Broadband Time-Delay and Chirp Compensator for X-ray Pulses
Abstract
:1. Introduction
2. Femtosecond Pulses in the Time Domain
2.1. Fourier-Transform Limit
2.2. Real Pulse Length
3. Optical Design
- Both RZPs are outlaid for spherical substrates, with the same radius of curvature (ROC). The ROC is optimized with respect to the arm lengths and angles of the RZPs.
- The optical components are re-arranged to an “upside down” configuration. To maintain symmetry, a plane, movable mirror (PM) in the shape of a reflective stripe mm) is placed under grazing incidence at the central position between the RZPs.
3.1. Reflection Zone Plates and Plane Mirror
3.2. Angular Misalignment
4. Source Size, Pulse Propagation and Transmission Efficiency
4.1. Source Size and Slope Errors
4.2. Pulse Propagation
4.3. Transmission Efficiency
5. Resolving Power and Pulse Duration
5.1. Energy-Resolving Power
5.2. Pulse Duration
5.3. Comparison to Fourier Limit
6. Chirped-Pulse Compression
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Kuiken, B.E.; Cho, H.; Hong, K.; Khalil, M.; Schoenlein, R.W.; Kim, T.K.; Huse, N. Time-Resolved X-ray Spectroscopy in the Water Window: Elucidating Transient Valence Charge Distributions in an Aqueous Fe(II) Complex. J. Phys. Chem. Lett. 2016, 7, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Pertot, Y.; Schmidt, C.; Matthews, M.; Chauvet, A.; Huppert, M.; Svoboda, V.; Von Conta, A.; Tehlar, A.; Baykusheva, D.; Wolf, J.-P.; et al. Time-resolved X-ray absorption spectroscopy with a water window high-harmonic source. Science 2017, 355, 264–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Y.; Nishimura, K.; Shao, R.; Suda, A.; Midorikawa, K.; Lan, P.; Takahashi, E.J. High efficiency ultrafast water-window harmonic generation for single-shot soft X-ray spectroscopy. Commun. Phys. 2020, 3, 92. [Google Scholar] [CrossRef]
- Kleine, C.; Ekimova, M.; Winghart, M.-O.; Eckert, S.; Reichel, O.; Löchel, H.; Probst, J.; Braig, C.; Seifert, S.; Erko, A.; et al. Highly efficient soft X-ray spectrometer for transient absorption spectroscopy with broadband table-top high harmonic sources. Struct. Dyn. 2021, 8, 034302. [Google Scholar] [CrossRef]
- Poletto, L.; Frassetto, F. Time-preserving grating monochromators for ultrafast extreme-ultraviolet pulses. Appl. Opt. 2010, 49, 5465–5473. [Google Scholar] [CrossRef]
- Frassetto, F.; Cacho, C.; Froud, C.A.; Turcu, I.C.E.; Villoresi, P.; Bryan, W.A.; Springate, E.; Poletto, L. Single-grating monochromator for extreme-ultraviolet ultrashort pulses. Opt. Express 2011, 19, 19169–19181. [Google Scholar] [CrossRef]
- Metje, J.; Borgwardt, M.; Moguilevski, A.; Kothe, A.; Engel, N.; Wilke, M.; Al-Obaidi, R.; Tolksdorf, D.; Firsov, A.; Brzhezinskaya, M.; et al. Monochromatization of femtosecond XUV light pulses with the use of reflection zone plates. Opt. Express 2014, 22, 10747–10760. [Google Scholar] [CrossRef] [Green Version]
- Erko, A.; Braig, C.; Probst, J.; Löchel, H. Novel x-ray optical systems for ultrafast spectroscopy and monochromators. In Proceedings of the SPIE 11110, San Diego, CA, USA, 1 October 2019; p. 111100H. [Google Scholar]
- Löchel, H.; Braig, C.; Brzhezinskaya, M.; Siewert, F.; Baumgärtel, P.; Firsov, A.; Erko, A. Femtosecond high-resolution hard X-ray spectroscopy using reflection zone plates. Opt. Express 2015, 23, 8788–8799. [Google Scholar] [CrossRef]
- Treacy, E.B. Optical Pulse Compression With Diffraction Gratings. IEEE J. Quantum Electron. 1969, QE-5, 454–458. [Google Scholar] [CrossRef]
- Villoresi, P. Compensation of optical path lengths in extreme-ultraviolet and soft-x-ray monochromators for ultrafast pulses. Appl. Opt. 1999, 38, 6040–6049. [Google Scholar] [CrossRef]
- Pascolini, M.; Bonora, S.; Giglia, A.; Mahne, N.; Nannarone, S.; Poletto, L. Gratings in a conical diffraction mounting for an extreme-ultraviolet time-delay-compensated monochromator. Appl. Opt. 2006, 45, 3253–3262. [Google Scholar] [CrossRef] [PubMed]
