Scintillation and Luminescent Properties of the (Gd,Y)3Al2Ga3O12:Ce Ceramics Obtained by Compaction of Green Bodies Using Digital Light Processing 3D Printing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of the Initial Powders
2.2. Slurry Preparation and Green Bodies Fabrication
2.3. Ceramic Sample Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jarrell, J.T.; Cherepy, N.J.; Seeley, Z.M.; Murphy, J.W.; Swanberg, E.L.; Voss, L.F.; Frye, C.D.; Stoyer, M.A.; Henderson, R.A.; O’Neal, S.P. Beta Radiation Hardness of GYGAG (Ce) Transparent Ceramic Scintillators. IEEE Trans. Nucl. Sci. 2022, 69, 938–941. [Google Scholar] [CrossRef]
- Chen, X.; Hu, Z.; Feng, Y.; Liu, X.; Chen, H.; Shi, Y.; Kucerkova, R.; Beitlerova, A.; Nikl, M.; Li, J. Luminescence and Scintillation Characteristics of Cerium Doped Gd2YGa3Al2O12 Ceramics. Opt. Mater. 2019, 90, 20–25. [Google Scholar] [CrossRef]
- Luo, Z.; Zhuang, Y.; Li, W.; Du, Y.; Sun, J.; Liu, Z.; Wu, Y.; Jiang, H.; Jiang, J. A new promising new choice for modern medical CT scanners: Cerium-doped gadolinium yttrium gallium aluminum garnet ceramic scintillator. Appl. Mater. Today 2023, 35, 101986. [Google Scholar] [CrossRef]
- Seeley, Z.M.; Cherepy, N.J.; Payne, S.A. Homogeneity of Gd-Based Garnet Transparent Ceramic Scintillators for Gamma Spectroscopy. J. Cryst. Growth 2013, 379, 79–83. [Google Scholar] [CrossRef]
- Kasimova, V.M.; Kozlova, N.S.; Buzanov, O.A.; Zabelina, E.V.; Lagov, P.B.; Pavlov, Y.S. Effect of Electron Irradiation on the Optical Properties of Gadolinium-Aluminum-Gallium Garnet Crystals. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2021, 15, 1259–1263. [Google Scholar] [CrossRef]
- Kasimova, V.M.; Kozlova, N.S.; Zabelina, E.V.; Buzanov, O.A.; Lagov, P.B.; Pavlov, Y.S.; Kulevoy, T.V.; Stolbunov, V.S. Effect of Proton Irradiation on the Optical Properties and Defect Formation in Gd3AlxGa5−xO12 (x = 2, 3) Crystals. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2021, 18, 58–62. [Google Scholar] [CrossRef]
- Kasimova, V.M.; Kozlova, N.S.; Buzanov, O.A.; Zabelina, E.V.; Targonskii, A.V.; Rogachev, A.V. Effect of Partial Substitution of Aluminium for Gallium on the Properties of Gadolinium Aluminum Gallium Garnet Single Crystals. Inorg. Mat. 2022, 58, 288–294. [Google Scholar] [CrossRef]
- Qiu, X.; Luo, Z.; Zhang, J.; Jiang, H.; Jiang, J. Mechanical Properties and Machinability of GYGAG: Ce Ceramic Scintillators. Ceram. Int. 2020, 46, 4550–4555. [Google Scholar] [CrossRef]
- Korzhik, M.; Alenkov, V.; Buzanov, O.; Dosovitskiy, G.; Fedorov, A.; Kozlov, D.; Mechinsky, V.; Nargelas, S.; Tamulaitis, G.; Vaitkevičius, A. Engineering of a New Single-Crystal Multi-Ionic Fast and High-Light-Yield Scintillation Material (Gd0.5–Y0.5)3Al2Ga3O12:Ce, Mg. CrystEngComm 2020, 22, 2502–2506. [Google Scholar] [CrossRef]
- Zhu, D.; Nikl, M.; Chewpraditkul, W.; Li, J. Development and Prospects of Garnet Ceramic Scintillators: A Review. J. Adv. Ceram. 2022, 11, 1825–1848. [Google Scholar] [CrossRef]
