Special Issue on Photonic Jet: Science and Application
- Review on PJ-based trapping, sensing, and imaging
- Photonic hooks (PHs)
- Modulation of PJ beams
- Super-resolution imaging
- Scanning nanopatterning
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luk’yanchuk, B.; Zheng, Y.W.; Lu, Y. Laser cleaning of solid surface: Optical resonance and near-field effects. High-Power Laser Ablation III 2000, 4065, 576–587. [Google Scholar]
- Lu, Y.F.; Zhang, L.; Song, W.D.; Zheng, Y.W.; Luk’yanchuk, B.S. Laser writing of a subwavelength structure on silicon (100) surfaces with particle-enhanced optical irradiation. JETP Lett. 2000, 72, 457–459. [Google Scholar] [CrossRef]
- Münzer, H.J.; Mosbacher, M.; Bertsch, M.; Zimmermann, J.; Leiderer, P.; Boneberg, J. Local field enhancement effects for nanostructuring of surfaces. J. Microsc. 2001, 202, 129–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaoui, N.; Solis, J.; Afonso, C.N.; Fourrier, T.; Muehlberger, T.; Schrems, G.; Mosbacher, M.; Bäuerle, D.; Bertsch, M.; Leiderer, P. A high-sensitivity in situ optical diagnostic technique for laser cleaning of transparent substrates. Appl. Phys. A 2003, 76, 767–771. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Taflove, A.; Backman, V. Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique. Opt. Express 2004, 12, 1214. [Google Scholar] [CrossRef]
- Lecler, S.; Takakura, Y.; Meyrueis, P. Properties of a three-dimensional photonic jet. Opt. Lett. 2005, 30, 2641–2643. [Google Scholar] [CrossRef]
- Minin, I.V.; Minin, O.V. Diffractive Optics and Nanophotonics: Resolution Below the Diffraction Limit; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Minin, I.V.; Minin, O.V. Photonics of Isolated Dielectric Particles of Arbitrary Three-Dimensional Shape—A New Direction in Optical Information Technologies. Vestnic NSU 2014, 12, 4. [Google Scholar]
- Minin, I.V.; Minin, O.V.; Geints, Y. Localized EM and photonic jets from non-spherical and non-symmetrical dielectric mesoscale objects: Brief review. Ann. Phys. 2015, 527, 491. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.B.; Guo, W.; Li, L.; Luk’yanchuk, B.; Khan, A.; Liu, Z.; Chen, Z.C.; Hong, M.H. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat. Commun. 2011, 2, 218. [Google Scholar] [CrossRef] [Green Version]
- Monks, J.N.; Yan, B.; Hawkins, N.; Vollrath, F.; Wang, Z. Spider Silk: Mother Nature’s Bio-Superlens. Nano Lett. 2016, 16, 5842–5845. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.; Yan, B.; Wang, Z.; Wu, L. Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies. Sci. Adv. 2016, 2, e1600901. [Google Scholar] [CrossRef] [Green Version]
- Yue, L.Y.; Minin, O.V.; Wang, Z.B.; Monks, J.N.; Salin, A.S.; Minin, I.V. Photonic hook: A new curved light beam. Opt. Lett. 2018, 43, 771–774. [Google Scholar] [CrossRef]
- Minin, I.V.; Minin, O.V. Terahertz artificial dielectric cuboid lens on substrate for super-resolution images. Opt. Quantum Electron. 2017, 49, 326. [Google Scholar] [CrossRef]
- Li, Y.C.; Liu, X.S.; Li, B.J. Single-cell biomagnifier for optical nanoscopes and nanotweezers. Light Sci. Appl. 2019, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- Yan, B.; Song, Y.; Yang, X.B.; Xiong, D.X.; Wang, Z.B. Unibody microscope objective tipped with a microsphere: Design, fabrication, and application in subwavelength imaging. Appl. Opt. 2020, 59, 2641–2648. [Google Scholar] [CrossRef]
