#
Angle-Dependent Magic Optical Trap for the 6S_{1/2}↔nP_{3/2} Rydberg Transition of Cesium Atoms

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Calculation Methods

## 3. Results and Discussion

#### 3.1. Magic Condition for Cs $6{S}_{1/2}$ Ground State and $70{P}_{3/2}$ Rydberg State

#### 3.2. Magic Trapping Condition for Cs $n{P}_{3/2}$ Rydberg States

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Gallagher, T.F. Rydberg Atoms; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Saffman, M.; Walker, T.G.; Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys.
**2010**, 82, 2313–2363. [Google Scholar] [CrossRef] - Adams, C.S.; Pritchard, J.D.; Shaffer, J.P. Rydberg atom quantum technologies. J. Phys. B At. Mol. Opt. Phys.
**2020**, 53, 012002. [Google Scholar] [CrossRef] [Green Version] - Browaeys, A.; Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys.
**2020**, 16, 132–142. [Google Scholar] [CrossRef] - Dudin, Y.O.; Kuzmich, A. Strongly interacting Rydberg excitations of a cold atomic gas. Science
**2012**, 336, 887. [Google Scholar] [CrossRef] - Ripka, F.; Kübler, H.; Löw, R.; Pfau, T. A room-temperature single-photon source based on strongly interacting Rydberg atoms. Science
**2018**, 362, 446–449. [Google Scholar] [CrossRef] [Green Version] - Gorniaczyk, H.; Tresp, C.; Schmidt, J.; Fedder, H.; Hofferberth, S. Single-photon transistor mediated by interstate Rydberg interactions. Phys. Rev. Lett.
**2014**, 113, 053601. [Google Scholar] [CrossRef] [Green Version] - Urban, E.; Johnson, T.A.; Henage, T.; Isenhower, L.; Yavuz, D.D.; Walker, T.G.; Saffman, M. Observation of Rydberg blockade between two atoms. Nat. Phys.
**2009**, 5, 110–114. [Google Scholar] [CrossRef] - Sun, L.N.; Yan, L.L.; Su, S.L.; Jia, Y. One-step implementation of time-optimal-control three-qubit nonadiabatic holonomic controlled gates in Rydberg atoms. Phys. Rev. Appl.
**2021**, 16, 064040. [Google Scholar] [CrossRef] - Grimm, R.; Weidemüller, M.; Ovchinnikov, Y.B. Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys.
**2000**, 42, 95–170. [Google Scholar] [CrossRef] [Green Version] - Choi, J.H.; Guest, J.R.; Povilus, A.P.; Hansis, E.; Raithel, G. Magnetic trapping of long-lived cold Rydberg atoms. Phys. Rev. Lett.
**2005**, 95, 243001. [Google Scholar] [CrossRef] - Boetes, A.G.; Skannrup, R.V.; Naber, J.; Kokkelmans, S.J.J.M.F.; Spreeuw, R.J.C. Trapping of Rydberg atoms in tight magnetic microtraps. Phys. Rev. A
**2018**, 97, 013430. [Google Scholar] [CrossRef] [Green Version] - Hogan, S.D.; Merkt, F. Demonstration of three-dimensional electrostatic trapping of state-selected Rydberg atoms. Phys. Rev. Lett.
**2008**, 100, 043001. [Google Scholar] [CrossRef] [Green Version] - Anderson, S.E.; Younge, K.C.; Raithel, G. Trapping Rydberg atoms in an optical lattice. Phys. Rev. Lett.
**2011**, 107, 263001. [Google Scholar] [CrossRef] - Barredo, D.; Lienhard, V.; Scholl, P.; de Léséleuc, S.; Boulier, T.; Browaeys, A.; Lahaye, T. Three-dimensional trapping of individual Rydberg atoms in ponderomotive bottle beam traps. Phys. Rev. Lett.
**2020**, 124, 023201. [Google Scholar] [CrossRef] [Green Version] - Cortiñas, R.G.; Favier, M.; Ravon, B.; Méhaignerie, P.; Machu, Y.; Raimond, J.M.; Sayrin, C.; Brune, M. Laser trapping of circular Rydberg atoms. Phys. Rev. Lett.
**2020**, 124, 123201. [Google Scholar] [CrossRef] [Green Version] - McKeever, J.; Buck, J.R.; Boozer, A.D.; Kuzmich, A.; Nagerl, H.C.; Stamper-Kurn, D.M.; Kimble, H.J. State-insensitive cooling and trapping of single atoms in an optical cavity. Phys. Rev. Lett.
