Experimental Study on Transverse Mode Instability of All-Fiber Single-Frequency Amplifier Based on Tapered Yb-Doped Fiber
Abstract
:1. Introduction
2. Experimental Setup
3. Experimental Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wellmann, F.; Steinke, M.; Meylahn, F.; Bode, N.; Willke, B.; Overmeyer, L.; Neumann, J.; Kracht, D. High power, single-frequency, monolithic fiber amplifier for the next generation of gravitational wave detectors. Opt. Express 2019, 27, 28523–28533. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Chang, Q.; Xi, J.; Hou, T.; Su, R.; Ma, P.; Wu, J.; Li, C.; Jiang, M.; Ma, Y.; et al. First experimental demonstration of coherent beam combining of more than 100 beams. Photonics Res. 2020, 8, 1943–1948. [Google Scholar] [CrossRef]
- Dong, J.; Zeng, X.; Cui, S.; Zhou, J.; Feng, Y. More than 20 W fiber-based continuous-wave single frequency laser at 780 nm. Opt. Express 2019, 27, 35362–35367. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, X.; Zhang, J.; Ma, T.; Nie, H.; Yang, K.; He, J.; Zhang, B. 67 mJ, 137 ns narrow bandwidth 355 nm UV laser. Opt. Lett. 2023, 48, 5599–5602. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, M.; Büsche, S.; Weßels, P.; Frede, M.; Kracht, D. Brillouin scattering spectra in high-power singlefrequency ytterbium doped fiber amplifiers. Opt. Express 2008, 16, 15970–15979. [Google Scholar] [CrossRef]
- Li, C.; Tao, Y.; Jiang, M.; Ma, P.; Liu, W.; Su, R.; Xu, J.; Leng, J.; Zhou, P. High-power single-frequency fiber amplifiers: Progress and challenge [Invited]. Chin. Opt. Lett. 2023, 21, 11–24. [Google Scholar] [CrossRef]
- Dixneuf, C.; Guiraud, G.; Bardin, Y.V.; Rosa, Q.; Santarelli, G. Ultra-low intensity noise, all fiber 365 W linearly polarized single frequency laser at 1064 nm. Opt. Express 2020, 28, 10960–10969. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Jiang, M.; Liu, L.; Li, C.; Zhou, P.; Jiang, Z. Over 250 W low noise core-pumped single-frequency all-fiber amplifier. Opt. Express 2023, 31, 10586–10595. [Google Scholar] [CrossRef] [PubMed]
- Robin, C.; Dajani, I.; Pulford, B. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power. Opt. Lett. 2014, 39, 666–669. [Google Scholar] [CrossRef]
- Huang, L.; Wu, H.; Li, R.; Li, L.; Ma, P.; Wang, X.; Leng, J.; Zhou, P. 414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier. Opt. Lett. 2016, 42, 1–4. [Google Scholar] [CrossRef]
- Theeg, T.; Ottenhues, C.; Sayinc, H.; Neumann, J.; Kracht, D. Core-pumped single-frequency fiber amplifier with an output power of 158 W. Opt. Lett. 2016, 41, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Hochheim, S.; Brockmüller, E.; Wessels, P.; Koponen, J.; Lowder, T.; Novotny, S.; Willke, B.; Neumann, J.; Kracht, D. Single-Frequency 336 W Spliceless All-Fiber Amplifier Based on a Chirally-Coupled-Core Fiber for the Next Generation of Gravitational Wave Detectors. J. Lightwave Technol. 2022, 40, 2136–2143. [Google Scholar] [CrossRef]
