Transversal Kerr Effect Enhancement of Permalloy-Based Shallow Lamellar Magnetoplasmonic Crystals
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kravets, V.G.; Kabashin, A.V.; Barnes, W.L.; Grigorenko, A.N. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chem. Rev. 2018, 118, 5912–5951. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Zhuo, X.; Wang, J. Active Plasmonics: Principles, Structures, and Applications. Chem. Rev. 2018, 118, 3054–3099. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Peng, Y.; Yang, Y.; Li, Z.-Y. Plasmon-Enhanced Light–Matter Interactions and Applications. npj Comput. Mater. 2019, 5, 45. [Google Scholar] [CrossRef]
- Chou, K.-H.; Lin, E.-P.; Chen, T.-C.; Lai, C.-H.; Wang, L.-W.; Chang, K.-W.; Lee, G.-B.; Lee, M.-C.M. Application of Strong Transverse Magneto-Optical Kerr Effect on High Sensitive Surface Plasmon Grating Sensors. Opt. Express 2014, 22, 19794. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Zhai, X.; Wang, L.; Xiang, Y.; Wen, S. Plasmonically Induced Transparency in Phase-Coupled Graphene Nanoribbons. Phys. Rev. B 2022, 106, 075401. [Google Scholar] [CrossRef]
- Guan, J.; Xia, S.; Zhang, Z.; Wu, J.; Meng, H.; Yue, J.; Zhai, X.; Wang, L.; Wen, S. Two Switchable Plasmonically Induced Transparency Effects in a System with Distinct Graphene Resonators. Nanoscale Res. Lett. 2020, 15, 142. [Google Scholar] [CrossRef]
- Musorin, A.I.; Chetvertukhin, A.V.; Dolgova, T.V.; Uchida, H.; Inoue, M.; Luk’yanchuk, B.S.; Fedyanin, A.A. Tunable Multimodal Magnetoplasmonic Metasurfaces. Appl. Phys. Lett. 2019, 115, 151102. [Google Scholar] [CrossRef]
- Armelles, G.; Cebollada, A.; García-Martín, A.; González, M.U. Magnetoplasmonics: Combining Magnetic and Plasmonic Functionalities. Adv. Opt. Mater. 2013, 1, 10–35. [Google Scholar] [CrossRef]
- Borovkova, O.V.; Hashim, H.; Ignatyeva, D.O.; Kozhaev, M.A.; Kalish, A.N.; Dagesyan, S.A.; Shaposhnikov, A.N.; Berzhansky, V.N.; Achanta, V.G.; Panina, L.V.; et al. Magnetoplasmonic Structures with Broken Spatial Symmetry for Light Control at Normal Incidence. Phys. Rev. B 2020, 102, 081405. [Google Scholar] [CrossRef]
- Belotelov, V.; Akimov, I.; Pohl, M.; Kotov, V.A.; Kasture, S.; Vengurlekar, A.S.; Gopal, A.V.; Yakovlev, D.R.; Zvezdin, A.K.; Bayer, M. Enhanced magneto-optical effects in magnetoplasmonic crystals. Nat. Nanotech 2011, 6, 370–376. [Google Scholar] [CrossRef]
- Belyaev, V.K.; Murzin, D.V.; Perova, N.N.; Grunin, A.A.; Fedyanin, A.A.; Rodionova, V.V. Permalloy-Based Magnetoplasmonic Crystals for Sensor Applications. J. Magn. Magn. Mater. 2019, 482, 292–295. [Google Scholar] [CrossRef]
- Grunin, A.A.; Mukha, I.R.; Chetvertukhin, A.V.; Fedyanin, A.A. Refractive Index Sensor Based on Magnetoplasmonic Crystals. J. Magn. Magn. Mater. 2016, 415, 72–76. [Google Scholar] [CrossRef]
- Belyaev, V.K.; Rodionova, V.V.; Grunin, A.A.; Inoue, M.; Fedyanin, A.A. Magnetic Field Sensor Based on Magnetoplasmonic Crystal. Sci. Rep. 2020, 10, 7133. [Google Scholar] [CrossRef] [PubMed]
- de la Cruz, S.; Méndez, E.R.; Macías, D.; Salas-Montiel, R.; Adam, P.M. Compact Surface Structures for the Efficient Excitation of Surface Plasmon-Polaritons. Phys. Status Solidi Basic Res. 2012, 249, 1178–1187. [Google Scholar] [CrossRef]
- Smith, C.L.C.; Stenger, N.; Kristensen, A.; Mortensen, N.A.; Bozhevolnyi, S.I. Gap and Channeled Plasmons in Tapered Grooves: A Review. Nanoscale 2015, 7, 9355–9386. [Google Scholar] [CrossRef]
- Kiryanov, M.A.; Frolov, A.Y.; Novikov, I.A.; Kipp, P.A.; Nurgalieva, P.K.; Popov, V.V.; Ezhov, A.A.; Dolgova, T.V.; Fedyanin, A.A. Surface Profile-Tailored Magneto-Optics in Magnetoplasmonic Crystals. APL Photonics 2022, 7, 026104. [Google Scholar] [CrossRef]
- Popov, E.; Tsonev, L.; Maystre, D. Lamellar Metallic Grating Anomalies. Appl. Opt. 1994, 33, 5214. [Google Scholar] [CrossRef]
- Popov, E.K.; Bonod, N.; Enoch, S. Comparison of Plasmon Surface Waves on Shallow and Deep Metallic 1D and 2D Gratings. Opt. Express 2007, 15, 4224. [Google Scholar] [CrossRef]
- Bonod, N.; Tayeb, G.; Maystre, D.; Enoch, S.; Popov, E. Total Absorption of Light by Lamellar Metallic Gratings. Opt. Express 2008, 16, 15431. [Google Scholar] [CrossRef]
- Le Perchec, J.; Quémerais, P.; Barbara, A.; López-Ríos, T. Why Metallic Surfaces with Grooves a Few Nanometers Deep and Wide May Strongly Absorb Visible Light. Phys. Rev. Lett. 2008, 100, 066408. [Google Scholar] [CrossRef]
- Ávalos, L.; González-Alcalde, A.K.; Chaikina, E.I.; García-Guerrero, E.E.; Maradudin, A.A.; Méndez, E.R. Excitation of Plasmonic and Photonic Modes in Metallic Lamellar Gratings. Opt. Commun. 2021, 500, 127324. [Google Scholar] [CrossRef]
- K-Layout. Available online: https://www.klayout.de/ (accessed on 1 December 2022).
