A Review: The Functional Materials-Assisted Terahertz Metamaterial Absorbers and Polarization Converters
Abstract
:1. Introduction
2. Graphene-Based Terahertz Metamaterial Absorbers and Polarization Converters
2.1. Graphene-Based Terahertz Metamaterial Absorber
2.1.1. Single-Frequency/Band Terahertz Metamaterial Absorber
2.1.2. Dual-/Multi-Band Terahertz Metamaterial Absorbers
2.1.3. Broad-Band Terahertz Metamaterial Absorbers
2.2. Graphene-Based Terahertz Metamaterial Polarization Converter
2.2.1. Graphene-Based Single-Function Metamaterial Polarization Conversion
2.2.2. Graphene-Based Multi-Functional Metamaterial Polarization Convention
3. VO2-Based Terahertz Metamaterial Absorber and Polarization Converter
3.1. VO2-Based Terahertz Metamaterial Absorber
3.2. VO2-Based Terahertz Metamaterial Polarization Converter
3.3. VO2-Based Terahertz Metamaterial Multi-Functional Structures
4. Dirac Semimetal-Based Terahertz Metamaterial Absorber and Polarization Converter
4.1. DSM-Based Terahertz Metamaterial Absorber
4.2. DSM-Based Terahertz Polarization Converter
4.3. DSM-Based Terahertz Metamaterial Multi-Functional Structure
5. Combination of Different Functional Materials
6. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, J.; Fan, F.; Chang, S. Recent progress on graphene-functionalized metasurfaces for tunable phase and polarization control. Nanomaterials 2019, 9, 398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, S.Y.; Wang, T.; Liu, T.T.; Zhou, C.B.; Jiang, X.Y.; Zhang, J.F. Active metamaterials and metadevices: A review. J. Phys. D Appl. Phys. 2020, 53, 503002. [Google Scholar] [CrossRef]
- Liu, Z.H.; Li, X.J.; Yin, J.; Hong, Z. Asymmetric all Silicon micro-antenna array for high angle beam bending in terahertz band. IEEE Photonics J. 2019, 11, 5900509. [Google Scholar] [CrossRef]
- Li, X.J.; Liu, Z.H.; Yan, D.X.; Li, J.N.; Li, J.S.; Qiu, G.H.; Hou, X.M.; Cheng, G. Experimental demonstration of 3D printed terahertz polarization-insensitive flat devices based on low-index meta-gratings. J. Phys. D Appl. Phys. 2020, 53, 505301. [Google Scholar] [CrossRef]
- Zhao, X.L.; Yuan, C.; Lv, W.H.; Xu, S.L.; Yao, J.Q. Plasmon-Induced Transparency in Metamaterial Based on Graphene and Split-Ring Resonators. IEEE Photonics Tech. Lett. 2015, 27, 1321–1324. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Z.; Yang, H.; Wen, L.; Yi, Z.; Zhou, Z.; Dai, B.; Zhang, J.; Wu, X.; Wu, P. Multi-mode surface plasmon resonance absorber based on dart-type single-layer graphene. RSC Adv. 2022, 12, 7821–7829. [Google Scholar] [CrossRef]
- Yang, T.; Liu, X.M.; Wang, C.; Liu, Z.T.; Sun, J.B.; Zhou, J. Polarization conversion in terahertz planar metamaterial composed of split-ring resonators. Opt. Commun. 2020, 472, 125897. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.; Smith, D.; Padilla, W. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef]
- Hao, J.M.; Wang, J.; Liu, X.L.; Padilla, W.J.; Zhou, L.; Qiu, M. High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 2010, 96, 251104. [Google Scholar] [CrossRef]
- Lapine, M.; Powell, D.; Gorkunov, M.; Shadrivov, I.; Marqu’es, R.; Kivshar, Y. Structural tunability in metamaterials. Appl. Phys. Lett. 2009, 95, 084105. [Google Scholar] [CrossRef] [Green Version]
- Tao, H.; Strikwerda, A.; Fan, K.; Padilla, W.J.; Zhang, X.; Averitt, R.D. Reconfigurable Terahertz Metamaterials. Phys. Rev. Lett. 2009, 103, 147401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, W.M.; Liu, A.Q.; Zhang, X.M.; Tsai, D.P.; Bourouina, T.; Teng, J.H.; Zhang, X.H.; Guo, H.C.; Tanoto, H.; Mei, T.; et al. Switchable Magnetic Metamaterials Using Micromachining Processes. Adv. Mater. 2011, 23, 1792–1796. [Google Scholar] [CrossRef] [PubMed]
- Lapine, M.; Shadrivov, I.V.; Powell, D.A.; Kivshar, Y.S. Magnetoelastic metamaterials. Nat. Mater. 2012, 11, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Valente, J.; Ou, J.Y.; Plum, E.; Youngs, I.J.; Zheludev, N.I. Reconfiguring photonic metamaterials with currents and magnetic fields. Appl. Phys. Lett. 2015, 106, 111905. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Xiao, R.-W.; Ge, S.-J.; Shen, Z.-X.; Lü, P.; Hu, W.; Lu, Y.-Q. Research progress of terahertz liquid crystal materials and devices. Acta Phys. Sin. 2019, 68, 084205. [Google Scholar] [CrossRef]
- He, Z.H.; Lu, H.; Zhao, J.L. Polarization independent and non-reciprocal absorption in multi-layer anisotropic black phosphorus metamaterials. Opt. Express 2021, 29, 21336–21347. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.Y.; Ou, Y.H.; He, G.L.; Zhai, X.; Lim, H.J.; Wang, L.L. Dynamically tunable narrowband anisotropic total absorption in monolayer black phosphorus based on critical coupling. Opt. Express 2021, 29, 2909–2919. [Google Scholar] [CrossRef]
- He, X.Y.; Liu, F.; Lin, F.T.; Shi, W.Z. Tunable terahertz Dirac semimetals metamaterials. J. Phys. D Appl. Phys. 2021, 54, 235103. [Google Scholar] [CrossRef]
- Ban, S.H.; Meng, H.Y.; Zhai, X.; Xue, X.X.; Lin, Q.; Li, H.J.; Wang, L.L. Tunable triple-band and broad-band convertible metamaterial absorber with bulk Dirac semimetal and vanadium dioxide. J. Phys. D Appl. Phys. 2021, 54, 174001. [Google Scholar] [CrossRef]
- Liu, C.; Bai, Y.; Zhou, J.; Zhao, Q.; Qiao, L. A Review of Graphene Plasmons and its Combination with Metasurface. J. Korean Ceram. Soc. 2017, 54, 349–365. [Google Scholar] [CrossRef] [Green Version]
- Nemati, A.; Wang, Q.; Hong, M.; Teng, J. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv. 2018, 1, 180009. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Fal, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar]