- Matniyaz, T.; Bingham, S.P.; Kalichevsky-Dong, M.T.; Hawkins, T.W.; Pulford, B.; Dong, L.J.O.L. High-power single-frequency single-mode all-solid photonic bandgap fiber laser with kHz linewidth. Opt. Lett. 2022, 47, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Yang, C.; Zhao, Q.; Gu, Q.; Huang, J.; Jiang, K.; Zhou, K.; Feng, Z.; Yang, Z.; Xu, S. 650 W All-Fiber Single-Frequency Polarization-Maintaining Fiber Amplifier Based on Hybrid Wavelength Pumping and Tapered Yb-Doped Fibers. Photonics 2022, 9, 518. [Google Scholar] [CrossRef]
- Li, W.; Yan, Z.; Ren, S.; Deng, Y.; Chen, Y.; Ma, P.; Liu, W.; Huang, L.; Pan, Z.; Zhou, P.; et al. Confined-doped active fiber enabled all-fiber high-power single-frequency laser. Opt. Lett. 2022, 47, 5024–5027. [Google Scholar] [CrossRef]
- Lai, W.; Ma, P.; Liu, W.; Huang, L.; Li, C.; Ma, Y.; Zhou, P. 550 W single frequency fiber amplifiers emitting at 1030 nm based on a tapered Yb-doped fiber. Opt. Express 2020, 28, 20908–20919. [Google Scholar] [CrossRef]
- Stihler, C.; Jauregui, C.; Tünnermann, A.; Limpert, J. Modal energy transfer by thermally induced refractive index gratings in Yb-doped fibers. Light Sci. Appl. 2018, 7, 59. [Google Scholar] [CrossRef]
- Eidam, T.; Wirth, C.; Jauregui, C.; Stutzki, F.; Jansen, F.; Otto, H.-J.; Schmidt, O.; Schreiber, T.; Limpert, J.; Tünnermann, A. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers. Opt. Express 2011, 19, 13218–13224. [Google Scholar] [CrossRef]
- Jauregui, C.; Eidam, T.; Otto, H.-J.; Stutzki, F.; Jansen, F.; Limpert, J.; Tünnermann, A. Physical origin of mode instabilities in high-power fiber laser systems. Opt. Express 2012, 20, 12912–12925. [Google Scholar] [CrossRef]
- Ward, B.; Robin, C.; Dajani, I. Origin of thermal modal instabilities in large mode area fiber amplifiers. Opt. Express 2012, 20, 11407–11422. [Google Scholar] [CrossRef]
- Stihler, C.; Jauregui, C.; Kholaif, S.E.; Limpert, J. Intensity noise as a driver for transverse mode instability in fiber amplifiers. PhotoniX 2020, 1, 8. [Google Scholar] [CrossRef]
- Shi, C.; Deng, X.; Fu, S.; Sheng, Q.; Jiang, P.; Shi, Z.; Li, Y.; Shi, W.; Yao, J. 700 W single-frequency all-fiber amplifier at 1064 nm with kHz-level spectral linewidth. Front. Phys. 2022, 10, 982900. [Google Scholar] [CrossRef]
- Wen, Y.; Wang, P.; Shi, C.; Yang, B.; Xi, X.; Zhang, H.; Wang, X. Experimental Study on Transverse Mode Instability Characteristics of Few-Mode Fiber Laser Amplifier Under Different Bending Conditions. IEEE Photonics J. 2022, 14, 1539106. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, H.; Xing, Y.; Hou, S.; Chen, Y.; Li, J.; Dai, N.; Li, H.; Wang, Y.; Liao, L. Bending diameter dependence of mode instabilities in multimode fiber amplifier. Laser Phys. Lett. 2019, 16, 035104. [Google Scholar] [CrossRef]
- Wu, H.; Li, H.; An, Y.; Li, R.; Chen, X.; Xiao, H.; Huang, L.; Yang, H.; Yan, Z.; Leng, J.; et al. Transverse mode instability mitigation in a high-power confined-doped fiber amplifier with good beam quality through seed laser control. High Power Laser Sci. Eng. 2022, 10, e44. [Google Scholar] [CrossRef]