**2003**, 90, 133602. [Google Scholar] [CrossRef] [Green Version] - Li, L.; Dudin, Y.O.; Kuzmich, A. Entanglement between light and an optical atomic excitation. Nature
**2013**, 498, 466–469. [Google Scholar] [CrossRef] - Bai, J.D.; Liu, S.; He, J.; Wang, J.M. Towards implementation of a magic optical-dipole trap for confining ground-state and Rydberg-state cesium cold atoms. J. Phys. B At. Mol. Opt. Phys.
**2020**, 53, 155302. [Google Scholar] [CrossRef] - Wilson, J.T.; Saskin, S.; Meng, Y.; Ma, S.; Dilip, R.; Burgers, A.P.; Thompson, J.D. Trapping alkaline earth Rydberg atoms optical tweezer arrays. Phys. Rev. Lett.
**2022**, 128, 033201. [Google Scholar] [CrossRef] - Mei, Y.; Li, Y.; Nguyen, H.; Berman, P.; Kuzmich, A. Trapped alkali-metal Rydberg qubit. Phys. Rev. Lett.
**2022**, 128, 123601. [Google Scholar] [CrossRef] - Wang, J.M.; Guo, S.L.; Ge, Y.L.; Cheng, Y.J.; Yang, B.D.; He, J. State-insensitive dichromatic optical-dipole trap for rubidium atoms: Calculation and the dicromatic laser’s realization. J. Phys. B At. Mol. Opt. Phys.
**2014**, 47, 095001. [Google Scholar] [CrossRef] - Liu, B.; Jin, G.; Sun, R.; He, J.; Wang, J.M. Measurement of magic-wavelength optical dipole trap by using the laser-induced fluorescence spectra of trapped single cesium atoms. Opt. Express
**2017**, 25, 15861–15867. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Zimmerman, M.L.; Littman, M.G.; Kash, M.M.; Kleppner, D. Stark structure of the Rydberg states of alkali-metal atoms. Phys. Rev. A
**1979**, 20, 2251–2275. [Google Scholar] [CrossRef] - Kien, F.L.; Schneeweiss, P.; Rauschenbeutel, A. Dynamical polarizability of atoms in arbitrary light fields: General theory and application to cesium. Eur. Phys. J. D
**2013**, 67, 92. [Google Scholar] [CrossRef] [Green Version] - Šibalić, N.; Pritchard, J.D.; Adams, C.S.; Weatherill, K.J. ARC: An open-source library for calculating properties of alkali Rydberg atoms. Comput. Phys. Commun.
**2017**, 220, 319–331. [Google Scholar] [CrossRef] - Mitroy, J.; Safronova, M.S.; Clark, C.W. Theory and applications of atomic and ionic polarizabilities. J. Phys. B At. Mol. Opt. Phys.
**2010**, 43, 202001. [Google Scholar] [CrossRef] - Younge, K.C.; Anderson, S.E.; Raithel, G. Adiabatic potentials for Rydberg atoms in a ponderomotive optical lattice. New J. Phys.
**2010**, 12, 023031. [Google Scholar] [CrossRef] - Budker, D.; Kimball, D.; DeMille, D. Atomic Physics: An Exploration through Problems and Solutions; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Hankin, A.M.; Jau, Y.Y.; Parazzoli, L.P.; Chou, C.W.; Armstrong, D.J.; Landahl, A.J.; Biedermann, G.W. Two-atom Rydberg blockade using direct 6S to nP excitation. Phys. Rev. A
**2014**, 89, 033416. [Google Scholar] [CrossRef] [Green Version] - Jau, Y.Y.; Hankin, A.M.; Keating, T.; Deutsch, I.H.; Biedermann, G.W. Entangling atomic spins with a Rydberg-dressed spin-flip blockade. Nat. Phys.
**2015**, 12, 71–74. [Google Scholar] [CrossRef] [Green Version] - Wang, J.Y.; Bai, J.D.; He, J.; Wang, J.M. Single-photon cesium Rydberg excitation spectroscopy using 318.6-nm UV laser and room-temperature vapor cell. Opt. Express
**2017**, 25, 22510–22518. [Google Scholar] [CrossRef] [Green Version] - Bai, J.D.; Wang, J.Y.; Liu, S.; He, J.; Wang, J.M. Autler–Townes doublet in single-photon Rydberg spectra of cesium atomic vapor with a 319 nm UV laser. Appl. Phys. B
**2019**, 125, 33. [Google Scholar] [CrossRef] [Green Version] - Bai, J.D.; Liu, S.; Wang, J.Y.; He, J.; Wang, J.M. Single-photon Rydberg excitation and trap-loss spectroscopy of cold cesium atoms in a magneto-optical trap by using of a 319-nm ultraviolet laser system. IEEE J. Sel. Top. Quant. Electr.
**2020**, 26, 1600106. [Google Scholar] [CrossRef] [Green Version]