- Zamzam, P.; Rezaei, P.; Khatami, S.A. Quad-band polarization-insensitive metamaterial perfect absorber based on bilayer graphene metasurface. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 128, 114621. [Google Scholar] [CrossRef]
- Zhang, E.L.; Zhou, Q.; Shen, J. Resistive switching device based on highmobility graphene and its switching mechanism. J. Phys. Conf. Seri. 2019, 1168, 022074. [Google Scholar] [CrossRef]
- Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberge, G.; Hone, J.; Kim, P.; Stormer, H.L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Banszerus, L.; Schmitz, M.; Engels, S.; Dauber, J.; Oellers, M.; Haupt, F.; Watanabe, K.; Taniguchi, T.; Beschoten, B.; Stampfer, C. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 2015, 1, e1500222. [Google Scholar] [CrossRef] [Green Version]
- Papasimakis, N.; Luo, Z.Q.; Shen, Z.X.; Angelis, F.D.; Fabrizio, E.D.; Nikolaenko, A.E.; Zheludev, N.I. Graphene in a photonic metamaterial. Opt. Express 2010, 18, 8353–8359. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Yao, Z.H.; Hu, F.R.; Wang, Q.; Yu, L.L.; Xu, X.L. Manipulating magnetoinductive coupling with graphene-based plasmonic metamaterials in THz region. Plasmonics 2006, 11, 963–970. [Google Scholar] [CrossRef]
- Xiong, H.; Jiang, Y.N.; Yang, C.; Zeng, X.P. Frequency-tunable terahertz absorber with wire-based metamaterial and graphene. J. Phys. D Appl. Phys. 2017, 51, 015102. [Google Scholar] [CrossRef]
- He, X.J.; Yao, Y.; Zhu, Z.H.; Chen, M.H.; Zhu, L.; Yang, W.L.; Yang, Y.Q.; Wu, F.M.; Jiang, J.X. Active graphene metamaterial absorber for terahertz absorption bandwidth, intensity and frequency control. Opt. Mater. Express 2018, 8, 1031–1042. [Google Scholar] [CrossRef]
- Yi, Z.; Chen, J.J.; Cen, C.L.; Chen, X.F.; Zhou, Z.G.; Tang, Y.J.; Ye, X.; Xiao, S.; Luo, W.; Wu, P. Tunable graphene-based plasmonic perfect metamaterial absorber in the THz region. Micromachines 2019, 10, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, D.X.; Li, J.S. Tunable all-graphene-dielectric single-band terahertz wave absorber. J. Phys. D Appl. Phys. 2019, 52, 275102. [Google Scholar] [CrossRef]
- Yao, G.; Ling, F.R.; Yue, J.; Luo, C.Y.; Yao, J.Q. Dual-band tunable perfect metamaterial absorber in the THz range. Opt. Express 2016, 24, 1518–1527. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.P.; Wang, Y.K.; Luo, X.; Luo, H.; Zhang, C.; Li, M.X.; Sang, T.; Yang, G.F. A tunable THz absorber consisting of an elliptical graphene disk array. Phys. Chem. Chem. Phys. 2018, 20, 14357–14361. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.; Lin, H.; Niu, G.; Chen, X.F.; Zhou, Z.G.; Ye, X.; Duan, T.; Yi, Y.; Tang, Y.; Yi, Y. Graphene-based tunable triple-band plasmonic perfect metamaterial absorber with good angle-polarization-tolerance. Results Phys. 2019, 13, 102149. [Google Scholar] [CrossRef]
- Zhang, X.M.; Wu, W.W.; Li, C.X.; Wang, C.; Ma, Y.H.; Yang, Z.B.; Sun, G.; Yuan, N.C. A dual-band terahertz absorber with two passbands based on periodic patterned graphene. Materials 2019, 12, 3016. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.H.; Hu, F.R.; Xu, X.L.; Wang, Y.E.; Guo, E.Z. Design of separately tunable terahertz two-peak absorber based on graphene. Opt. Commun. 2016, 369, 65–71. [Google Scholar] [CrossRef]
- Huang, M.; Cheng, Y.; Cheng, Z.; Chen, H.; Mao, X.; Gong, R. Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle. Opt. Commun. 2018, 415, 194–201. [Google Scholar] [CrossRef]
- Nejat, M.; Nozhat, N. Sensing and switching capabilities of a graphene-based perfect dual-band metamaterial absorber with analytical methods. J. Opt. Soc. Am. B 2020, 37, 1359–1366. [Google Scholar] [CrossRef]
- Xu, K.D.; Li, J.X.; Zhang, A.X.; Chen, Q. Tunable multi-band terahertz absorber using a single-layer square graphene ring structure with T-shaped graphene strips. Opt. Express 2020, 28, 11482–11492. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.D.; Cai, Y.; Cao, X.; Guo, Y.; Zhang, Y.; Chen, Q. 2020 Multi-band terahertz absorbers using T-shaped slot-patterned graphene and its complementary structure. J. Opt. Soc. Am. B 2020, 37, 3034–3040. [Google Scholar] [CrossRef]
- Wang, F.L.; Huang, S.; Li, L.; Chen, W.D.; Xie, Z.W. Dual-band tunable perfect metamaterial absorber based on graphene. Appl. Opt. 2018, 57, 6916–6922. [Google Scholar] [CrossRef] [PubMed]
- Qing, Y.M.; Ma, H.F.; Yu, S.; Cui, T.J. Tunable dual-band perfect metamaterial absorber based on a graphene-SiC hybrid system by multiple resonance modes. J. Phys. D Appl. Phys. 2018, 52, 015104. [Google Scholar] [CrossRef]
- Gao, E.; Liu, Z.; Li, H.; Xu, H.; Zhang, Z.; Luo, X.; Xiong, C.; Liu, C.; Zhang, H.; Zhou, F. Dynamically tunable dual plasmon-induced transparency and absorption based on a single-layer patterned graphene metamaterial. Opt. Express 2019, 27, 13884–13894. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liao, Q.; Li, H.; Yu, T.; Wang, T. Tunable dual-band perfect metamaterial absorber based on monolayer graphene arrays as refractive index sensor. Jpn. J. Appl. Phys. 2020, 59, 095002. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Li, J.; He, L.J.; Yu, T.B. Graphene-based dual-band tunable perfect absorber in THz range. J. Mod. Opt. 2021, 68, 93–99. [Google Scholar] [CrossRef]
- Xiang, Y.; Wang, L.; Lin, Q.; Xia, S.; Qin, M.; Zhai, X. Tunable dual-band perfect absorber based on L-shaped graphene resonator. IEEE Photonics Tech. Lett. 2019, 31, 483–486. [Google Scholar] [CrossRef]