- Yan, B.; Yue, L.Y.; Monks, J.N.; Yang, X.B.; Xiong, D.X.; Jiang, C.L.; Wang, Z.B. Superlensing plano-convex-microsphere (PCM) lens for direct laser nano-marking and beyond. Opt. Lett. 2020, 45, 1168–1171. [Google Scholar] [CrossRef]
- Chen, X.X.; Wu, T.L.; Gong, Z.Y.; Guo, J.H.; Liu, X.S.; Zhang, Y.; Li, Y.C.; Ferraro, P.; Li, B.J. Lipid droplets as endogenous intracellular microlenses. Light Sci. Appl. 2021, 10, 242. [Google Scholar] [CrossRef]
- Guo, J.H.; Wu, Y.; Gong, Z.Y.; Chen, X.X.; Cao, F.; Kala, S.; Qiu, Z.H.; Zhao, X.Y.; Chen, J.J.; He, D.M.; et al. Photonic Nanojet-Mediated Optogenetics. Adv. Sci 2022, 9, 2104140. [Google Scholar] [CrossRef]
- Luk’yanchuk, B.S.; Paniagua-Domínguez, R.; Minin, I.V.; Minin, O.V.; Wang, Z. Refractive index less than two: Photonic nanojets yesterday, today and tomorrow. Opt. Mater. Express 2017, 7, 1820–1847. [Google Scholar] [CrossRef]
- Wang, Z.; Luk’yanchuk, B. Super-resolution imaging and microscopy by dielectric particle-lenses. In Label-Free Super-Resolution Microscopy; Astratov, V., Ed.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Minin, I.V.; Liu, C.Y.; Geints, Y.E.; Minin, O.V. Recent Advances in Integrated Photonic Jet-Based Photonics. Photonics 2020, 7, 41. [Google Scholar] [CrossRef]
- Li, H.; Song, W.Y.; Zhao, Y.; Cao, Q.; Wen, A.H. Optical Trapping, Sensing, and Imaging by Photonic Nanojets. Photonics 2021, 8, 434. [Google Scholar] [CrossRef]
- Tang, F.; Shang, Q.Q.; Yang, S.L.; Wang, T.; Melinte, S.; Zuo, C.; Ye, R. Generation of Photonic Hooks from Patchy Microcylinders. Photonics 2021, 8, 466. [Google Scholar] [CrossRef]
- Qingqing, Q.Q.; Tang, F.; Yu, L.Y.; Oubaha, H.; Caina, D.; Yang, S.L.; Melinte, S.; Zuo, C.; Wang, Z.B.; Ye, R. Super-Resolution Imaging with Patchy Microspheres. Photonics 2021, 8, 513. [Google Scholar]
- Yue, L.Y.; Wang, Z.B.; Yan, B.; Xie, Y.; Geints, Y.E.; Minin, O.V.; Minin, I.V. Near-Field Light-Bending Photonic Switch: Physics of Switching Based on Three-Dimensional Poynting Vector Analysis. Photonics 2022, 9, 154. [Google Scholar] [CrossRef]
- Sergeeva, K.A.; Sergeev, A.A.; Minin, O.V.; Minin, I.V. A Closer Look at Photonic Nanojets in Reflection Mode: Control of Standing Wave Modulation. Photonics 2021, 8, 54. [Google Scholar] [CrossRef]
- Lin, C.B.; Lin, Y.H.; Chen, W.Y.; Liu, C.Y. Photonic Nanojet Modulation Achieved by a Spider-Silk-Based Metal-Dielectric Dome Microlens. Photonics 2021, 8, 334. [Google Scholar] [CrossRef]
- Bouaziz, D.; Chabrol, G.; Guessoum, A.; Demagh, N.E.; Lecler, S. Photonic Jet-Shaped Optical Fiber Tips versus Lensed Fibers. Photonics 2021, 8, 373. [Google Scholar] [CrossRef]
- Boudoukha, R.; Perrin, S.; Demagh, A.; Montgomery, P.; Demagh, N.E.; Lecler, S. Near-to Far-Field Coupling of Evanescent Waves by Glass Microspheres. Photonics 2021, 8, 73. [Google Scholar] [CrossRef]
- Dhama, R.; Yan, B.; Palego, C.; Wang, Z.B. Super-Resolution Imaging by Dielectric Superlenses: TiO2 Metamaterial Superlens versus BaTiO3 Superlens. Photonics 2021, 8, 222. [Google Scholar] [CrossRef]
- Luo, H.; Yu, H.B.; Wen, Y.D.; Zheng, J.N.; Wang, X.D.; Liu, L.Q. Direct Writing of Silicon Oxide Nanopatterns Using Photonic Nanojets. Photonics 2021, 8, 152. [Google Scholar] [CrossRef]
- Minin, O.V.; Minin, I.V. The Photonic Hook: From Optics to Acoustics and Plasmonics; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Minin, I.V.; Minin, O.V.; Katyba, G.M.; Chernomyrdin, N.V.; Kurlov, V.N.; Zaytsev, K.I.; Yue, L.; Wang, Z.; Christodoulides, D.N. Experimental observation of a photonic hook. Appl. Phys. Lett. 2019, 114, 031105. [Google Scholar] [CrossRef]
