; He, T.; Zhang, Y.; Chen, S.W. Carbon aerogels with atomic dispersion of binary iron-cobalt sites as effective oxygen catalysts for flexible zinc-air batteries. J. Mater. Chem. A 2020, 8, 11649–11655. [Google Scholar] [CrossRef]
- Yuan, S.; Cui, L.L.; Dou, Z.Y.; Ge, X.; He, X.Q.; Zhang, W.; Asefa, T. Nonprecious Bimetallic Sites Coordinated on N-Doped Carbons with Efficient and Durable Catalytic Activity for Oxygen Reduction. Small 2020, 16, 2000742. [Google Scholar] [CrossRef]
- Sarkar, S.; Biswas, A.; Purkait, T.; Das, M.; Kamboj, N.; Dey, R.S. Unravelling the Role of Fe-Mn Binary Active Sites Electrocatalyst for Efficient Oxygen Reduction Reaction and Rechargeable Zn-Air Batteries. Inorg. Chem. 2020, 59, 5194–5205. [Google Scholar] [CrossRef]
- Zhu, Z.J.; Yin, H.J.; Wang, Y.; Chuang, C.H.; Xing, L.; Dong, M.Y.; Lu, Y.R.; Casillas-Garcia, G.; Zheng, Y.L.; Chen, S.; et al. Coexisting Single-Atomic Fe and Ni Sites on Hierarchically Ordered Porous Carbon as a Highly Efficient ORR Electrocatalyst. Adv. Mater. 2020, 32, 2004670. [Google Scholar] [CrossRef] [PubMed]
- Koshy, D.M.; Chen, S.C.; Lee, D.U.; Stevens, M.B.; Abdellah, A.M.; Dull, S.M.; Chen, G.; Nordlund, D.; Gallo, A.; Hahn, C.; et al. Understanding the Origin of Highly Selective CO2 Electroreduction to CO on Ni,N-doped Carbon Catalysts. Angew. Chem. Int. Ed. 2020, 59, 4043–4050. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.C.; Koshy, D.M.; Tsao, Y.; Pfattner, R.; Yan, X.Z.; Feng, D.W.; Bao, Z.A. Highly Tunable and Facile Synthesis of Uniform Carbon Flower Particles. J. Am. Chem. Soc. 2018, 140, 10297–10304. [Google Scholar] [CrossRef] [PubMed]
- Xing, Z.Y.; Qi, Y.T.; Tian, Z.Q.; Xu, J.; Yuan, Y.F.; Bommier, C.; Lu, J.; Tong, W.; Jiang, D.E.; Ji, X.L. Identify the Removable Substructure in Carbon Activation. Chem. Mater. 2017, 29, 7288–7295. [Google Scholar] [CrossRef]
- He, T.; Peng, Y.; Jia, Q.X.; Lu, J.E.; Liu, Q.M.; Mercado, R.; Chen, Y.; Nichols, F.; Zhang, Y.; Chen, S.W. Nanocomposites Based on Ruthenium Nanoparticles Supported on Cobalt and Nitrogen-Codoped Graphene Nanosheets as Bifunctional Catalysts for Electrochemical Water Splitting. ACS Appl. Mater. Interfaces 2019, 11, 46912–46919. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.M.; Peng, Y.; Li, Q.X.; He, T.; Morris, D.; Nichols, F.; Mercado, R.; Zhang, P.; Chen, S.W. Atomic Dispersion and Surface Enrichment of Palladium in Nitrogen-Doped Porous Carbon Cages Lead to High-Performance Electrocatalytic Reduction of Oxygen. ACS Appl. Mater. Interfaces 2020, 12, 17641–17650. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Zhang, Y.Q.; Chen, Y.; Zhang, Z.Z.; Wang, H.Y.; Hu, Y.F.; Liu, M.; Pao, C.W.; Chen, J.L.; Chang, L.Y.; et al. Single iron atoms stabilized by microporous defects of biomass-derived carbon aerogels as high-performance cathode electrocatalysts for aluminum-air batteries. J. Mater. Chem. A 2019, 7, 20840–20846. [Google Scholar] [CrossRef]
- Morales, D.M.; Kazakova, M.A.; Dieckhofer, S.; Selyutin, A.G.; Golubtsov, G.V.; Schuhmann, W.; Masa, J. Trimetallic Mn-Fe-Ni Oxide Nanoparticles Supported on Multi-Walled Carbon Nanotubes as High-Performance Bifunctional ORR/OER Electrocatalyst in Alkaline Media. Adv. Funct. Mater. 2020, 30, 1905992. [Google Scholar] [CrossRef]
- Liu, C.; Li, H.; Chen, J.S.; Yu, Z.X.; Ru, Q.; Li, S.Z.; Henkelman, G.; Wei, L.; Chen, Y. 3d Transition-Metal-Mediated Columbite Nanocatalysts for Decentralized Electrosynthesis of Hydrogen Peroxide. Small 2021, 17, 2007249. [Google Scholar] [CrossRef]
- Grosvenor, A.P.; Kobe, B.A.; Biesinger, M.C.; McIntyre, N.S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564–1574. [Google Scholar] [CrossRef]
- Grosvenor, A.P.; Biesinger, M.C.; Smart, R.S.; McIntyre, N.S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 2006, 600, 1771–1779. [Google Scholar] [CrossRef]
- Zhong, H.X.; Wang, J.; Zhang, Q.; Meng, F.L.; Bao, D.; Liu, T.; Yang, X.Y.; Chang, Z.W.; Yan, J.M.; Zhang, X.B. In Situ Coupling FeM (M = Ni, Co) with Nitrogen-Doped Porous Carbon toward Highly Efficient Trifunctional Electrocatalyst for Overall Water Splitting and Rechargeable Zn-Air Battery. Adv. Sustain. Syst. 2017, 1, 1700020. [Google Scholar] [CrossRef]
- Cheng, Y.; He, S.; Veder, J.P.; De Marco, R.; Yang, S.Z.; Jiang, S. Atomically Dispersed Bimetallic FeNi Catalysts as Highly Efficient Bifunctional Catalysts for Reversible Oxygen Evolution and Oxygen Reduction Reactions. ChemElectroChem 2019, 6, 3478–3487. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mercado, R.; Nichols, F.; Chen, S. Nitrogen-Doped Carbon Flowers with Fe and Ni Dual Metal Centers for Effective Electroreduction of Oxygen. Inorganics 2022, 10, 36. https://doi.org/10.3390/inorganics10030036
Mercado R, Nichols F, Chen S. Nitrogen-Doped Carbon Flowers with Fe and Ni Dual Metal Centers for Effective Electroreduction of Oxygen. Inorganics. 2022; 10(3):36. https://doi.org/10.3390/inorganics10030036
Chicago/Turabian StyleMercado, Rene, Forrest Nichols, and Shaowei Chen. 2022. "Nitrogen-Doped Carbon Flowers with Fe and Ni Dual Metal Centers for Effective Electroreduction of Oxygen" Inorganics 10, no. 3: 36. https://doi.org/10.3390/inorganics10030036
APA StyleMercado, R., Nichols, F., & Chen, S. (2022). Nitrogen-Doped Carbon Flowers with Fe and Ni Dual Metal Centers for Effective Electroreduction of Oxygen. Inorganics, 10(3), 36. https://doi.org/10.3390/inorganics10030036