- Hubert, A.; Schäfer, R. Magnetic Domains: The Analysis of Magnetic Microstructures; Springer Science & Business Media: Berlin, Germany, 2008. [Google Scholar]
- Maradudin, A.A.; Simonsen, I.; Polanco, J.; Fitzgerald, R.M. Rayleigh and Wood Anomalies in the Diffraction of Light from a Perfectly Conducting Reflection Grating. J. Opt. 2016, 18, 024004. [Google Scholar] [CrossRef]
- Halagačka, L.; Vanwolleghem, M.; Postava, K.; Dagens, B.; Pištora, J. Coupled Mode Enhanced Giant Magnetoplasmonics Transverse Kerr Effect. Opt. Express 2013, 21, 21741. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tikuišis, K.K.; Beran, L.; Cejpek, P.; Uhlířová, K.; Hamrle, J.; Vaňatka, M.; Urbánek, M.; Veis, M. Optical and Magneto-Optical Properties of Permalloy Thin Films in 0.7–6.4 EV Photon Energy Range. Mater. Des. 2017, 114, 31–39. [Google Scholar] [CrossRef]
- Cowan, J.J.; Arakawa, E.T. Dispersion of Surface Plasmons in Dielectric-Metal Coatings on Concave Diffraction Gratings. Zeitschrift Phys. 1970, 235, 97–109. [Google Scholar] [CrossRef]
- Kleemann, B.; Guther, R. Metal Gratings with Dielectric Coating of Variable Thickness within a Period. J. Mod. Opt. 1991, 38, 897–910. [Google Scholar] [CrossRef]
- Maystre, D. Theory of Wood’s Anomalies. In Plasmonics: From Basics to Advanced Topics; Enoch, S., Bonod, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 39–83. ISBN 978-3-642-28079-5. [Google Scholar]
- Darweesh, A.A.; Bauman, S.J.; Debu, D.T.; Herzog, J.B. The Role of Rayleigh-Wood Anomalies and Surface Plasmons in Optical Enhancement for Nano-Gratings. Nanomaterials 2018, 8, 809. [Google Scholar] [CrossRef]
- Savoia, S.; Ricciardi, A.; Crescitelli, A.; Granata, C.; Esposito, E.; Galdi, V.; Cusano, A. Surface Sensitivity of Rayleigh Anomalies in Metallic Nanogratings. Opt. Express 2013, 21, 23531. [Google Scholar] [CrossRef]
- Belotelov, V.I.; Bykov, D.A.; Doskolovich, L.L.; Kalish, A.N.; Zvezdin, A.K. Giant Transversal Kerr Effect in Magneto-Plasmonic Heterostructures: The Scattering-Matrix Method. J. Exp. Theor. Phys. 2010, 110, 816–824. [Google Scholar] [CrossRef]
- Feigenbaum, E.; Orenstein, M. Modeling of Complementary (Void) Plasmon Waveguiding. J. Light. Technol. 2007, 25, 2547–2562. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murzin, D.; Belyaev, V.; Kern, J.; Kaspar, C.; Pernice, W.H.; Bratschitsch, R.; Rodionova, V. Transversal Kerr Effect Enhancement of Permalloy-Based Shallow Lamellar Magnetoplasmonic Crystals. Photonics 2022, 9, 989. https://doi.org/10.3390/photonics9120989
Murzin D, Belyaev V, Kern J, Kaspar C, Pernice WH, Bratschitsch R, Rodionova V. Transversal Kerr Effect Enhancement of Permalloy-Based Shallow Lamellar Magnetoplasmonic Crystals. Photonics. 2022; 9(12):989. https://doi.org/10.3390/photonics9120989
Chicago/Turabian StyleMurzin, Dmitry, Victor Belyaev, Johannes Kern, Corinna Kaspar, Wolfram H. Pernice, Rudolf Bratschitsch, and Valeria Rodionova. 2022. "Transversal Kerr Effect Enhancement of Permalloy-Based Shallow Lamellar Magnetoplasmonic Crystals" Photonics 9, no. 12: 989. https://doi.org/10.3390/photonics9120989
APA StyleMurzin, D., Belyaev, V., Kern, J., Kaspar, C., Pernice, W. H., Bratschitsch, R., & Rodionova, V. (2022). Transversal Kerr Effect Enhancement of Permalloy-Based Shallow Lamellar Magnetoplasmonic Crystals. Photonics, 9(12), 989. https://doi.org/10.3390/photonics9120989