- Karpyuk, P.V.; Dosovitskiy, G.A.; Kuznetsova, D.E.; Gordienko, E.V.; Fedorov, A.A.; Mechinsky, V.A.; Dosovitskiy, A.E.; Korzhik, M.V. Ceramic Scintillation Materials—Approaches, Challenges and Possibilities. In Engineering of Scintillation Materials and Radiation Technologies: Selected Articles of ISMART2018 6; Springer: Berlin/Heidelberg, Germany, 2019; pp. 57–74. [Google Scholar] [CrossRef]
- Chen, X.; Qin, H.; Zhang, Y.; Jiang, J.; Jiang, H. Highly Transparent ZrO2-Doped (Ce, Gd)3Al3Ga2O12 Ceramics Prepared via Oxygen Sintering. J. Eur. Ceram. Soc. 2015, 35, 3879–3883. [Google Scholar] [CrossRef]
- Cheng, S.; Zou, S.; Wang, Z.; Ling, L.; Zeng, X.; Qiu, P.; Sun, D.; He, X. Fabrication and Magneto-Optic Property of Infrared Transparent Gadolinium Iron Garnet (GdIG) Ceramics by Hot-Press Sintering Process. J. Eur. Ceram. Soc. 2024, 44, 3869–3876. [Google Scholar] [CrossRef]
- Zhang, G.; Carloni, D.; Wu, Y. Ultraviolet Emission Transparent Gd: YAG Ceramics Processed by Solid-state Reaction Spark Plasma Sintering. J. Am. Ceram. Soc. 2020, 103, 839–848. [Google Scholar] [CrossRef]
- Dosovitskiy, G.A.; Karpyuk, P.V.; Evdokimov, P.V.; Kuznetsova, D.E.; Mechinsky, V.A.; Borisevich, A.E.; Fedorov, A.A.; Putlayev, V.I.; Dosovitskiy, A.E.; Korjik, M.V. First 3D-Printed Complex Inorganic Polycrystalline Scintillator. CrystEngComm 2017, 19, 4260–4264. [Google Scholar] [CrossRef]
- Hu, S.; Liu, Y.; Zhang, Y.; Xue, Z.; Wang, Z.; Zhou, G.; Lu, C.; Li, H.; Wang, S. 3D Printed Ceramic Phosphor and the Photoluminescence Property under Blue Laser Excitation. J. Eur. Ceram. Soc. 2019, 39, 2731–2738. [Google Scholar] [CrossRef]
- Li, B.; Wang, S.; Chen, J.; Li, Z.; Shan, W.; Wang, X.; Jiang, B.; He, J.; Zhang, L. 3D Printing of LuAG: Ce Transparent Ceramics for Laser-Driven Lighting. Ceram. Int. 2023, 49, 38708–38716. [Google Scholar] [CrossRef]
- Hostaša, J.; Schwentenwein, M.; Toci, G.; Esposito, L.; Brouczek, D.; Piancastelli, A.; Pirri, A.; Patrizi, B.; Vannini, M.; Biasini, V. Transparent Laser Ceramics by Stereolithography. Scr. Mater. 2020, 187, 194–196. [Google Scholar] [CrossRef]
- Shen, Y.; Sun, Y.; Jin, B.; Li, M.; Xing, B.; Zhao, Z. Effect of debinding and sintering profile on the optical properties of DLP-3D printed YAG transparent ceramic. Ceram. Int. 2022, 48, 21134–211140. [Google Scholar] [CrossRef]
- Mori, M.; Xu, J.; Okada, G.; Yanagida, T.; Ueda, J.; Tanabe, S. Comparative Study of Optical and Scintillation Properties of Ce: YAGG, Ce: GAGG and Ce: LuAGG Transparent Ceramics. J. Ceram. Soc. Jpn. 2016, 124, 569–573. [Google Scholar] [CrossRef]
- Cooperstein, I.; Indukuri, S.R.K.C.; Bouketov, A.; Levy, U.; Magdassi, S. 3D Printing of Micrometer-sized Transparent Ceramics with On-demand Optical-gain Properties. Adv. Mater. 2020, 32, 2001675. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ji, H.; Zhang, J.; Wang, S.; Liu, Y. Fabrication of YAG Ceramic Tube by UV-Assisted Direct Ink Writing. Ceram. Int. 2022, 48, 19703–19708. [Google Scholar] [CrossRef]
- Seeley, Z.; Yee, T.; Cherepy, N.; Drobshoff, A.; Herrera, O.; Ryerson, R.; Payne, S.A. 3D Printed Transparent Ceramic YAG Laser Rods: Matching the Core-Clad Refractive Index. Opt. Mater. 2020, 107, 110121. [Google Scholar] [CrossRef]
