Experimental Study on Transverse Mode Instability of All-Fiber Single-Frequency Amplifier Based on Tapered Yb-Doped Fiber
Abstract
1. Introduction
2. Experimental Setup
3. Experimental Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wellmann, F.; Steinke, M.; Meylahn, F.; Bode, N.; Willke, B.; Overmeyer, L.; Neumann, J.; Kracht, D. High power, single-frequency, monolithic fiber amplifier for the next generation of gravitational wave detectors. Opt. Express 2019, 27, 28523–28533. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Chang, Q.; Xi, J.; Hou, T.; Su, R.; Ma, P.; Wu, J.; Li, C.; Jiang, M.; Ma, Y.; et al. First experimental demonstration of coherent beam combining of more than 100 beams. Photonics Res. 2020, 8, 1943–1948. [Google Scholar] [CrossRef]
- Dong, J.; Zeng, X.; Cui, S.; Zhou, J.; Feng, Y. More than 20 W fiber-based continuous-wave single frequency laser at 780 nm. Opt. Express 2019, 27, 35362–35367. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, X.; Zhang, J.; Ma, T.; Nie, H.; Yang, K.; He, J.; Zhang, B. 67 mJ, 137 ns narrow bandwidth 355 nm UV laser. Opt. Lett. 2023, 48, 5599–5602. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, M.; Büsche, S.; Weßels, P.; Frede, M.; Kracht, D. Brillouin scattering spectra in high-power singlefrequency ytterbium doped fiber amplifiers. Opt. Express 2008, 16, 15970–15979. [Google Scholar] [CrossRef]
- Li, C.; Tao, Y.; Jiang, M.; Ma, P.; Liu, W.; Su, R.; Xu, J.; Leng, J.; Zhou, P. High-power single-frequency fiber amplifiers: Progress and challenge [Invited]. Chin. Opt. Lett. 2023, 21, 11–24. [Google Scholar] [CrossRef]
- Dixneuf, C.; Guiraud, G.; Bardin, Y.V.; Rosa, Q.; Santarelli, G. Ultra-low intensity noise, all fiber 365 W linearly polarized single frequency laser at 1064 nm. Opt. Express 2020, 28, 10960–10969. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Jiang, M.; Liu, L.; Li, C.; Zhou, P.; Jiang, Z. Over 250 W low noise core-pumped single-frequency all-fiber amplifier. Opt. Express 2023, 31, 10586–10595. [Google Scholar] [CrossRef] [PubMed]
- Robin, C.; Dajani, I.; Pulford, B. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power. Opt. Lett. 2014, 39, 666–669. [Google Scholar] [CrossRef]
- Huang, L.; Wu, H.; Li, R.; Li, L.; Ma, P.; Wang, X.; Leng, J.; Zhou, P. 414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier. Opt. Lett. 2016, 42, 1–4. [Google Scholar] [CrossRef]
- Theeg, T.; Ottenhues, C.; Sayinc, H.; Neumann, J.; Kracht, D. Core-pumped single-frequency fiber amplifier with an output power of 158 W. Opt. Lett. 2016, 41, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Hochheim, S.; Brockmüller, E.; Wessels, P.; Koponen, J.; Lowder, T.; Novotny, S.; Willke, B.; Neumann, J.; Kracht, D. Single-Frequency 336 W Spliceless All-Fiber Amplifier Based on a Chirally-Coupled-Core Fiber for the Next Generation of Gravitational Wave Detectors. J. Lightwave Technol. 2022, 40, 2136–2143. [Google Scholar] [CrossRef]