- Lu, Z.H.; Yang, Y.G.; Huang, J.L. Dual-band terahertz metamaterial absorber using hexagon graphene structure. Microw. Opt. Techn. Lett. 2021, 63, 1797–1802. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, B.; Huang, B.; Cheng, Q. Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface. Opt. Express 2017, 25, 7161–7169. [Google Scholar] [CrossRef]
- Yan, D.X.; Li, J.S. Tuning control of dual-band terahertz perfect absorber based on graphene single layer. Laser Phys. 2019, 29, 046203. [Google Scholar] [CrossRef]
- Luo, H.; Shangguan, Q.Y.; Yi, Y.T.; Cheng, S.B.; Yi, Y.G.; Li, Z. Tunable “Ancient Coin”-Type Perfect Absorber with High Refractive Index Sensitivity and Good Angular Polarization Tolerance. Coatings 2021, 11, 814. [Google Scholar] [CrossRef]
- Li, J.S.; Sun, J.Z. Umbrella-shaped graphene/Si for multi-band tunable terahertz absorber. Appl. Phys. B 2019, 125, 183. [Google Scholar] [CrossRef]
- Li, J.S.; Yan, D.X.; Sun, J.Z. Flexible dual-band all-graphene-dielectric terahertz absorber. Opt. Mater. Express 2019, 9, 2067–2075. [Google Scholar] [CrossRef]
- Yan, D.X.; Meng, M.; Li, J.S.; Li, X.J. Graphene-assisted narrow bandwidth dual-band tunable terahertz metamaterial absorber. Front. Phys. 2020, 8, 306. [Google Scholar] [CrossRef]
- Kotakoski, J.; Santos-Cottin, D.; Krasheninnikov, A.V. Stability of graphene edges under electron beam: Equilibrium energetics versus dynamic effects. ACS Nano 2012, 6, 671–676. [Google Scholar] [CrossRef]
- Yan, H.; Low, T.; Zhu, W.; Wu, Y.; Freitag, M.; Li, X.; Guinea, F.; Avouris, P.; Xia, F. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photon. 2013, 7, 394–399. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Zeng, F.; Zhang, Y.; Liu, Q.H. Composite graphene-metal microstructures for enhanced multiband absorption covering the entire terahertz range. Carbon 2019, 148, 317–325. [Google Scholar] [CrossRef]
- Qi, L.; Liu, C.; Shah, S.M.A. A broad dual-band switchable graphene-based terahertz metamaterial absorber. Carbon 2019, 153, 179–188. [Google Scholar] [CrossRef]
- Jain, P.; Bansal, S.; Prakash, K.; Sardana, N.; Gupta, N.; Kumar, S.; Singh, A.K. Graphene-based tunable multi-band metamaterial polarization-insensitive absorber for terahertz applications. J. Mater. Sci. Mater. Electron. 2020, 31, 11878–11886. [Google Scholar] [CrossRef]
- Chen, M.; Sun, W.; Cai, J.; Chang, L.; Xiao, X. Frequency-tunable terahertz absorbers based on graphene metasurface. Opt. Commun. 2017, 382, 144–150. [Google Scholar] [CrossRef]
- Wu, D.; Wang, M.; Feng, H.; Xu, Z.X.; Liu, Y.P.; Xia, F.; Zhang, K.; Kong, W.J.; Dong, L.F.; Yun, M.J. Independently tunable perfect absorber based on the plasmonic in double-layer graphene structure. Carbon 2019, 155, 618–623. [Google Scholar] [CrossRef]
- Bao, Z.; Wang, J.; Hu, Z.D.; Chen, Y.; Zhang, C.; Zhang, F. Coordination multi-band absorbers with patterned irrelevant graphene patches based on multi-layer film structures. J. Phys. D Appl. Phys. 2021, 54, 505306. [Google Scholar] [CrossRef]
- Cai, Y.J.; Guo, Y.B.; Zhang, H.Y.; Wang, Y.; Chen, C.Y.; Lin, F.; Zuo, S.K.; Zhou, Y.H. Tunable and polarization-sensitive graphene-based terahertz absorber with eight absorption bands. J. Phys. D Appl. Phys. 2021, 54, 195106. [Google Scholar] [CrossRef]
- Xing, R.; Jian, S. A dual-band THz absorber based on graphene sheet and ribbons. Opt. Laser Technol. 2018, 100, 129–132. [Google Scholar] [CrossRef]
- Zhou, Q.; Zha, S.; Bian, L.A.; Zhang, J.; Ding, L.; Liu, H.; Liu, P. Independently controllable dual-band terahertz metamaterial absorber exploiting graphene. J. Phys. D Appl. Phys. 2019, 52, 255102. [Google Scholar] [CrossRef]
- Ye, L.; Chen, X.; Cai, G.; Zhu, J.; Liu, N.; Liu, Q.H. Electrically tunable broadband terahertz absorption with hybrid-patterned graphene metasurfaces. Nanomaterials 2018, 8, 562. [Google Scholar] [CrossRef] [Green Version]
- Nourbakhsh, M.; Zareian-Jahromi, E.; Basiri, R. Ultra-wideband terahertz metamaterial absorber based on Snowflake Koch Fractal dielectric loaded graphene. Opt. Express 2019, 27, 32958–32969. [Google Scholar] [CrossRef]
- Cai, Y.; Xu, K.D. Tunable broadband terahertz absorber based on multilayer graphene-sandwiched plasmonic structure. Opt. Express 2018, 26, 31693–31705. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, D.; Liu, Y.; Liu, C.; Yu, Z.; Yu, L.; Ye, H. Design of a tunable ultra-broadband terahertz absorber based on multiple layers of graphene ribbons. Nanoscale Res. Lett. 2018, 13, 143. [Google Scholar] [CrossRef] [Green Version]
- Rahmanzadeh, M.; Rajabalipanah, H.; Abdolali, A. Multilayer graphene-based metasurfaces: Robust design method for extremely broadband, wide-angle, and polarization-insensitive terahertz absorbers. Appl. Opt. 2018, 57, 959–968. [Google Scholar] [CrossRef] [PubMed]
- Fardoost, A.; Vanani, F.G.; Amirhosseini, A.; Safian, R. Design of a multilayer graphene-based ultrawideband terahertz absorber. IEEE Trans. Nanotechnol. 2016, 16, 68–74. [Google Scholar]
- Huang, X.; He, W.; Yang, F.; Ran, J.; Gao, B.; Zhang, W.L. Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime. Opt. Express 2018, 26, 25558–25566. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Wu, Y.B.; Dong, J.; Tang, M.C.; Jiang, Y.N.; Zeng, X.P. Ultra-thin and broadband tunable metamaterial graphene absorber. Opt. Express 2018, 26, 1681–1688. [Google Scholar] [CrossRef] [PubMed]
- Arik, K.; AbdollahRamezani, S.; Khavasi, A. Polarization insensitive and broadband terahertz absorber using graphene disks. Plasmonics 2017, 12, 393–398. [Google Scholar] [CrossRef]