- Poletto, L.; Villoresi, P. Time-delay compensated monochromator in the off-plane mount for extreme-ultraviolet ultrashort pulses. Appl. Opt. 2006, 45, 8577–8585. [Google Scholar] [CrossRef] [PubMed]
- Poletto, L.; Villoresi, P.; Benedetti, E.; Ferrari, F.; Stagira, S.; Sansone, G.; Nisoli, M. Intense femtosecond extreme ultraviolet pulses by using a time-delay-compensated monochromator. Opt. Lett. 2007, 32, 2897–2899, erratum in Opt. Lett. 2008, 33, 140. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Kataoka, Y.; Okamoto, T.; Yamashita, M.; Sekikawa, T. Spatiotemporal characterization of single-order high harmonic pulses from time-compensated toroidal-grating monochromator. Opt. Express 2010, 18, 6071–6078. [Google Scholar] [CrossRef] [Green Version]
- Poletto, L. Tolerances of time-delay-compensated monochromators for extreme-ultraviolet ultrashort pulses. Appl. Opt. 2009, 48, 4526–4535. [Google Scholar] [CrossRef]
- Poletto, L.; Villoresi, P.; Frassetto, F.; Calegari, F.; Ferrari, F.; Lucchini, M.; Sansone, G.; Nisoli, M. Time-delay compensated monochromator for the spectral selection of extreme-ultraviolet high-order laser harmonics. Rev. Sci. Instrum. 2009, 80, 123109. [Google Scholar] [CrossRef]
- Erko, A.; Braig, C.; Löchel, H. Spectrometers and monochromators for femtosecond soft x-ray sources. In Proceedings of the SPIE 11108, San Diego, CA, USA, 9 September 2019; p. 111080J. [Google Scholar]
- Erko, A.; Braig, C. Time delay compensating monochromator based on reflection zone plates. In Proceedings of the OSA High-brightness Sources and Light-driven Interactions Congress 2020 (EUVXRAY, HILAS, MICS), Washington, DC, USA, 16–20 November 2020; p. ETh1A.5. [Google Scholar]
- Probst, J.; Braig, C.; Erko, A. Flat Field Soft X-ray Spectrometry with Reflection Zone Plates on a Curved Substrate. Appl. Sci. 2020, 10, 7210. [Google Scholar] [CrossRef]
- Frassetto, F.; Ploenjes, E.; Kuhlmann, M.; Poletto, L. Time-delay-compensated grating monochromator for FEL beamlines. In Proceedings of the SPIE 9210, San Diego, CA, USA, 8 October 2014; p. 92100I. [Google Scholar]
- Petrakis, S.; Bakarezos, M.; Tatarakis, M.; Benis, E.P.; Papadogiannis, N.A. Electron quantum path control in high harmonic generation via chirp variation of strong laser pulses. Sci. Rep. 2021, 11, 23882. [Google Scholar] [CrossRef]
- Poletto, L.; Frassetto, F. Temporal Response of Ultrafast Grating Monochromators. Appl. Sci. 2018, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Mistry, P.; Tallents, G.J.; Edwards, M.H. X-ray laser pulses at the Fourier transform limit. Phys. Rev. A 2007, 75, 013818. [Google Scholar] [CrossRef] [Green Version]
- Chini, M.; Zhao, K.; Chang, Z. The generation, characterization and applications of broadband isolated attosecond pulses. Nat. Photonics 2014, 8, 178–186. [Google Scholar] [CrossRef]
- Braig, C.; Löchel, H.; Mitzner, R.; Quevedo, W.; Loukas, P.; Kubin, M.; Weniger, C.; Firsov, A.; Rehanek, J.; Brzhezinskaya, M.; et al. Design and optimization of a parallel spectrometer for ultra-fast X-ray science. Opt. Express 2014, 22, 12583–12602. [Google Scholar] [CrossRef] [PubMed]
- Probst, J.; Braig, C.; Langlotz, E.; Rahneberg, I.; Kühnel, M.; Zeschke, T.; Siewert, F.; Krist, T.; Erko, A. Conception of diffractive wavefront correction for XUV and soft x-ray spectroscopy. Appl. Opt. 2020, 59, 2580–2590. [Google Scholar] [CrossRef] [PubMed]
- Braig, C.; Probst, J.; Langlotz, E.; Rahneberg, I.; Kühnel, M.; Erko, A.; Krist, T.; Seifert, C. Diffraction compensation of slope errors on strongly curved grating substrates. In Proceedings of the SPIE 11109, San Diego, CA, USA, 2 October 2019; p. 111090U. [Google Scholar]
- The Center for X-ray Optics (CXRO): X-ray Interactions with Matter. Available online: https://henke.lbl.gov/optical_constants (accessed on 23 February 2022).