- Matniyaz, T.; Bingham, S.P.; Kalichevsky-Dong, M.T.; Hawkins, T.W.; Pulford, B.; Dong, L.J.O.L. High-power single-frequency single-mode all-solid photonic bandgap fiber laser with kHz linewidth. Opt. Lett. 2022, 47, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Yang, C.; Zhao, Q.; Gu, Q.; Huang, J.; Jiang, K.; Zhou, K.; Feng, Z.; Yang, Z.; Xu, S. 650 W All-Fiber Single-Frequency Polarization-Maintaining Fiber Amplifier Based on Hybrid Wavelength Pumping and Tapered Yb-Doped Fibers. Photonics 2022, 9, 518. [Google Scholar] [CrossRef]
- Li, W.; Yan, Z.; Ren, S.; Deng, Y.; Chen, Y.; Ma, P.; Liu, W.; Huang, L.; Pan, Z.; Zhou, P.; et al. Confined-doped active fiber enabled all-fiber high-power single-frequency laser. Opt. Lett. 2022, 47, 5024–5027. [Google Scholar] [CrossRef]
- Lai, W.; Ma, P.; Liu, W.; Huang, L.; Li, C.; Ma, Y.; Zhou, P. 550 W single frequency fiber amplifiers emitting at 1030 nm based on a tapered Yb-doped fiber. Opt. Express 2020, 28, 20908–20919. [Google Scholar] [CrossRef]
- Stihler, C.; Jauregui, C.; Tünnermann, A.; Limpert, J. Modal energy transfer by thermally induced refractive index gratings in Yb-doped fibers. Light Sci. Appl. 2018, 7, 59. [Google Scholar] [CrossRef]
- Eidam, T.; Wirth, C.; Jauregui, C.; Stutzki, F.; Jansen, F.; Otto, H.-J.; Schmidt, O.; Schreiber, T.; Limpert, J.; Tünnermann, A. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers. Opt. Express 2011, 19, 13218–13224. [Google Scholar] [CrossRef]
- Jauregui, C.; Eidam, T.; Otto, H.-J.; Stutzki, F.; Jansen, F.; Limpert, J.; Tünnermann, A. Physical origin of mode instabilities in high-power fiber laser systems. Opt. Express 2012, 20, 12912–12925. [Google Scholar] [CrossRef]
- Ward, B.; Robin, C.; Dajani, I. Origin of thermal modal instabilities in large mode area fiber amplifiers. Opt. Express 2012, 20, 11407–11422. [Google Scholar] [CrossRef]
- Stihler, C.; Jauregui, C.; Kholaif, S.E.; Limpert, J. Intensity noise as a driver for transverse mode instability in fiber amplifiers. PhotoniX 2020, 1, 8. [Google Scholar] [CrossRef]
- Shi, C.; Deng, X.; Fu, S.; Sheng, Q.; Jiang, P.; Shi, Z.; Li, Y.; Shi, W.; Yao, J. 700 W single-frequency all-fiber amplifier at 1064 nm with kHz-level spectral linewidth. Front. Phys. 2022, 10, 982900. [Google Scholar] [CrossRef]
- Wen, Y.; Wang, P.; Shi, C.; Yang, B.; Xi, X.; Zhang, H.; Wang, X. Experimental Study on Transverse Mode Instability Characteristics of Few-Mode Fiber Laser Amplifier Under Different Bending Conditions. IEEE Photonics J. 2022, 14, 1539106. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, H.; Xing, Y.; Hou, S.; Chen, Y.; Li, J.; Dai, N.; Li, H.; Wang, Y.; Liao, L. Bending diameter dependence of mode instabilities in multimode fiber amplifier. Laser Phys. Lett. 2019, 16, 035104. [Google Scholar] [CrossRef]
- Wu, H.; Li, H.; An, Y.; Li, R.; Chen, X.; Xiao, H.; Huang, L.; Yang, H.; Yan, Z.; Leng, J.; et al. Transverse mode instability mitigation in a high-power confined-doped fiber amplifier with good beam quality through seed laser control. High Power Laser Sci. Eng. 2022, 10, e44. [Google Scholar] [CrossRef]