- Bordbar, A.; Basiry, R.; Yahaghi, A. Design and equivalent circuit model extraction of a broadband graphene metasurface absorber based on a hexagonal spider web structure in the terahertz band. Appl. Opt. 2020, 59, 2165–2172. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, H.D.; Wang, J.; Gao, C.N.; Wang, J.; Cao, W.P. Design and performance of a terahertz absorber based on patterned graphene. Opt. Lett. 2018, 43, 4296–4299. [Google Scholar] [CrossRef]
- Han, J.; Chen, R. Tunable broadband terahertz absorber based on a single-layer graphene metasurface. Opt. Express 2020, 28, 30289–30298. [Google Scholar] [CrossRef]
- Chen, F.; Cheng, Y.; Luo, H.A. broadband tunable terahertz metamaterial absorber based on single-layer complementary gammadion-shaped graphene. Materials 2020, 13, 860. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Chen, Y.; Cai, G.; Liu, N.; Zhu, J.; Song, Z.; Liu, Q. Broadband absorber with periodically sinusoidally patterned graphene layer in terahertz range. Opt. Express 2017, 25, 11223–11232. [Google Scholar] [CrossRef]
- Ye, L.; Chen, X.; Zhuo, J.; Han, F.; Liu, Q.H. Actively tunable broadband terahertz absorption using periodically square-patterned graphene. Appl. Phys. Express 2018, 11, 102201. [Google Scholar] [CrossRef]
- Biabanifard, M.; Asgari, S.; Biabanifard, S.; Abrishamian, M.S. Analytical design of tunable multi-band terahertz absorber composed of graphene disks. Optik 2019, 182, 433–442. [Google Scholar] [CrossRef]
- Zhong, R.; Yang, L.; Liang, Z.; Wu, Z.; Wang, Y.; Ma, Z.; Fang, Z.; Liu, S.G. Ultrawideband terahertz absorber with a graphene-loaded dielectric hemi-ellipsoid. Opt. Express 2020, 28, 28773–28781. [Google Scholar] [CrossRef] [PubMed]
- Soleymani, A.; Meymand, R.E.; Granpayeh, N. Broadband near-perfect terahertz absorber in single-layered and non-structured graphene loaded with dielectrics. Appl. Opt. 2020, 59, 2839–2848. [Google Scholar] [CrossRef]
- Biabanifard, S.; Biabanifard, M.; Asgari, S.; Asadi, S.; Yagoub, M.C.E. Tunable ultra-wideband terahertz absorber based on graphene disks and ribbons. Opt. Commun. 2018, 427, 418–425. [Google Scholar] [CrossRef]
- Fu, P.; Liu, F.; Ren, G.J.; Su, F.; Li, D.; Yao, J.Q. A broadband metamaterial absorber based on multi-layer graphene in the terahertz region. Opt. Commun. 2018, 417, 62–66. [Google Scholar] [CrossRef]
- Biabanifard, M.; Abrishamian, M.S. Ultra-wideband terahertz graphene absorber using circuit model. Appl. Phys. A 2018, 124, 826. [Google Scholar] [CrossRef]
- Lin, R.; He, X.; Jiang, Z.; Liu, C.; Wang, S.; Kong, Y. Dual-layer graphene based tunable broadband terahertz absorber relying on the coexistence of hybridization and stacking effects. J. Phys. D Appl. Phys. 2021, 54, 145108. [Google Scholar] [CrossRef]
- Liu, W.; Tian, J.P.; Yang, R.C.; Pei, W.H. Design of a type of broadband metamaterial absorber based on metal and graphene. Curr. Appl. Phys. 2021, 31, 122–131. [Google Scholar] [CrossRef]
- Wu, S.; Li, J. Hollow-petal graphene metasurface for broadband tunable THz absorption. Appl. Opt. 2019, 58, 3023–3028. [Google Scholar] [CrossRef]
- Sun, J.Z.; Li, J.S. Broadband adjustable terahertz absorption in series asymmetric oval-shaped graphene pattern. Front. Phys. 2020, 8, 245. [Google Scholar] [CrossRef]
- Yan, D.X.; Li, J.S. Tuning control of broadband terahertz absorption using designed graphene multilayers. J. Opt. 2019, 21, 075101. [Google Scholar] [CrossRef]
- Zhai, Z.; Zhang, L.; Li, X.; Xiao, S. Tunable terahertz broadband absorber based on a composite structure of graphene multilayer and silicon strip array. Opt. Commun. 2019, 431, 199–202. [Google Scholar] [CrossRef]
- Zhu, J.F.; Li, S.F.; Deng, L.; Zhang, C.; Yang, Y.; Zhu, H. Broadband tunable terahertz polarization converter based on a sinusoidally-slotted graphene metamaterial. Opt. Mater. Express 2018, 8, 1164–1173. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhu, X.; Li, J.; Cheney, F.; Luo, H.; Wu, L. Terahertz broadband tunable reflective cross-polarization convertor based on complementary cross-shaped graphene metasurface. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 134, 114893. [Google Scholar] [CrossRef]
- Lin, R.; Lu, F.; He, X.; Jiang, Z.; Liu, C.; Wang, S.; Kong, Y. Multiple interference theoretical model for graphene metamaterial-based tunable broadband terahertz linear polarization converter design and optimization. Opt. Express 2021, 29, 30357–30370. [Google Scholar] [CrossRef]
- Zeng, L.; Huang, T.; Liu, G.B.; Zhang, H.F. A tunable ultra-broadband linear-to-circular polarization converter containing the graphene. Opt. Commun. 2019, 436, 7–13. [Google Scholar] [CrossRef]
- Yao, Z.; Lu, M.; Zhang, C.; Wang, Y. Dynamically tunable and transmissive linear to circular polarizer based on graphene metasurfaces. J. Opt. Soc. Am. B 2019, 36, 3302–3306. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, Y.; Yang, G.; Qiao, Q.; Liu, Y. Tunable reflective dual-band line-to-circular polarization convertor with opposite handedness based on graphene metasurfaces. Opt. Express 2021, 29, 13373–13387. [Google Scholar] [CrossRef]
- Guo, T.; Argyropoulos, C. Broadband polarizers based on graphene metasurfaces. Opt. Lett. 2016, 41, 5592–5595. [Google Scholar] [CrossRef] [Green Version]
- Quader, S.; Zhang, J.; Akram, M.R.; Zhu, W. Graphene-based high-efficiency broadband tunable linear-to-circular polarization converter for terahertz waves. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 4501008. [Google Scholar] [CrossRef]
- Liu, Y.; Qiao, Q.; Fu, Y.; Zhou, X.; Li, R.; Lu, M.; Wang, Y. Reflective triple-band line-to-circular polarization conversion based on diamond-shaped graphene metasurface. Opt. Mater. 2021, 114, 110984. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, J. Tunable terahertz circular polarization convertor based on graphene metamaterial. Diam. Relat. Mater. 2021, 119, 108559. [Google Scholar] [CrossRef]