- Jones, I.K.; Seeley, Z.M.; Cherepy, N.J.; Duoss, E.B.; Payne, S.A. Direct Ink Write Fabrication of Transparent Ceramic Gain Media. Opt. Mater. 2018, 75, 19–25. [Google Scholar] [CrossRef]
- Chen, X.; Liu, X.; Feng, Y.; Li, X.; Chen, H.; Xie, T.; Kou, H.; Kučerková, R.; Beitlerová, A.; Mihóková, E.; et al. Microstructure evolution in two-step-sintering process toward transparent Ce:(Y,Gd)3(Ga,Al)5O12 scintillation ceramics. J. Alloys Compd. 2020, 846, 156377. [Google Scholar] [CrossRef]
- Dubov, V.; Gogoleva, M.; Saifutyarov, R.; Kucherov, O.; Korzhik, M.; Kuznetsova, D.; Komendo, I.; Sokolov, P. Micro-Nonuniformity of the Luminescence Parameters in Compositionally Disordered GYAGG: Ce Ceramics. Photonics 2023, 10, 54. [Google Scholar] [CrossRef]
- Zhu, D.; Wu, L.; Beitlerova, A.; Kucerkova, R.; Chewpraditkul, W.; Nikl, M.; Li, J. Compositional regulation of multi-component GYGAG:Ce scintillation ceramics: Self-sintering-aid effect and afterglow suppression. J. Adv. Ceram. 2023, 12, 1919–1929. [Google Scholar] [CrossRef]
- Retivov, V.; Dubov, V.; Kuznetsova, D.; Ismagulov, A.; Korzhik, M. Gd3+ Content Optimization for Mastering High Light Yield and Fast GdxAl2Ga3O12: Ce3+ Scintillation Ceramics. J. Rare Earths 2023, 41, 1911–1918. [Google Scholar] [CrossRef]
- Halloran, J.W. Ceramic Stereolithography: Additive Manufacturing for Ceramics by Photopolymerization. Annu. Rev. Mater. Res. 2016, 46, 19–40. [Google Scholar] [CrossRef]
- Ermakova, L.V.; Smyslova, V.G.; Dubov, V.V.; Kuznetsova, D.E.; Malozovskaya, M.S.; Saifutyarov, R.R.; Karpyuk, P.V.; Sokolov, P.S.; Komendo, I.Y.; Bondarau, A.G.; et al. Effect of a Phosphorus Additive on Luminescent and Scintillation Properties of Ceramics GYAGG:Ce. Ceramics 2023, 6, 1478–1489. [Google Scholar] [CrossRef]
- Thakur, T.; Carretta, M.; Komissarenko, D.; Blugan, G. Advancements in DLP 3D printing: High strength alumina toughened zirconia ceramics for biomedical applications. Open Ceram. 2024, 18, 100601. [Google Scholar] [CrossRef]
- Ermakova, L.V.; Dubov, V.V.; Saifutyarov, R.R.; Kuznetsova, D.E.; Malozovskaya, M.S.; Karpyuk, P.V.; Dosovitskiy, G.A.; Sokolov, P.S. Influence of Luminescent Properties of Powders on the Fabrication of Scintillation Ceramics by Stereolithography 3D Printing. Ceramics 2023, 6, 43–57. [Google Scholar] [CrossRef]
- Zhu, Q.-Q.; Li, S.; Yuan, Q.; Zhang, H.; Wang, L. Transparent YAG: Ce Ceramic with Designed Low Light Scattering for High-Power Blue LED and LD Applications. J. Eur. Ceram. Soc. 2021, 41, 735–740. [Google Scholar] [CrossRef]
- Seeley, Z.M.; Cherepy, N.J.; Payne, S.A. Expanded phase stability of Gd-based garnet transparent ceramic scintillators. J. Mater. Res. 2014, 29, 2332–2337. [Google Scholar] [CrossRef]
- Hamilton, A.S.; Lampronti, G.I.; Rowley, S.E.; Dutton, S.E. Enhancement of the magnetocaloric effect driven by changes in the crystal structure of Al-doped GGG, Gd3Ga5−xAlxO12 (0 ≤ x ≤ 5). J. Phys. Condens. Matter 2014, 26, 116001. [Google Scholar] [CrossRef] [PubMed]
