Design and Optimization of Asymmetric Grating Assisted Slot Microring
Abstract
1. Introduction
2. Structure Design and Theoretical Analysis
2.1. Structure Design
2.2. Theoretical Analysis
3. Structural Optimization
3.1. Microring Radius
3.2. Grating Depth
3.3. Grating Duty Cycle
3.4. Grid Number/Period
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Battula, S.; Kumar, M.; Panda, S.K.; Pavan, K.; Rao, U. In-Situ Microplastic Detection Sensor Based on Cascaded Microring Resonators. In Proceedings of the OCEANS 2021, San Diego, CA, USA, 20–23 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Zuoqin, D.; Dai, D.; Shi, Y. Ultra-sensitive silicon temperature sensor based on cascaded Mach–Zehnder interferometers. Opt. Lett. 2021, 46, 2787–2790. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. A serially cascaded micro-ring resonator for simultaneous detection of multiple analytes. Laser Phys. 2019, 29, 046208. [Google Scholar] [CrossRef]
- Lei, J.; Mingyu, L.; Jianjun, H. Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect. Opt. Commun. 2011, 284, 156–159. [Google Scholar] [CrossRef]
- Kumar, B.S.; Varshney, S.K. Ultrawide FSR microring racetrack resonator with an integrated Fabry–Perot cavity for refractive index sensing. J. Opt. Soc. Am. B 2021, 38, 1669–1675. [Google Scholar] [CrossRef]
- Wu, J.; Moein, T.; Xu, X.; Ren, G.; Mitchell, A.; Moss, D.J. Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity. APL Photonics 2017, 2, 056103. [Google Scholar] [CrossRef]
- Malmir, K.; Habibiyan, H.; Ghafoorifard, H. An ultrasensitive optical label-free polymeric biosensor based on concentric triple microring resonators with a central microdisk resonator. Opt. Commun. 2016, 365, 150–156. [Google Scholar] [CrossRef]
- Bahram, A.; Shabankareh, M.A.G.; Farmani, A. Simulation of a refractive index sensor based on the Vernier effect and a cascaded PANDA and Mach–Zehnder interferometer. J. Comput. Electron. 2021, 20, 1599–1610. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, C.; Luo, Y.; Yang, Z.; Zhang, W.; Li, L.; Xu, P.; Zhang, P.; Xu, T. High Q-factor, ultrasensitivity slot microring resonator sensor based on chalcogenide glasses. Opt. Express 2022, 30, 3866–3875. [Google Scholar] [CrossRef]
- Yao, S.; Han, H.; Jiang, S.; Xiang, B.; Chai, G.; Ruan, S. Design, Simulation, and Analysis of Optical Microring Resonators in Lithium Tantalate on Insulator. Crystals 2021, 11, 480. [Google Scholar] [CrossRef]
- Ciminelli, C.; Dell’Olio, F.; Brunetti, G.; Conteduca, D.; Armenise, M.N. New microwave photonic filter based on a ring resonator including a photonic crystal structure. In Proceedings of the 19th International Conference on Transparent Optical Networks (ICTON), Girona, Spain, 2–6 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Capmany, J.; Domenech, D.; Muñoz, P. Silicon graphene reconfigurable CROWS and SCISSORS. IEEE Photonics J. 2015, 7, 2700609. [Google Scholar] [CrossRef]
- Brunetti, G.; Sasanelli, N.; Armenise, M.N.; Ciminelli, C. High performance and tunable optical pump-rejection filter for quantum photonic systems. Opt. Laser Technol. 2021, 139, 106978. [Google Scholar] [CrossRef]
- Ciminelli, C.; Innone, F.; Brunetti, G.; Conteduca, D.; Dell’Olio, F.; Tatoli, T.; Armenise, M.N. Rigorous model for the design of ultra-high Q-factor resonant cavities. In Proceedings of the 18th International Conference on Transparent Optical Networks (ICTON), Trento, Italy, 10–14 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Spencer, D.T.; Bauters, J.F.; Heck, M.J.R.; Bowers, J.E. Integrated waveguide coupled Si 3 N 4 resonators in the ultrahigh-Q regime. Optica 2014, 1, 153–157. [Google Scholar] [CrossRef]
- Liu, K.; Jin, N.; Cheng, H.; Chauhan, N.; Puckett, M.W.; Nelson, K.D.; Behunin, R.O.; Rakich, P.T.; Blumenthal, D.J. Ultralow 0.034 dB/m loss wafer-scale integrated photonics realizing 720 million Q and 380 μW threshold Brillouin lasing. Opt. Lett. 2022, 47, 1855–1858. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Shi, Y.; Lei, D.; He, D.; Mi, X. High Sensitivity Optical Sensor Based on Periodic Grating Waveguide Structure for Real-time Sensing. In Proceedings of the International Conference on Electronic Information Technology and Smart Agriculture (ICEITSA), Huaihua, China, 10–12 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 66–70. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, D.N.; Gao, F. Simultaneous refractive index and temperature sensing based on a fiber surface waveguide and fiber Bragg gratings. Opt. Lett. 2021, 46, 1209–1212. [Google Scholar] [CrossRef]