- Rezaei-Nasirabad, R.; Azizi, S.; Paygan, D.; Tavassoli, M.; Abedinajafi, A.; Roohforouz, A.; Chenar, R.E.; Golshan, A.H.; Hejaz, K.; Vatani, V. 2.5 kW TMI-free co-pump Yb-doped fiber oscillator by 971.5 nm pumping wavelength. Opt. Laser Technol. 2023, 157, 108652. [Google Scholar] [CrossRef]
- Chu, Q.; Tao, R.; Li, C.; Lin, H.; Wang, Y.; Guo, C.; Wang, J.; Jing, F.; Tang, C. Experimental study of the influence of mode excitation on mode instability in high power fiber amplifier. Sci. Rep. 2019, 9, 9396. [Google Scholar] [CrossRef] [PubMed]
- Michalis, N.Z. Transverse modal instability in two-mode fiber amplifiers: Effect of input mode. In Proceedings of the Fiber Lasers XX: Technology and Systems, San Francisco, CA, USA, 28 January–3 February 2003; Volume 124000R. [Google Scholar]
- Li, R.; Li, H.; Wu, H.; Xiao, H.; Leng, J.; Huang, L.; Pan, Z.; Zhou, P. Mitigation of TMI in an 8 kW tandem pumped fiber amplifier enabled by inter-mode gain competition mechanism through bending control. Opt. Express 2023, 31, 24423–24436. [Google Scholar] [CrossRef]
- Wisal, K.; Chen, C.-W.; Cao, H.; Stone, A.D. Theory of transverse mode instability in fiber amplifiers with multimode excitations. APL Photonics 2024, 9, 066114. [Google Scholar] [CrossRef]
- Dong, L. Transverse mode instability considering bend loss and heat load. Opt. Express 2023, 31, 20480–20488. [Google Scholar] [CrossRef]
- Yu, C.X.; Shatrovoy, O.; Fan, T.Y.; Taunay, T.F. Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier. Opt. Lett. 2016, 41, 5202–5205. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Fan, W.; Ju, P.; Li, G.; Zhang, Y.; Zhang, Y. Thermally-induced transverse mode instability: Hopf bifurcation in high-power fiber laser. Results Phys. 2022, 43, 106098. [Google Scholar] [CrossRef]
- Chena, C.-W.; Wisal, K.; Eliezer, Y.; Stone, A.D.; Cao, H. Suppressing transverse mode instability through multimode excitation in a fiber amplifier. Proc. Natl. Acad. Sci. USA 2023, 120, e2217735120. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, Y.; Mo, Z.; Kang, P.; Jiang, M.; Li, C.; Leng, J.; Zhou, P.; Jiang, Z. Experimental Study on Transverse Mode Instability of All-Fiber Single-Frequency Amplifier Based on Tapered Yb-Doped Fiber. Photonics 2024, 11, 696. https://doi.org/10.3390/photonics11080696
Tao Y, Mo Z, Kang P, Jiang M, Li C, Leng J, Zhou P, Jiang Z. Experimental Study on Transverse Mode Instability of All-Fiber Single-Frequency Amplifier Based on Tapered Yb-Doped Fiber. Photonics. 2024; 11(8):696. https://doi.org/10.3390/photonics11080696
Chicago/Turabian StyleTao, Yue, Zhengfei Mo, Pengrui Kang, Man Jiang, Can Li, Jinyong Leng, Pu Zhou, and Zongfu Jiang. 2024. "Experimental Study on Transverse Mode Instability of All-Fiber Single-Frequency Amplifier Based on Tapered Yb-Doped Fiber" Photonics 11, no. 8: 696. https://doi.org/10.3390/photonics11080696
APA StyleTao, Y., Mo, Z., Kang, P., Jiang, M., Li, C., Leng, J., Zhou, P., & Jiang, Z. (2024). Experimental Study on Transverse Mode Instability of All-Fiber Single-Frequency Amplifier Based on Tapered Yb-Doped Fiber. Photonics, 11(8), 696. https://doi.org/10.3390/photonics11080696