- Asgari, S.; Rahmanzadeh, M. Tunable circular conversion dichroism and asymmetric transmission of terahertz graphene metasurface composed of split rings. Opt. Commun. 2020, 456, 124623. [Google Scholar] [CrossRef]
- Amin, M.; Siddiqui, O.; Farhat, M. Linear and circular dichroism in graphene-based reflectors for polarization control. Phys. Rev. Appl. 2020, 13, 024046. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Feng, Y.; Zhao, J. Graphene-enabled tunable multifunctional metamaterial for dynamical polarization manipulation of broadband terahertz wave. Carbon 2020, 163, 244–252. [Google Scholar] [CrossRef]
- Yao, Z.; Wei, T.; Wang, Y.; Lu, M.; Zhang, C.; Zhang, L. Tunable multifunctional reflection polarizer based on a graphene metasurface. Appl. Opt. 2019, 58, 3570–3574. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Liu, Z.; Liu, X.; Liu, G.; Fu, G.; Wang, J.; Shen, Y. Multi-functional polarization conversion manipulation via graphene-based metasurface reflectors. Opt. Express 2021, 29, 70–81. [Google Scholar] [CrossRef]
- Zhang, R.; You, B.; Wang, S.C.; Han, K.; Shen, X.P.; Wang, W. Broadband and switchable terahertz polarization converter based on graphene metasurfaces. Opt. Express 2021, 29, 24804–24815. [Google Scholar] [CrossRef]
- Barkabian, M.; Sharifi, N.; Granpayeh, N. Multi-functional high-efficiency reflective polarization converter based on an ultra-thin graphene metasurface in the THz band. Opt. Express 2021, 29, 20160–20174. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, K.; Cao, A.; Liu, Y.; Kong, W. Bi-functional switchable broadband terahertz polarization converter based on a hybrid graphene-metal metasurface. Opt. Express 2020, 28, 26102–26110. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.; Cheng, J.; Chen, T.; Chang, S.J. Widely tunable polarization conversion in low-doped graphene-dielectric metasurfaces based on phase compensation. Opt. Lett. 2020, 45, 1742–1745. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Q.; Wang, Y.; Yang, G.; Fu, Y.; Liu, Y. Broadband of linear-to-linear and double-band of linear-to-circular polarization converter based on a graphene sheet with a π-shaped hollow array. Opt. Mater. Express 2021, 11, 2952–2965. [Google Scholar] [CrossRef]
- Guan, S.; Cheng, J.; Chen, T.; Chang, S.J. Bi-functional polarization conversion in hybrid graphene-dielectric metasurfaces. Opt. Lett. 2019, 44, 5683–5686. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Song, J.; Xu, T.; Yang, T.; Zhou, J. Controllable linear asymmetric transmission and perfect polarization conversion in a terahertz hybrid metal-graphene metasurface. Opt. Express 2019, 27, 9773–9781. [Google Scholar] [CrossRef]
- Sajjad, M.; Kong, X.; Liu, S.; Ahmed, A.; Rahman, S.U.; Wang, Q. Graphene-based THz tunable ultra-wideband polarization converter. Phys. Lett. A 2020, 384, 126567. [Google Scholar] [CrossRef]
- Chen, D.; Yang, J.; Huang, J.; Bai, W.; Zhang, J.; Zhang, Z.; Xu, S.; Xie, W. The novel graphene metasurfaces based on split-ring resonators for tunable polarization switching and beam steering at terahertz frequencies. Carbon 2019, 154, 350–356. [Google Scholar] [CrossRef]
- Liu, Z.; Bai, B. Ultra-thin and high-efficiency graphene metasurface for tunable terahertz wave manipulation. Opt. Express 2017, 25, 8584–8592. [Google Scholar] [CrossRef]
- Yahiaoui, R.; Chase, Z.A.; Kyaw, C.; Seabron, E.; Mathews, H.; Searles, T.A. Dynamically tunable single-layer VO2/metasurface based THz cross-polarization converter. J. Phys. D Appl. Phys. 2021, 54, 235101. [Google Scholar] [CrossRef]
- Zheng, G.G.; Zhou, P.; Chen, Y.Y. Dynamically switchable dual-band mid-infrared absorber with phase-change material Ge2Sb2Te5. Opt. Mater. 2020, 99, 109581. [Google Scholar] [CrossRef]
- Mou, N.L.; Liu, X.L.; Wei, T.; Dong, H.X.; He, Q.; Zhou, L.; Zhang, Y.Q.; Zhang, L.; Sun, S.L. Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material. Nanoscale 2020, 12, 5374–5379. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.H.; Qin, C.H.; Lv, T.T.; Sun, M.K.; Lv, B.; Li, Y.X.; Li, P.; Zhu, Z.; Guan, C.Y.; Shi, J.H. Dynamic chiroptical responses in transmissive metamaterial using phase-change material. J. Phys. D Appl. Phys. 2020, 53, 285104. [Google Scholar] [CrossRef]
- Patel, S.K.; Parmar, J. Highly sensitive and tunable refractive index biosensor based on phase change material. Phys. B 2021, 622, 413357. [Google Scholar] [CrossRef]
- Xu, D.D.; Cui, F.P.; Zheng, G.G. Dynamically Switchable Polarization-Independent Triple-Band Perfect Metamaterial Absorber Using a Phase-Change Material in the Mid-Infrared (MIR) Region. Micromachines 2021, 12, 548. [Google Scholar] [CrossRef]
- Gwin, A.H.; Kodama, C.H.; Laurvick, T.V.; Coutu, R.A.; Taday, P.F. Improved terahertz modulation using germanium telluride (GeTe) chalcogenide thin films. Appl. Phys. Lett. 2015, 107, 031904. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.; Park, J.H.; Moon, Y.H.; Baek, C.W.; Lin, S. Thermal frequency reconfigurable electromagnetic absorber using phase change material. Sensors 2018, 18, 3506. [Google Scholar] [CrossRef] [Green Version]
- Carrillo, S.G.C.; Trimby, L.; Au, Y.Y.; Nagareddy, V.K.; Rodriguez-Hernandez, G.; Hosseini, P.; Rios, C.; Bhaskaran, H.; Wright, C.D. A nonvolatile phase-change metamaterial color display. Adv. Opt. Mater. 2019, 7, 1801782. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Kang, L.; Werner, D.H. Active terahertz chiral metamaterials based on phase transition of vanadium dioxide (VO2). Sci. Rep. 2018, 8, 189. [Google Scholar] [CrossRef]
