Low-Loss 795 nm Electro-Optic Modulators
Abstract
1. Introduction
2. Materials and Methods
2.1. Propagational Waveguide
2.2. Propagation in Beam Splitter
2.3. Modulation
2.4. Strategies on Reducing Insertion Losses
2.5. Fabrication
3. Results
4. Discussion and Prospect
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EOM | Electro-optic modulator |
EO | Electro-optic |
NV | Near-visible |
TFLN | Thin-film lithium niobate |
LNOI | Lithium niobate on insulator |
MZM | Mach–Zehnder modulator |
IL | Insertion loss |
ER | Extinction ratio |
TE | Transverse electric |
LN | Lithium niobate |
RF | Radio frequency |
DC | Direct current |
TM | Transverse magnetic |
MMI | Multimode interferometer |
PECVD | Plasma-enhanced chemical vapor deposition |
AR | Anti-reflection |
EBL | Electron beam lithography |
SEM | Scanning electron microscope |
Vπ | Half-wave voltage |
VπL | Half-wave voltage-length product |
Pπ | Half-wave power |
PCB | Printed circuit board |
References
- Sun, J.; Hao, Y.; Zhang, L.; Xu, J.; Zhu, S. Brief Review of Lithium Niobate Crystal and Its Applications. J. Synth. Cryst. 2020, 49, 947–964. [Google Scholar] [CrossRef]
- Abrahams, S.C.; Levinstein, H.J.; Reddy, J.M. Ferroelectric lithium niobate. 5. Polycrystal X-ray diffraction study between 24° and 1200 °C. J. Phys. Chem. Solids 1966, 27, 1019–1026. [Google Scholar] [CrossRef]
- Boyd, G.D.; Kasper, H.; McFee, J.H. Linear and Nonlinear Optical Properties of Ferroelectric Lithium Niobate. J. Appl. Phys. 1964, 35, 1662–1668. [Google Scholar]
- Turner, E.H. High-Frequency Electro-Optic Coefficients of Lithium Niobate. Appl. Phys. Lett. 1966, 8, 303–305. [Google Scholar] [CrossRef]
- Nassau, K.; Levinstein, H.J.; Loiacono, G.M. Ferroelectric Lithium Niobate Single Crystals: Growth and Domain Structure. J. Phys. Chem. Solids 1966, 27, 989–996. [Google Scholar] [CrossRef]
- Abrahams, S.C.; Hamilton, W.C.; Reddy, J.M. Ferroelectric Lithium Niobate. 4. Single-Crystal Neutron Diffraction Study at 24 °C. J. Phys. Chem. Solids 1966, 27, 1013–1018. [Google Scholar] [CrossRef]
- Wemple, S.H.; Didomenico, M.; Camlibel, I. Relationship between linear and quadratic electro-optic coefficients in LiNbO3, LiTaO3, and other oxy-gen-octahedra ferroelectrics based on direct measurement of spontaneous polarization. Appl. Phys. Lett. 1968, 12, 209–211. [Google Scholar] [CrossRef]
- Manzo, M.; Laurell, F.; Pasiskevicius, V.; Gallo, K. Lithium Niobate: The Silicon of Photonics! In Nano-Optics for Enhancing Light–Matter Interactions on a Molecular Scale; Di Bartolo, B., Collins, J., Eds.; NATO Science for Peace and Security Series B: Physics and Biophysics; Springer: Dordrecht, The Netherlands, 2013; pp. 485–500. [Google Scholar] [CrossRef]
- Lu, J.; Surya, J.B.; Liu, X.; Bruch, A.W.; Gong, Z.; Xu, Y.; Tang, H.X. Periodically Poled Thin-Film Lithium Niobate Microring Resonators with a Second-Harmonic Generation Efficiency of 250,000%/W. Optica 2019, 6, 1455–1460. [Google Scholar] [CrossRef]