- Spassky, D.; Kozlova, N.; Zabelina, E.; Kasimova, V.; Krutyak, N.; Ukhanova, A.; Morozov, V.A.; Morozov, A.V.; Buzanov, O.; Chernenko, K.; et al. Influence of the Sc Cation Substituent on the Structural Properties and Energy Transfer Processes in GAGG:Ce Crystals. CrystEngComm 2020, 22, 2621–2631. [Google Scholar] [CrossRef]
- Nakatsuka, A.; Yoshiasa, A.; Yamanaka, T. Cation distribution and crystal chemistry of Y3Al5−xGaxO12 (0 ≤ x ≤ 5) garnet solid solutions. Acta Crystallogr. Sect. B Struct. Sci. 1999, 55, 266–272. [Google Scholar] [CrossRef] [PubMed]
Abbreviation | Composition | Calcining Temperature (°C) | Density (g/cm3) |
---|---|---|---|
GYAGG:Ce | Gd1.194Y1.791Ce0.015Al2Ga3O12 | 1250 | 5.85 |
GYAGG:Ce+5%Y | Gd1.194Y1.88Ce0.015Al2Ga3O12 | 5.89 | |
GYAGG:Ce+5%Y,Gd | Gd1.569Y1.569Ce0.012Al2Ga3O12 | 6 |
Compacting Method | Composition | τ1 (ns) | P1 (%) | τ2 (ns) | P2 (%) | τ3 (ns) | P3 (%) | <τ> (ns) |
---|---|---|---|---|---|---|---|---|
Uniaxial pressing | GYAGG:Ce | 12.5 | 5.72 | 47.1 | 88.92 | 161 | 5.36 | 51.3 |
GYAGG:Ce+5%Y | 12.5 | 5.62 | 45.9 | 84.98 | 113 | 9.40 | 50.3 | |
GYAGG:Ce+5%Y,Gd | 19.6 | 7.54 | 53.2 | 90.47 | 336 | 1.99 | 56.3 | |
3D printing | GYAGG:Ce | 17.0 | 14.83 | 50.1 | 79.60 | 287 | 5.57 | 58.4 |
GYAGG:Ce+5%Y | 17.9 | 10.20 | 51.7 | 83.51 | 335 | 6.29 | 66.1 | |
GYAGG:Ce+5%Y,Gd | 15.3 | 9.83 | 47.3 | 78.98 | 162 | 11.19 | 57.0 |
Composition | τ1 (ns) | P1 (%) | τ2 (ns) | P2 (%) | τ3 (ns) | P3 (%) | τ (ns) |
---|---|---|---|---|---|---|---|
GYAGG:Ce | 14.3 | 13 | 47.5 | 68.8 | 310 | 18.2 | 91.0 |
GYAGG:Ce+5%Y,Gd | 11.6 | 8.4 | 41.4 | 63.7 | 173 | 27.9 | 75.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ermakova, L.V.; Smyslova, V.G.; Dubov, V.V.; Karpyuk, P.V.; Sokolov, P.S.; Komendo, I.Y.; Bondarau, A.G.; Mechinsky, V.A.; Korzhik, M.V. Scintillation and Luminescent Properties of the (Gd,Y)3Al2Ga3O12:Ce Ceramics Obtained by Compaction of Green Bodies Using Digital Light Processing 3D Printing. Photonics 2024, 11, 695. https://doi.org/10.3390/photonics11080695
Ermakova LV, Smyslova VG, Dubov VV, Karpyuk PV, Sokolov PS, Komendo IY, Bondarau AG, Mechinsky VA, Korzhik MV. Scintillation and Luminescent Properties of the (Gd,Y)3Al2Ga3O12:Ce Ceramics Obtained by Compaction of Green Bodies Using Digital Light Processing 3D Printing. Photonics. 2024; 11(8):695. https://doi.org/10.3390/photonics11080695
Chicago/Turabian StyleErmakova, Lydia V., Valentina G. Smyslova, Valery V. Dubov, Petr V. Karpyuk, Petr S. Sokolov, Ilia Yu. Komendo, Aliaksei G. Bondarau, Vitaly A. Mechinsky, and Mikhail V. Korzhik. 2024. "Scintillation and Luminescent Properties of the (Gd,Y)3Al2Ga3O12:Ce Ceramics Obtained by Compaction of Green Bodies Using Digital Light Processing 3D Printing" Photonics 11, no. 8: 695. https://doi.org/10.3390/photonics11080695
APA StyleErmakova, L. V., Smyslova, V. G., Dubov, V. V., Karpyuk, P. V., Sokolov, P. S., Komendo, I. Y., Bondarau, A. G., Mechinsky, V. A., & Korzhik, M. V. (2024). Scintillation and Luminescent Properties of the (Gd,Y)3Al2Ga3O12:Ce Ceramics Obtained by Compaction of Green Bodies Using Digital Light Processing 3D Printing. Photonics, 11(8), 695. https://doi.org/10.3390/photonics11080695