- Frassetto, F.; Villoresi, P.; Poletto, L. Optical concept of a compressor for XUV pulses in the attosecond domain. Opt. Express 2008, 16, 6652–6667. [Google Scholar] [CrossRef]
- Igarashi, H.; Makida, A.; Ito, M.; Sekikawa, T. Pulse compression of phase-matched high harmonic pulses from a time-delay compensated monochromator. Opt. Express 2012, 20, 3725–3732. [Google Scholar] [CrossRef] [Green Version]
- Mero, M.; Frassetto, F.; Villoresi, P.; Poletto, L.; Varjú, K. Compression methods for XUV attosecond pulses. Opt. Express 2011, 19, 23420–23428. [Google Scholar] [CrossRef] [Green Version]
- Stiel, H.; Braenzel, J.; Jonas, A.; Gnewkow, R.; Glöggler, L.T.; Sommer, D.; Krist, T.; Erko, A.; Tümmler, J.; Mantouvalou, I. Towards Understanding Excited-State Properties of Organic Molecules Using Time-Resolved Soft X-ray Absorption Spectroscopy. Int. J. Mol. Sci. 2021, 22, 13463. [Google Scholar] [CrossRef]
- Inubushi, Y.; Tono, K.; Togashi, T.; Sato, T.; Hatsui, T.; Kameshima, T.; Togawa, K.; Hara, T.; Tanaka, T.; Tanaka, H.; et al. Determination of the Pulse Duration of an X-ray Free Electron Laser Using Highly Resolved Single-Shot Spectra. Phys. Rev. Lett. 2012, 109, 144801. [Google Scholar] [CrossRef]
- Lu, H.; Gauthier, A.; Hepting, M.; Tremsin, A.S.; Reid, A.H.; Kirchmann, P.S.; Shen, Z.X.; Devereaux, T.P.; Shao, Y.C.; Feng, X.; et al. Time-resolved RIXS experiment with pulse-by-pulse parallel readout data collection using X-ray free electron laser. Sci. Rep. 2020, 10, 22226. [Google Scholar] [CrossRef]
- Dziarzhytski, S.; Biednov, M.; Dicke, B.; Wang, A.; Miedema, P.S.; Engel, R.Y.; Schunck, J.O.; Redlin, H.; Weigelt, H.; Siewert, F.; et al. The TRIXS end-station for femtosecond time-resolved resonant inelastic x-ray scattering experiments at the soft x-ray free-electron laser FLASH. Struct. Dyn. 2020, 7, 054301. [Google Scholar] [CrossRef]
(FWHM) | (FWHM) | (FWHM) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braig, C.; Erko, A. Broadband Time-Delay and Chirp Compensator for X-ray Pulses. Photonics 2022, 9, 302. https://doi.org/10.3390/photonics9050302
Braig C, Erko A. Broadband Time-Delay and Chirp Compensator for X-ray Pulses. Photonics. 2022; 9(5):302. https://doi.org/10.3390/photonics9050302
Chicago/Turabian StyleBraig, Christoph, and Alexei Erko. 2022. "Broadband Time-Delay and Chirp Compensator for X-ray Pulses" Photonics 9, no. 5: 302. https://doi.org/10.3390/photonics9050302
APA StyleBraig, C., & Erko, A. (2022). Broadband Time-Delay and Chirp Compensator for X-ray Pulses. Photonics, 9(5), 302. https://doi.org/10.3390/photonics9050302