- Ghione, G. Semiconductor Devices for High-Speed Optoelectronics; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Wooten, E.L.; Kissa, K.M.; Yi-Yan, A.; Murphy, E.J.; Lafaw, D.A.; Hallemeier, P.F.; Maack, D.; Attanasio, D.V.; Fritz, D.J.; McBrien, G.J.; et al. A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 69–82. [Google Scholar] [CrossRef]
- Poberaj, G.; Hu, H.; Sohler, W.; Günter, P. Lithium Niobate on Insulator (LNOI) for Micro-Photonic Devices. Laser Photonics Rev. 2012, 6, 488–503. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, M.; Chen, X.; Bertrand, M.; Shams-Ansari, A.; Chandrasekhar, S.; Winzer, P.; Lončar, M. Integrated Lithium Niobate Electro-Optic Modulators Operating at CMOS-Compatible Voltages. Nature 2018, 562, 101–104. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, M.; Stern, B.; Lipson, M.; Lončar, M. Nanophotonic Lithium Niobate Electro-Optic Modulators. Opt. Express 2018, 26, 1547–1555. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, C.; Kharel, P.; Zhu, D.; Lončar, M. Integrated Lithium Niobate Electro-Optic Modulators: When Performance Meets Scalability. Optica 2021, 8, 652–667. [Google Scholar] [CrossRef]
- Bandi, T.N. A Comprehensive Overview of Atomic Clocks and Their Applications. Biol. Eng. Med. Sci. Rep. 2023, 9, 1–10. [Google Scholar] [CrossRef]
- Ludlow, A.D.; Boyd, M.M.; Ye, J.; Peik, E.; Schmidt, P.O.; Katori, H.; Oates, C.W.; Diddams, S.A.; Le Coq, Y.; Takamoto, M.; et al. Optical Atomic Clocks. Rev. Mod. Phys. 2015, 87, 637–701. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Z.; Qin, X.; Zhu, C.; Li, M.; Zhang, J.; Chen, X.; Zhang, S.; Zhang, J.; Liu, H.; et al. Turn-Key Voigt Optical Frequency Standard. Photonics Res. 2025, 13, 1083–1093. [Google Scholar] [CrossRef]
- Romero-García, S.; Merget, F.; Zhong, F.; Finkelstein, H.; Witzens, J. Silicon Nitride CMOS-Compatible Platform for Integrated Photonics Applications at Visible Wavelengths. Opt. Express 2013, 21, 14036–14046. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Fang, X.; Chen, X.; Zhu, L.; Li, Y.; Zhang, J.; Wang, Y.; Zhang, M.; Wang, H.; Zhang, J.; et al. Monolithic Thin-Film Lithium Niobate Electro-Optic Modulator with Over 110 GHz Bandwidth. Chin. Opt. Lett. 2022, 20, 022502. [Google Scholar] [CrossRef]
- Ummethala, S.; Kemal, J.N.; Alam, A.S.; Lauermann, M.; Kuzmin, A.; Kutuvantavida, Y.; Nandam, S.H.; Hahn, L.; Elder, D.L.; Dalton, L.R.; et al. Hybrid Electro-Optic Modulator Combining Silicon Photonic Slot Waveguides with High-k Radio-Frequency Slotlines. Optica 2021, 8, 511–519. [Google Scholar] [CrossRef]
- Zhu, D.; Shao, L.; Yu, M.; Cheng, R.; Desiatov, B.; Xin, C.J.; Hu, Y.; Holzgrafe, J.; Ghosh, S.; Shams-Ansari, A.; et al. Integrated Photonics on Thin-Film Lithium Niobate. Adv. Opt. Photonics 2021, 13, 242–352. [Google Scholar] [CrossRef]