- Song, Z.; Chen, A.; Zhang, J.; Wang, J. Integrated metamaterial with functionalities of absorption and electromagnetically induced transparency. Opt. Express 2019, 27, 25196–25204. [Google Scholar] [CrossRef]
- Zheng, Z.; Zheng, Y.; Luo, Y.; Yi, Z.; Zhang, J.; Liu, Z.; Yang, W.; Yu, Y.; Wu, X.; Wu, P. Switchable terahertz device combining ultra-wideband absorption and ultra-wideband complete reflection. Phys. Chem. Chem. Phys. 2022, 24, 2527–2533. [Google Scholar] [CrossRef]
- Jeong, Y.G.; Han, S.; Rhie, J.; Kyoung, J.S.; Choi, J.W.; Park, N.; Hong, S.; Kim, B.J.; Kim, H.T.; Kim, D.S. A vanadium dioxide metamaterial disengaged from insulator-to-metal transition. Nano Lett. 2015, 15, 6318–6323. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Luo, Y.; Yang, H.; Yi, Z.; Zhang, J.; Song, Q.; Yang, W.; Liu, C.; Wu, X.; Wu, P. Thermal tuning of terahertz metamaterial properties based on phase change material vanadium dioxide. Phys. Chem. Chem. Phys. 2022, 24, 8846–8853. [Google Scholar] [CrossRef] [PubMed]
- Butakov, N.A.; Knight, M.W.; Lewi, T.; Iyer, P.P.; Higgs, D.; Chorsi, H.T.; Trastoy, J.; Del Valle Granda, J.; Valmianski, I.; Urban, C.; et al. Broadband electrically tunable dielectric resonators using metal-insulator transitions. ACS Photonics 2018, 5, 4056–4060. [Google Scholar] [CrossRef]
- Tian, X.; Li, Z.Y. An optically-triggered switchable mid-infrared perfect absorber based on phase-change material of vanadium dioxide. Plasmonics 2018, 13, 1393–1402. [Google Scholar] [CrossRef]
- Driscoll, T.; Kim, H.T.; Chae, B.G.; Kim, B.J.; Lee, Y.W.; Jokerst, N.M.; Palit, S.; Smith, D.R.; Di Ventra, M.; Basov, D.N. Memory metamaterials. Science 2009, 325, 1518–1521. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.R.; Li, Y.Y.; Xu, X.L.; Zhou, Y.; Chen, Y.; Zhu, P.D.; Zhao, S.; Jiang, W.Y.; Zhang, W.T.; Han, J.G.; et al. Broadband large-modulation-depth low-current-triggered terahertz intensity modulator based on VO2 embedded hybrid metamaterials. Appl. Phys. Express 2018, 11, 092004. [Google Scholar] [CrossRef]
- Zhao, S.; Hu, F.R.; Xu, X.L.; Jiang, M.Z.; Zhang, W.T.; Yin, S.; Jiang, W.Y. Electrically triggered dual-band tunable terahertz metamaterial band-pass filter based on Si3N4–VO2–Si3N4 sandwich. Chin. Phys. B 2019, 28, 054203. [Google Scholar] [CrossRef]
- Lv, T.; Dong, G.; Qin, C.; Qu, J.; Lv, B.; Li, W.; Zhu, Z.; Li, Y.; Guan, C.; Shi, J. Switchable dual-band to broadband terahertz metamaterial absorber incorporating a VO2 phase transition. Opt. Express 2021, 29, 5437–5447. [Google Scholar] [CrossRef]
- Yu, P.; Li, Z.W.; Yao, R.; Xu, Y.F.; Cheng, X.H.; Cheng, Z.Q. A tunable dual-band terahertz hybrid metamaterial absorber based on vanadium oxide (VO2) phase transition. Eur. Phys. J. D 2020, 74, 5. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, Q.P.; Cai, H.L.; Lin, X.X.; Lu, Y.L. A broadband and switchable VO2-based perfect absorber at the THz frequency. Opt. Commun. 2018, 426, 443–449. [Google Scholar] [CrossRef]
- Cao, B.Z.; Li, Y.R.; Liu, X.; Fei, H.M.; Zhang, M.D.; Yang, Y.B. Switchable broadband metamaterial absorber/reflector based on vanadium dioxide rings. Appl. Opt. 2020, 59, 8111–8117. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Jiao, X.; Wang, Y.; Zhao, Z.; Wang, Y.; Liu, J. Ultra-wideband tunable metamaterial perfect absorber based on vanadium dioxide. Opt. Express 2021, 29, 2703–2711. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Song, Z. Tunable Isotropic Absorber with Phase Change Material VO2. IEEE Trans. Nanotechnol. 2020, 19, 197–200. [Google Scholar] [CrossRef]
- Liu, Y.; Qian, Y.; Hu, F.; Jiang, M.; Zhang, L. A dynamically adjustable broadband terahertz absorber based on a vanadium dioxide hybrid metamaterial. Results Phys. 2020, 19, 103384. [Google Scholar] [CrossRef]
- Ren, Z.; Cheng, L.; Hu, L.; Liu, C.; Jiang, C.; Yang, S.; Ma, Z.; Zhou, C.; Wang, H.; Zhu, X.; et al. Photoinduced Broad-band Tunable Terahertz Absorber Based on a VO2 Thin Film. ACS Appl. Mater. Interfaces 2020, 12, 48811–48819. [Google Scholar] [CrossRef]
- Chen, X.S.; Li, J.S. Tunable terahertz absorber with multi-defect combination embedded VO2 thin film structure. Acta Phys. Sin. 2020, 69, 027801. [Google Scholar] [CrossRef]
- Huang, J.; Li, J.N.; Yang, Y.; Li, J.; Li, J.; Zhang, Y.T.; Yao, J.Q. Active controllable dual broadband terahertz absorber based on hybrid metamaterials with vanadium dioxide. Opt. Express 2020, 28, 7018–7027. [Google Scholar] [CrossRef]
- Shabanpour, J.; Beyraghi, S.; Oraizi, H. Reconfigurable honeycomb metamaterial absorber having incident angular stability. Sci. Rep. 2020, 10, 14920. [Google Scholar] [CrossRef]
- Li, J.; Yang, Y.; Li, J.N.; Zhang, Y.T.; Zhang, Z.; Zhao, H.L.; Li, F.Y.; Tang, T.T.; Dai, H.T.; Yao, J.Q. All-optical switchable vanadium dioxide integrated coding metasurfaces for wavefront and polarization manipulation of terahertz beams. Adv. Theory Simul. 2020, 3, 1900183. [Google Scholar] [CrossRef]
- Lv, F.; Wang, L.; Xiao, Z.; Chen, M.; Cui, Z.; Xu, D. Asymmetric transmission polarization conversion of chiral metamaterials with controllable switches based on VO2. Opt. Mater. 2021, 114, 110667. [Google Scholar] [CrossRef]
- Song, Z.; Chen, A.; Zhang, J. Terahertz switching between broadband absorption and narrowband absorption. Opt. Express 2020, 28, 2037–2044. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Zhang, J. Achieving broadband absorption and polarization conversion with a vanadium dioxide metasurface in the same terahertz frequencies. Opt. Express 2020, 28, 12487–12497. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.X.; Meng, M.; Li, J.S.; Li, J.N.; Li, X.J. Vanadium dioxide-assisted broadband absorption and linear-to-circular polarization conversion based on a single metasurface design for the terahertz wave. Opt. Express 2020, 28, 29843–29854. [Google Scholar] [CrossRef]