- Shi, W.; Wang, X.; Zhang, W.; Yun, H.; Lin, C.; Chrostowski, L.; Jaeger, N.A.F. Grating-coupled silicon microring resonators. Appl. Phys. Lett. 2012, 100, 121118. [Google Scholar] [CrossRef]
- Li, G.; Ji, L.; Li, G.; Su, J.; Wu, C. High-resolution and large-dynamic-range temperature sensor using fiber Bragg grating Fabry-Pérot cavity. Opt. Express 2021, 29, 18523–18529. [Google Scholar] [CrossRef]
- Sun, X.; Chang, Z.; Zeng, L.; Zhang, L.; Hu, Y.; Duan, J. Simultaneous vector bending and temperature sensing based on eccentric multi-mode fiber Bragg gratings. Sens. Actuators A Phys. 2021, 331, 112903. [Google Scholar] [CrossRef]
- Shu, Q.; Wu, L.; Lu, S.; Xiao, W. High-sensitivity structure based on fiber Bragg grating sensor and its application in nonintrusive detection of pipeline pressure change. Measurement 2022, 189, 110444. [Google Scholar] [CrossRef]
- Dong, X.; Liu, Y.; Liu, Z.; Dong, X. Simultaneous displacement and temperature measurement with cantilever-based fiber Bragg grating sensor. Opt. Commun. 2001, 192, 213–217. [Google Scholar] [CrossRef]
- Ying, Z.C.; Zhang, L.; Zhang, C.M. Compact SOI optimized slot microring coupled phase-shifted Bragg grating resonator for sensing. Opt. Commun. 2018, 414, 212–216. [Google Scholar] [CrossRef]
- Kavitha, B.S.; Sridevi, S.; Makam, P.; Ghosh, D.; Govindaraju, T.; Asokan, S.; Sood, A.K. Highly sensitive and Rapid detection of mercury in water using functionalized etched fiber Bragg grating sensors. Sens. Actuators B Chem. 2021, 333, 129550. [Google Scholar] [CrossRef]
- Gao, G.; Zhang, Y.; Zhang, H.; Xia, J. Air-mode photonic crystal ring resonator on silicon-on-insulator. Sci. Rep. 2016, 6, 19999. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, G.; Dell’Olio, F.; Conteduca, D.; Armenise, M.N.; Ciminelli, C. Comprehensive mathematical modelling of ultra-high Q grating-assisted ring resonators. J. Opt. 2020, 22, 035802. [Google Scholar] [CrossRef]
- Liu, C.; Sang, C.; Wu, X.; Cai, J.; Wang, J. Grating double-slot micro-ring resonator for sensing. Opt. Commun. 2021, 499, 127280. [Google Scholar] [CrossRef]
- Puckett, M.W.; Vallini, F.; Grieco, A.; Fainman, Y. Multichannel Bragg gratings in silicon waveguides with asymmetric sidewall modulation. Opt. Lett. 2015, 40, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Song, J.H.; Kongnyuy, T.D.; De Heyn, P.; Lardenois, S.; Jansen, R.; Rottenberg, X. Enhanced Silicon Ring Resonators Using Low-Loss Bends. IEEE Photonics Technol. Lett. 2021, 33, 313–316. [Google Scholar] [CrossRef]
Refractive Index Sensor | Q | S (nm/RIU) | FSR (nm) |
---|---|---|---|
Serially cascaded microring resonator [3] (simulation results) | - | 232 | 160 |
Microring racetrack resonator with an integrated Fabry–Perot cavity [5] (simulation results) | - | 185 | 150 |
Compact SOI optimized slot microring coupled phase-shifted Bragg grating [24] (simulation results) | 2000 | 297.13 | 30 |
Slot microring resonator sensor based on chalcogenide glasses [9] (experimental results) | 10,000 | 471 | 2.2 |
Integrated waveguide coupled Si3N4 resonators [15] (experimental results) | 8 × 107 | - | 0.03 |
Air-mode photonic crystal ring resonator [26] (experimental results) | 14,600 | - | 3.38 |
Ultra-high Q grating-assisted ring resonators [27] (simulation results) | 1010 | - | 10−3 |
ASGMRR with grating periods of 70 and 90 (simulation results) | 5016 | 370 | 137 |
ASGMRR with grating periods of 70 and 50 (simulation results) | 10,730 | 370 | 92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Wang, J.; Wu, X.; Sun, X.; Qiao, Z.; Xin, Y.; Zhang, J. Design and Optimization of Asymmetric Grating Assisted Slot Microring. Photonics 2022, 9, 988. https://doi.org/10.3390/photonics9120988
Liu C, Wang J, Wu X, Sun X, Qiao Z, Xin Y, Zhang J. Design and Optimization of Asymmetric Grating Assisted Slot Microring. Photonics. 2022; 9(12):988. https://doi.org/10.3390/photonics9120988
Chicago/Turabian StyleLiu, Chunjuan, Jiawei Wang, Xiaosuo Wu, Xiaoli Sun, Ze Qiao, Yuqiang Xin, and Jiangfeng Zhang. 2022. "Design and Optimization of Asymmetric Grating Assisted Slot Microring" Photonics 9, no. 12: 988. https://doi.org/10.3390/photonics9120988
APA StyleLiu, C., Wang, J., Wu, X., Sun, X., Qiao, Z., Xin, Y., & Zhang, J. (2022). Design and Optimization of Asymmetric Grating Assisted Slot Microring. Photonics, 9(12), 988. https://doi.org/10.3390/photonics9120988