- Minin, I.V.; Minin, O.V.; Liu, C.Y.; Wei, H.D.; Geints, Y.E.; Karabchevsky, A. Experiments demonstration of a tunable photonic hook by a partially illuminated dielectric microcylinder. Opt. Lett. 2020, 45, 4899–4902. [Google Scholar] [CrossRef]
- Geints, Y.E.; Minin, O.V.; Yue, L.Y.; Minin, I.V. Wavelength-Scale Photonic Space Switch Proof-of-Concept Based on Photonic Hook Effect. Ann. Phys. 2021, 533, 2100192. [Google Scholar] [CrossRef]
- Yue, L.Y.; Yan, B.; Monks, J.N.; Wang, Z.B.; Tung, N.T.; Lam, V.D.; Minin, O.V.; Minin, I.V. Production of photonic nanojets by using pupil-masked 3D dielectric cuboid. J. Phys. D Appl. Phys. 2017, 50, 175102. [Google Scholar] [CrossRef]
- Eti, N.; Giden, I.H.; Hayran, Z.; Rezaei, B.; Kurt, H. Manipulation of photonic nanojet using liquid crystals for elliptical and circular core-shell variations. J. Mod. Opt. 2017, 64, 1566–1577. [Google Scholar] [CrossRef]
- Yue, L.; Yan, B.; Wang, Z. Photonic nanojet of cylindrical metalens assembled by hexagonally arranged nanofibers for breaking the diffraction limit. Opt. Lett. 2016, 41, 1336–1339. [Google Scholar] [CrossRef]
- Wang, Z.; Luk’yanchuk, B.; Wu, L. Roadmap for label-free imaging with microsphere superlens and metamaterial solid immersion lens. arXiv 2021, arXiv:2108.09153. [Google Scholar]
- Minin, O.V.; Minin, I.V. Terahertz microscopy with oblique subwavelength illumination in near field. Quant. Electron. 2022, 52, 13–16. [Google Scholar] [CrossRef]
- Guo, W.; Wang, Z.B.; Li, L.; Whitehead, D.J.; Luk’yanchuk, B.S.; Liu, Z. Near-field laser parallel nanofabrication of arbitrary-shaped patterns. Appl. Phys. Lett. 2007, 90, 243101. [Google Scholar] [CrossRef]
- Minin, I.V.; Minin, O.V.; Cao, Y.; Yan, B.; Wang, Z.; Luk’yanchuk, B. Photonic lenses with whispering gallery waves at Janus particles. Opto-Electron. Sci. 2022, 1, 21008. [Google Scholar] [CrossRef]
- Zhang, P.C.; Yan, B.; Gu, G.Q.; Yu, Z.T.; Chen, X.; Wang, Z.B.; Yang, H. Localized photonic nanojet based sensing platform for highly efficient signal amplification and quantitative biosensing. Sens. Actuators B-Chem. 2022, 357, 131401. [Google Scholar] [CrossRef]
- Luk’yanchuk, B.; Bekirov, A.R.; Wang, Z.B.; Minin, I.V.; Minin, O.V.; Fedyanin, A.A. Optical phenomena in dielectric spheres several light wavelengths in size: A review. Phys. Wave Phenom. 2022, 30, 217–241. [Google Scholar]
- Minin, O.V.; Minin, I.V. Optical Phenomena in Mesoscale Dielectric Particles. Photonics 2021, 8, 591. [Google Scholar] [CrossRef]
- Minin, I.V.; Minin, O.V.; Luk’yanchuk, B.S. Mesotronic era of dielectric photonics. Mesophotonics Phys. Syst. Mesoscale 2022, 12152, 89–93. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Luk’yanchuk, B.; Minin, I.V. Special Issue on Photonic Jet: Science and Application. Photonics 2022, 9, 540. https://doi.org/10.3390/photonics9080540
Wang Z, Luk’yanchuk B, Minin IV. Special Issue on Photonic Jet: Science and Application. Photonics. 2022; 9(8):540. https://doi.org/10.3390/photonics9080540
Chicago/Turabian StyleWang, Zengbo, Boris Luk’yanchuk, and Igor V. Minin. 2022. "Special Issue on Photonic Jet: Science and Application" Photonics 9, no. 8: 540. https://doi.org/10.3390/photonics9080540
APA StyleWang, Z., Luk’yanchuk, B., & Minin, I. V. (2022). Special Issue on Photonic Jet: Science and Application. Photonics, 9(8), 540. https://doi.org/10.3390/photonics9080540