- Luo, J.; Shi, X.; Luo, X.; Hu, F.; Li, G. Broadband switchable terahertz half-/quarter-wave plate based on metal-VO2 metamaterials. Opt. Express 2020, 28, 30861–30870. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Hu, F.; Li, G. Broadband switchable terahertz half-/quarter-wave plate based on VO2-metal hybrid metasurface with over/underdamped transition. J. Phys. D Appl. Phys. 2021, 54, 505111. [Google Scholar] [CrossRef]
- Yan, D.X.; Feng, Q.Y.; Yuan, Z.W.; Meng, M.; Li, X.J.; Qiu, G.H.; Li, J.N. Wideband switchable dual-functional terahertz polarization converter based on vanadium dioxide-assisted metasurface. Chin. Phys. B 2022, 31, 014211. [Google Scholar] [CrossRef]
- Chen, L.; Song, Z. Simultaneous realizations of absorber and transparent conducting metal in a single metamaterial. Opt. Express 2020, 28, 6565–6571. [Google Scholar] [CrossRef]
- Schalch, J.S.; Chi, Y.; He, Y.; Tang, Y.; Zhao, X.; Zhang, X.; Wen, Q.Y.; Averitt, R.D. Broadband electrically tunable VO2-Metamaterial terahertz switch with suppressed reflection. Microw. Opt. Techn. Let. 2020, 62, 2782–2790. [Google Scholar] [CrossRef]
- Liu, C.; Xu, Y.; Liu, H.; Lin, M.; Zha, S. Switchable Metamaterial with Terahertz Buffering and Absorbing Performance. IEEE Photonics J. 2021, 13, 4600408. [Google Scholar] [CrossRef]
- Neupane, M.; Xu, S.Y.; Sankar, R.; Alidoust, N.; Bian, G.; Liu, C.; Belopolski, I.; Chang, T.R.; Jeng, H.T.; Lin, H. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat. Commun. 2014, 5, 3786. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Li, C.Z.; Ge, S.; Li, J.G.; Lu, W.; Lai, J.; Liu, X.; Ma, J.; Yu, D.P.; Liao, Z.M.; et al. Ultrafast broadband photodetectors cased on three-dimensional Dirac semimetal Cd3As2. Nano Lett. 2017, 17, 834–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.L.; Cao, M.Y.; Zhang, H.Y.; Zhang, Y.P. Tunable terahertz metamaterial absorber based on Dirac semimetal films. Appl. Opt. 2018, 57, 9555–9561. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Turner, A.M.; Vishwanath, A.; Savrasov, S.Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 2011, 83, 205101. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.; Gilbert, M.J.; Dai, X.; Bernevig, B.A. Multi-Weyl topological semimetals stabilized by point group symmetry. Phys. Rev. Lett. 2012, 108, 266802. [Google Scholar] [CrossRef]
- Wu, X.; Zheng, Y.; Luo, Y.; Zhang, J.G.; Yi, Z.; Wu, X.; Cheng, S.; Yang, W.; Yu, Y.; Wu, P. A four-band and polarization-independent BDS-based tunable absorber with high refractive index sensitivity. Phys. Chem. Chem. Phys. 2021, 23, 26864–26873. [Google Scholar] [CrossRef]
- Liang, T.; Gibson, Q.; Ali, M.N.; Liu, M.; Cava, R.J.; Ong, N.P. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat. Mater. 2015, 14, 280–284. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.K.; Jiang, J.; Zhou, B.; Wang, Z.J.; Zhang, Y.; Weng, H.M.; Prabhakaran, D.; Mo, S.K.; Peng, H.; Dudin, P.; et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nat. Mater. 2014, 13, 677–681. [Google Scholar] [CrossRef]
- Liu, Z.K.; Zhou, B.; Zhang, Y.; Wang, Z.J.; Weng, H.M.; Prabhakaran, D.; Mo, S.K.; Shen, Z.X.; Fang, Z.; Dai, X.; et al. Discovery of a three-dimensional topological Dirac semimetal Na3Bi. Science 2014, 343, 864–867. [Google Scholar] [CrossRef] [Green Version]
- Xiong, H.; Ji, Q.; Bashir, T.; Yang, F. Dual-controlled broadband terahertz absorber based on graphene and Dirac semimetal. Opt. Express 2020, 28, 13884–13894. [Google Scholar] [CrossRef]
- Kotov, O.V.; Lozovik, Y.E. Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films. Phys. Rev. B 2016, 93, 235417. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yi, Y.; Xu, D.; Yi, Z.; Li, Z.; Chen, X.; Jile, H.; Zhang, J.; Zeng, L.; Li, G. Terahertz tunable three band narrowband perfect absorber based on Dirac semimetal. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 131, 114750. [Google Scholar] [CrossRef]
- Liu, G.D.; Zhai, X.; Meng, H.Y. Dirac semimetals based tunable narrowband absorber at terahertz frequencies. Opt. Express 2018, 26, 11471–11480. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.W.; Que, L.C.; Lv, J.; Zhang, L.W.; Zhou, Y.; Jiang, Y.D. A triple-band terahertz metamaterial absorber based on buck Dirac semimetals. Results Phys. 2019, 14, 102461. [Google Scholar] [CrossRef]
- Dai, L.L.; Zhang, Y.P.; Zhang, H.Y.; O’Hara, J.F. Broadband tunable terahertz cross polarization converter based on Dirac semimetals. Appl. Phys. Express 2019, 12, 075003. [Google Scholar] [CrossRef]
- Dai, L.L.; Zhang, Y.P.; Zhang, Y.L.; Liu, S.D.; Zhang, H.Y. Multifunction tunable broadband terahertz device for polarization rotation and linear asymmetric transmission based on Dirac semimetals. Opt. Commun. 2020, 468, 125802. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Yang, C.H.; Liu, M.; Zhang, Y.P. Dual-function tuneable asymmetric transmission and polarization converter in terahertz region. Results Phys. 2021, 25, 104242. [Google Scholar] [CrossRef]
- Wang, T.L.; Zhang, H.Y.; Zhang, Y.; Zhang, Y.P.; Cao, M.Y. Tunable bifunctional terahertz metamaterial device based on Dirac semimetals and vanadium dioxide. Opt. Express 2020, 28, 17434–17448. [Google Scholar] [CrossRef]