- Rezaei-Nasirabad, R.; Azizi, S.; Paygan, D.; Tavassoli, M.; Abedinajafi, A.; Roohforouz, A.; Chenar, R.E.; Golshan, A.H.; Hejaz, K.; Vatani, V. 2.5 kW TMI-free co-pump Yb-doped fiber oscillator by 971.5 nm pumping wavelength. Opt. Laser Technol. 2023, 157, 108652. [Google Scholar] [CrossRef]
- Chu, Q.; Tao, R.; Li, C.; Lin, H.; Wang, Y.; Guo, C.; Wang, J.; Jing, F.; Tang, C. Experimental study of the influence of mode excitation on mode instability in high power fiber amplifier. Sci. Rep. 2019, 9, 9396. [Google Scholar] [CrossRef] [PubMed]
- Michalis, N.Z. Transverse modal instability in two-mode fiber amplifiers: Effect of input mode. In Proceedings of the Fiber Lasers XX: Technology and Systems, San Francisco, CA, USA, 28 January–3 February 2003; Volume 124000R. [Google Scholar]
- Li, R.; Li, H.; Wu, H.; Xiao, H.; Leng, J.; Huang, L.; Pan, Z.; Zhou, P. Mitigation of TMI in an 8 kW tandem pumped fiber amplifier enabled by inter-mode gain competition mechanism through bending control. Opt. Express 2023, 31, 24423–24436. [Google Scholar] [CrossRef]
- Wisal, K.; Chen, C.-W.; Cao, H.; Stone, A.D. Theory of transverse mode instability in fiber amplifiers with multimode excitations. APL Photonics 2024, 9, 066114. [Google Scholar] [CrossRef]
- Dong, L. Transverse mode instability considering bend loss and heat load. Opt. Express 2023, 31, 20480–20488. [Google Scholar] [CrossRef]
- Yu, C.X.; Shatrovoy, O.; Fan, T.Y.; Taunay, T.F. Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier. Opt. Lett. 2016, 41, 5202–5205. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Fan, W.; Ju, P.; Li, G.; Zhang, Y.; Zhang, Y. Thermally-induced transverse mode instability: Hopf bifurcation in high-power fiber laser. Results Phys. 2022, 43, 106098. [Google Scholar] [CrossRef]
- Chena, C.-W.; Wisal, K.; Eliezer, Y.; Stone, A.D.; Cao, H. Suppressing transverse mode instability through multimode excitation in a fiber amplifier. Proc. Natl. Acad. Sci. USA 2023, 120, e2217735120. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, Y.; Mo, Z.; Kang, P.; Jiang, M.; Li, C.; Leng, J.; Zhou, P.; Jiang, Z. Experimental Study on Transverse Mode Instability of All-Fiber Single-Frequency Amplifier Based on Tapered Yb-Doped Fiber. Photonics 2024, 11, 696. https://doi.org/10.3390/photonics11080696
Tao Y, Mo Z, Kang P, Jiang M, Li C, Leng J, Zhou P, Jiang Z. Experimental Study on Transverse Mode Instability of All-Fiber Single-Frequency Amplifier Based on Tapered Yb-Doped Fiber. Photonics. 2024; 11(8):696. https://doi.org/10.3390/photonics11080696
Chicago/Turabian StyleTao, Yue, Zhengfei Mo, Pengrui Kang, Man Jiang, Can Li, Jinyong Leng, Pu Zhou, and Zongfu Jiang. 2024. "Experimental Study on Transverse Mode Instability of All-Fiber Single-Frequency Amplifier Based on Tapered Yb-Doped Fiber" Photonics 11, no. 8: 696. https://doi.org/10.3390/photonics11080696
APA StyleTao, Y., Mo, Z., Kang, P., Jiang, M., Li, C., Leng, J., Zhou, P., & Jiang, Z. (2024). Experimental Study on Transverse Mode Instability of All-Fiber Single-Frequency Amplifier Based on Tapered Yb-Doped Fiber. Photonics, 11(8), 696. https://doi.org/10.3390/photonics11080696