- Çelik, Ö.T.; Sarabalis, C.J.; Mayor, F.M.; Patel, P.; Safavi-Naeini, A.H. High-Bandwidth CMOS-Voltage-Level Electro-Optic Modulation of 780 nm Light in Thin-Film Lithium Niobate. Opt. Express 2022, 30, 23177–23186. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Shi, Z.; Ling, J.; Gao, Z.; Hu, Q.; Zhang, K.; Valentine, G.; Wu, X.; Staffa, J.; Javid, U.A.; et al. Full-Spectrum Visible Electro-Optic Modulator. Optica 2023, 10, 125–126. [Google Scholar] [CrossRef]
- Valdez, F.; Mere, V.; Mookherjea, S. 100 GHz Bandwidth, 1 V Integrated Electro-Optic Mach–Zehnder Modulator at Near-IR Wavelengths. Optica 2023, 10, 578–584. [Google Scholar] [CrossRef]
- Assumpção, D.; Renaud, D.; Shams-Ansari, A.; Sinclair, A.; Lončar, M. Sub-1 V Near-Infrared Thin-Film Lithium Niobate Modulator for High-Speed Visible Communication. In Proceedings of the 2024 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 24–28 March 2024. [Google Scholar] [CrossRef]
- Renaud, D.; Assumpção, D.R.; Joe, G.; Shams-Ansari, A.; Sinclair, A.; Lončar, M. Sub-1 Volt and High-Bandwidth Visible to Near-Infrared Electro-Optic Modulators. Nat. Commun. 2023, 14, 1496. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Miyasaka, M.; Shimada, J.; Ohtani, Y.; Takeda, H.; Kurita, S. Measurement of Dispersion of Effective Electro-Optic Coefficients r13E and r33E of Non-Doped Congruent LiNbO3 Crystal. Jpn. J. Appl. Phys. 2008, 47, 5503–5507. [Google Scholar] [CrossRef]
- Chen, G.; Lin, H.-L.; Ng, J.D.; Danner, A.J. Integrated Electro-Optic Modulator in Z-Cut Lithium Niobate Thin Film with Vertical Structure. IEEE Photonics Technol. Lett. 2021, 33, 1285–1288. [Google Scholar] [CrossRef]
- Thomson, D.J.; Hu, Y.; Reed, G.T.; Littlejohns, C.G.; Mashanovich, G.Z.; Gardes, F.Y.; Nedeljkovic, M.; Soler Penades, J.; Alonso-Ramos, C.; Ortega-Moñux, A.; et al. Low-Loss MMI Couplers for High-Performance MZI Modulators. IEEE Photonics Technol. Lett. 2010, 22, 1485–1487. [Google Scholar] [CrossRef]
- Rahman, B.M.A.; Leung, D.M.H.; Obayya, S.S.A.; Grattan, K.T.V. Numerical Analysis of Bent Waveguides: Bending Loss, Transmission Loss, Mode Coupling, and Polarization Coupling. Appl. Opt. 2008, 47, 2961–2970. [Google Scholar] [CrossRef]
- Fujisawa, T.; Makino, S.; Sato, T.; Saitoh, K. Low-Loss, Compact, and Fabrication-Tolerant Si-Wire 90° Waveguide Bend Using Clothoid and Normal Curves for Large-Scale Photonic Integrated Circuits. Opt. Express 2017, 25, 9150–9159. [Google Scholar] [CrossRef]
- Meng, X.; Yuan, C.; Cheng, X.; Yuan, S.; Shang, C.; Pan, A.; Qu, Z.; Wang, X.; Wang, J.; Zhang, P.; et al. Thin-Film Lithium Niobate Modulators with Ultra-High Modulation Efficiency. Laser Photonics Rev. 2024, 18, 2400809. [Google Scholar] [CrossRef]
- Kharel, P.; Reimer, C.; Luke, K.; He, L.; Zhang, M. Breaking Voltage–Bandwidth Limits in Integrated Lithium Niobate Modulators Using Micro-Structured Electrodes: Erratum. Optica 2021, 8, 1218. [Google Scholar] [CrossRef]
- Alam, A.S.; Aitchison, J.S. Optimization of a Broadband Lithium Niobate–Barium Titanate Hybrid Modulator with Low Half-Wave-Voltage–Length Product. IEEE Photonics J. 2023, 15, 6602407. [Google Scholar] [CrossRef]