**Figure 1.**The geometrical parameters of electromagnetic plane waves. $\widehat{k}$, ${\widehat{e}}_{z}$, and $\widehat{\epsilon}$ are the unit wave vector, the quantized axis, and the laser polarization vector, respectively. The parameters ${\theta}_{maj}$, ${\theta}_{min}$, and ${\theta}_{k}$ are the angles between each unit vector and the quantized axis.

**Figure 2.**Trapping of Rydberg atoms. (

**a**) The conventional far-off-resonance red-detuned ODT is attractive for ground states but usually repulsive for highly excited Rydberg states. (

**b**) The direct single-photon transition from $\left|g\right.\u232a$ = $\left|6{S}_{1/2}\right.\u232a$ to $\left|r\right.\u232a$ = $\left|n{P}_{3/2}\right.\u232a$ coupled by a 319-nm ultraviolet laser. The trapping potential of the $\left|g\right.\u232a$ and $\left|r\right.\u232a$ states can be equalized when an ODT laser is tuned to the blue side of the $\left|r\right.\u232a\leftrightarrow \left|a\right.\u232a$ auxiliary transition.

**Figure 3.**Dynamic polarizabilities of Cs $6{S}_{1/2}$ ground state (red dashed lines) and $70{P}_{3/2}$ Rydberg state (blue and black solid lines) between 600 nm and 2000 nm.

**Figure 4.**The dynamic polarizabilities of the ground state and the Rydberg state in the case of linearly polarized light in the range from 1882.220 to 1882.245 nm near the auxiliary transition of $70{P}_{3/2}\leftrightarrow 7{D}_{5/2}$. (

**a**) The quantization axis is perpendicular to the plane of polarization and (

**b**) the quantization axis is parallel to the plane of polarization.

**Figure 5.**The dependence of magic detuning for the $6{S}_{1/2}\leftrightarrow 70{P}_{3/2}$ transition near different auxiliary transitions on ${\left|cos{\theta}_{p}\right|}^{2}$ in the case of linearly polarized light. (

**a**) $70{P}_{3/2}\leftrightarrow 7{D}_{5/2}$ auxiliary transition; (

**b**) $70{P}_{3/2}\leftrightarrow 8{S}_{1/2}$ auxiliary transition; (

**c**) $70{P}_{3/2}\leftrightarrow 6{D}_{5/2}$ auxiliary transition.

**Figure 6.**(

**a**) A magic ODT formed by a strongly focused single-mode Gaussian laser beam. (

**b**) The involved energy level diagram of magic ODTs for the $6{S}_{1/2}\leftrightarrow 70{P}_{3/2}$ single-photon transition coupled by a 318.65798 nm ultra-violet laser. The brown double arrow lines are auxiliary transitions from $70{P}_{3/2}$ to $7{D}_{5/2}$, $8{S}_{1/2}$, and $6{D}_{5/2}$, and the corresponding magic wavelengths are 1882.229946, 1415.535736, and 1142.866537 nm, respectively.

**Figure 7.**In the vicinity of different auxiliary transitions, the magic detuning at magic angle varies with the principal quantum number from 50 to 90. The solid lines are the fitted results.

**Table 1.**At magic angle, magic detunings and magic wavelengths of the $6{S}_{1/2}\leftrightarrow 70{P}_{3/2}$ transition near the $70{P}_{3/2}\leftrightarrow 7{D}_{5/2}$, $70{P}_{3/2}\leftrightarrow 8{S}_{1/2}$, and $70{P}_{3/2}\leftrightarrow 6{D}_{5/2}$ auxiliary transitions.

Auxiliary Transition | Magic Detuning (MHz) | Magic Wavelength (nm) |
---|---|---|

$70{P}_{3/2}\leftrightarrow 7{D}_{5/2}$ | 302.67 | 1882.229946 |

$70{P}_{3/2}\leftrightarrow 8{S}_{1/2}$ | 77.08 | 1415.535736 |

$70{P}_{3/2}\leftrightarrow 6{D}_{5/2}$ | 134.48 | 1142.866537 |

Auxiliary Transition | a (MHz) | b | c (MHz) |
---|---|---|---|

$n{P}_{3/2}\leftrightarrow 7{D}_{5/2}$ | 3.881(6) × 10${}^{8}$ | 3.324(5) | 16.6(5) |

$n{P}_{3/2}\leftrightarrow 8{S}_{1/2}$ | 1.050(2) × 10${}^{8}$ | 3.337(5) | 3.9(1) |

$n{P}_{3/2}\leftrightarrow 6{D}_{5/2}$ | 1.653(5) × 10${}^{8}$ | 3.312(8) | 6.1(4) |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bai, J.; Wang, X.; Hou, X.; Liu, W.; Wang, J.
Angle-Dependent Magic Optical Trap for the 6*S*_{1/2}↔*n**P*_{3/2} Rydberg Transition of Cesium Atoms. *Photonics* **2022**, *9*, 303.
https://doi.org/10.3390/photonics9050303

**AMA Style**

Bai J, Wang X, Hou X, Liu W, Wang J.
Angle-Dependent Magic Optical Trap for the 6*S*_{1/2}↔*n**P*_{3/2} Rydberg Transition of Cesium Atoms. *Photonics*. 2022; 9(5):303.
https://doi.org/10.3390/photonics9050303

**Chicago/Turabian Style**

Bai, Jiandong, Xin Wang, Xiaokai Hou, Wenyuan Liu, and Junmin Wang.
2022. "Angle-Dependent Magic Optical Trap for the 6*S*_{1/2}↔*n**P*_{3/2} Rydberg Transition of Cesium Atoms" *Photonics* 9, no. 5: 303.
https://doi.org/10.3390/photonics9050303