- Yang, C.H.; Gao, Q.G.; Dai, L.L.; Zhang, Y.L.; Zhang, H.Y.; Zhang, Y.P. Bifunctional tunable terahertz circular polarization converter based on Dirac semimetals and vanadium dioxide. Opt. Mater. Express 2020, 10, 2289–2303. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, Y.; Ye, L.; Li, Y.; Xu, Y.; Xu, R. Switchable and tunable terahertz metamaterial absorber with broadband and multi-band absorption. Opt. Express 2020, 28, 38626–38637. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, R.; Ouyang, Z.B. Terahertz absorber with dynamically switchable dual-broadband based on a hybrid metamaterial with vanadium dioxide and graphene. Opt. Express 2021, 29, 20839–20850. [Google Scholar] [CrossRef]
- Liu, W.; Song, Z. Terahertz absorption modulator with largely tunable bandwidth and intensity. Carbon 2021, 174, 617–662. [Google Scholar] [CrossRef]
- Zhang, M.; Song, Z. Terahertz bifunctional absorber based on a graphene-spacer-vanadium dioxide-spacer-metal configuration. Opt. Express 2020, 28, 11780–11788. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.L.; Zhang, Y.P.; Zhang, H.Y.; Cao, M.Y. Dual-controlled switchable broadband terahertz absorber based on a graphene-vanadium dioxide metamaterial. Opt. Mater. Express 2020, 10, 369–386. [Google Scholar] [CrossRef]
- Li, H.; Yu, J. Bifunctional terahertz absorber with a tunable and switchable property between broadband and dual-band. Opt. Express 2020, 28, 25225–25237. [Google Scholar] [CrossRef]
- Wang, Q.Z.; Liu, S.Y.; Ren, G.J.; Zhang, H.W.; Liu, S.C.; Yao, J.Q. Multi-parameter tunable terahertz absorber based on graphene and vanadium dioxide. Opt. Commun. 2021, 494, 127050. [Google Scholar] [CrossRef]
- Li, J.; Zheng, C.L.; Li, J.T.; Zhao, H.L.; Hao, X.R.; Xu, H.; Yue, Z.; Zhang, Y.; Yao, J. Polarization-dependent and tunable absorption of terahertz waves based on anisotropic metasurfaces. Opt. Express 2021, 29, 3284–3295. [Google Scholar] [CrossRef]
- Zhou, Z.; Song, Z. Switchable bifunctional metamaterial for terahertz anomalous reflection and broadband absorption. Phys. Scr. 2021, 96, 115506. [Google Scholar] [CrossRef]
- Liu, H.Y.; Wang, P.P.; Wu, J.L.; Yuan, X.G.; Zhang, Y.; Zhang, X. Switchable and Dual-Tunable Multilayered Terahertz Absorber Based on Patterned Graphene and Vanadium Dioxide. Micromachines 2021, 12, 619. [Google Scholar] [CrossRef]
- Mao, M.; Liang, Y.; Liang, R.; Zhao, L.; Xu, N.; Guo, J.; Wang, F.; Meng, H.; Liu, H.; Wei, Z. Dynamically temperature-voltage controlled multifunctional device based on VO2 and graphene hybrid metamaterials: Perfect absorber and highly efficient polarization converter. Nanomaterials 2019, 9, 1101. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.Z.; Xu, R.H.; Qin, Z.J.; Liu, H.Q.; Deng, S.J.; Chen, M.; Cheng, Y.; Yuan, L.B. Wide-range tunable, dual-band, background refractive index insensitive terahertz absorber based on graphene and Dirac semimetal. Opt. Eng. 2021, 60, 027102. [Google Scholar] [CrossRef]
- Li, Y.; Zhai, X.; Xia, S.X.; Li, H.J.; Wang, L.L. Active control of narrowband total absorption based on terahertz hybrid Dirac semimetal-graphene metamaterials. J. Phys. D Appl. Phys. 2020, 53, 205106. [Google Scholar] [CrossRef]
- Liang, Y.; Koshelev, K.; Zhang, F.; Lin, H.; Lin, S.; Wu, J.; Jia, B.; Kivshar, Y. Bound states in the continuum in anisotropic plasmonic metasurfaces. Nano Lett. 2020, 20, 6351–6356. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Yang, N.; Song, X.; Song, X.; Jin, G.; Su, J. Triple-Band Anisotropic Perfect Absorbers Based on α-Phase MoO3 Metamaterials in Visible Frequencies. Nanomaterials 2021, 11, 2061. [Google Scholar] [CrossRef]
- Dereshgi, A.S.; Folland, T.G.; Murthy, A.A.; Song, X.L.; Tanriover, I.; Dravid, V.D.; Caldwell, J.D.; Aydin, K. Lithography-free IR polarization converters via orthogonal in-plane phonons in α-MoO3 flakes. Nat. Commun. 2020, 11, 5771. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Qin, F.; Yi, Z.; Yao, W.T.; Liu, Z.; Wu, X.; Wu, P. Ultra-wideband and wide-angle perfect solar energy absorber based on Ti nanorings surface plasmon resonance. Phys. Chem. Chem. Phys. 2021, 23, 17041–17048. [Google Scholar] [CrossRef]
- Zhao, F.; Lin, J.C.; Lei, Z.; Yi, Z.; Qin, F.; Zhang, J.; Liu, L.; Wu, X.; Yang, W.; Wu, P. Realization of 18.97% theoretical efficiency of 0.9 µm Thick c-Si/ZnO Heterojunction Ultrathin-film Solar Cells via Surface Plasmon Resonance Enhancement. Phys. Chem. Chem. Phys. 2022, 24, 4871–4880. [Google Scholar] [CrossRef]
- Yu, P.; Besteiro, L.V.; Huang, Y.J.; Wu, J.; Fu, L.; Tan, H.H.; Jagadish, C.; Wiederrecht, G.P.; Govorov, A.O.; Wang, Z.M. Broadband metamaterial absorbers. Adv. Opt. Mater. 2019, 7, 1800995. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, D.; Wang, Y.; Qiu, Y.; Feng, Q.; Li, X.; Li, J.; Qiu, G.; Li, J. A Review: The Functional Materials-Assisted Terahertz Metamaterial Absorbers and Polarization Converters. Photonics 2022, 9, 335. https://doi.org/10.3390/photonics9050335
Yan D, Wang Y, Qiu Y, Feng Q, Li X, Li J, Qiu G, Li J. A Review: The Functional Materials-Assisted Terahertz Metamaterial Absorbers and Polarization Converters. Photonics. 2022; 9(5):335. https://doi.org/10.3390/photonics9050335
Chicago/Turabian StyleYan, Dexian, Yi Wang, Yu Qiu, Qinyin Feng, Xiangjun Li, Jining Li, Guohua Qiu, and Jiusheng Li. 2022. "A Review: The Functional Materials-Assisted Terahertz Metamaterial Absorbers and Polarization Converters" Photonics 9, no. 5: 335. https://doi.org/10.3390/photonics9050335
APA StyleYan, D., Wang, Y., Qiu, Y., Feng, Q., Li, X., Li, J., Qiu, G., & Li, J. (2022). A Review: The Functional Materials-Assisted Terahertz Metamaterial Absorbers and Polarization Converters. Photonics, 9(5), 335. https://doi.org/10.3390/photonics9050335