- Alam, A.S.; Aitchison, J.S. Low Half-Wave-Voltage Lithium Niobate Modulator Using High-k Dielectric Material Cladding. In 2022 Optica Advanced Photonics Congress; Optica Publishing Group: Washington, DC, USA, 2022. [Google Scholar]
- Alam, A.S. High-Speed and Power-Efficient Integrated Electro-Optic Modulators. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2025. [Google Scholar]
- Cui, G.; Yuan, W.; Liu, J.; Cui, X.; Liu, X. Extraction and Compensation of Bonding Wires Parasitic Parameter. In Proceedings of the 2022 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC), Beijing, China, 17–18 December 2022; pp. 1–3. [Google Scholar] [CrossRef]
- Desiatov, B.; Shams-Ansari, A.; Zhang, M.; Wang, C.; Lončar, M. Ultra-Low-Loss Integrated Visible Photonics Using Thin-Film Lithium Niobate. Optica 2019, 6, 380–384. [Google Scholar] [CrossRef]
Symbol | Meaning | Value |
---|---|---|
W | Width of the signal electrode | 15 μm |
g | Gap between electrodes | 7 μm |
t | Electrode thickness | 900 nm |
T | Overcladding thickness | 3.8 μm |
w | Waveguide width in the modulation region | 2 μm |
h | Slab thickness | 200 nm |
Method | Reduction in IL | |
---|---|---|
Propagational loss | Wider waveguide in the modulation region | ≥0.33 dB |
Thicker overcladding | a | |
Coupling loss | Single-taper coupler | 1.22 dB/facet b |
Polishing | 0.5~3.5 dB | |
AR Coating | 0.1~0.9 dB |
Ref. | Wavelength(s) (nm) | Loss | 3 dB Modulation Bandwidth | Process Complexity | Process Tolerance | |
---|---|---|---|---|---|---|
[39] | 637 850 | 6 dB/m @637 nm | 10 GHz @850 nm | 1.6 @850 nm | Simple | Low (Y-branch) |
[23] | 780 | 1.6 dB/cm | 2.7 GHz | 1.26 | Complex (sapphire substrate) | Medium (directional coupler) |
[24] | 400–700 | 6.8 dB on chip | >20 GHz | 0.17 @450 nm | Simple | High |
[25] | 784 | 12 dB | >100 GHz | 0.8 | Complex (heterogeneous bonding) | Medium (T-rail electrodes) |
[27] | 738 | 0.7 dB/cm | >35 GHz | 0.55 | Low (Y-branch) | |
[26] | 850 | 10 dB/facet | >40 GHz | <1 @40 GHz | Simple | Low (Y-branch and T-rail electrodes) |
This work | 795 | Total 7.6 dB | >20 GHz | 1.8 | Simple | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Song, X.; Song, R.; Cui, J.; Qi, S.; Chen, Z.; Li, Y. Low-Loss 795 nm Electro-Optic Modulators. Photonics 2025, 12, 896. https://doi.org/10.3390/photonics12090896
Lu X, Song X, Song R, Cui J, Qi S, Chen Z, Li Y. Low-Loss 795 nm Electro-Optic Modulators. Photonics. 2025; 12(9):896. https://doi.org/10.3390/photonics12090896
Chicago/Turabian StyleLu, Xutong, Xiyao Song, Ruixiang Song, Jiaqi Cui, Shuaihong Qi, Zhangyuan Chen, and Yanping Li. 2025. "Low-Loss 795 nm Electro-Optic Modulators" Photonics 12, no. 9: 896. https://doi.org/10.3390/photonics12090896
APA StyleLu, X., Song, X., Song, R., Cui, J., Qi, S., Chen, Z., & Li, Y. (2025). Low-Loss 795 nm Electro-Optic Modulators. Photonics, 12(9), 896. https://doi.org/10.3390/photonics12090896