Illumination Field Uniformity Correction by Novel Finger Arrays for Lithography Illumination System
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. Principle of Uniformity of Illumination Field
2.2. Principle of Uniformity Correction for Finger Array
3. Design and Simulation Analysis
3.1. Design and Optimization Method of Uniformity Correction Device
3.2. Simulation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thompson, L.F. An Introduction to Lithography; ACS Publications: Washington, DC, USA, 1983. [Google Scholar]
- Liu, J.; Zhang, F.; Huang, H. Research Progress on Illumination System Technology of Step-and-Scan Projection Lithography Tools. Laser Optoelectron. Prog. 2022, 59, 09220111. [Google Scholar] [CrossRef]
- Stagaman, G.J.; Eakin, R.J.; Sardella, J.C.; Johnson, J.R.; Spinner III, C.R. Effects of complex illumination on lithography performance. In Proceedings of the Optical Microlithography IX, Santa Clara, CA, USA, 13–15 March 1996; pp. 146–157. [Google Scholar]
- Antoni, M.; Singer, W.; Schultz, J.; Wangler, J.; Escudero-Sanz, I.; Kruizinga, B. Illumination optics design for EUV lithography. In Proceedings of the Soft X-ray and EUV Imaging Systems, San Diego, CA, USA, 3–4 August 2000; pp. 25–34. [Google Scholar]
- van Schoot, J.; Noordman, O.; Vanoppen, P.; Blok, F.; Yim, D.; Park, C.H.; Cho, B.H.; Theeuwes, T.; Min, Y.H. CD uniformity improvement by active scanner corrections. In Proceedings of the Optical Microlithography XV Conference, Santa Clara, CA, USA, 5–8 March 2002; pp. 304–314. [Google Scholar]
- Chua, G.S.; Eran, C.; Tan, S.K.; Choi, B.I.; Ng, T.H.; Lua, P.L.; Sharoni, O.; Ben-Zvi, G. Intra Field CD Uniformity Correction by Scanner Dose Mapper™ using Galileo® Mask Transmission Mapping as the CDU Data Source. In Proceedings of the Conference on Optical Microlithography XXIII, San Jose, CA, USA, 23–25 February 2010. [Google Scholar]
- Dusa, M.; Moerman, R.; Singh, B.; Friedberg, P.; Hoobler, R.; Zavecs, T. Intra-wafer CDU characterization to determine process and focus contributions based on Scatterometry Metrology. In Proceedings of the Data Analysis and Modeling for Process Control, Santa Clara, CA, USA, 26–27 February 2004; pp. 93–104. [Google Scholar]
- van der Laan, H.; Carpaij, R.; Krist, J.; Noordman, O.; van Dommelen, Y.; van Schoot, J.; Blok, F.; van Os, C.; Stegeman, S.; Hoogenboom, T. Etch, reticle, and track CD fingerprint corrections with local dose compensation. In Proceedings of the Data Analysis and Modeling for Process Control II, San Jose, CA, USA, 3–4 March 2005; pp. 107–118. [Google Scholar]
- Buttgereit, U.; Birkner, R.; Joyner, M.; Graitzer, E.; Cohen, A.; Miyashita, H.; Triulzi, B.; Zeballos, A.F.; Romeo, C. CD uniformity correction on 45-nm technology non-volatile memory. In Proceedings of the Metrology, Inspection, and Process Control for Microlithography XXIV, San Jose, CA, USA, 22–25 February 2010; pp. 1121–1129. [Google Scholar]
- Chen, M.; Chen, L.Q.; Zeng, A.J.; Zhu, J.; Yang, B.X.; Huang, H.J. Generation of trapezoidal illumination for the step-and-scan lithographic system. Appl. Opt. 2015, 54, 6820–6826. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, Y.; Zeng, A.; Zhu, J.; Yang, B.; Huang, H. Flat Gauss illumination for the step-and-scan lithographic system. Opt. Commun. 2016, 372, 201–209. [Google Scholar] [CrossRef]
- Guo, L.; Huang, H.; Wang, X. Study of Integrator Rod in Step-and-scan Lithography. Acta Photonica Sin. 2006, 35, 981–985. [Google Scholar]
- Voelkel, R.; Vogler, U.; Bich, A.; Pernet, P.; Weible, K.J.; Hornung, M.; Zoberbier, R.; Cullmann, E.; Stuerzebecher, L.; Harzendorf, T.; et al. Advanced mask aligner lithography: New illumination system. Opt. Express 2010, 18, 20968–20978. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Li, Y.; Wei, L. Design of chirped fly’s eye uniformizer for ArF lithography illumination system. In Proceedings of the International Symposium on Optoelectronic Technology and Application 2014: Advanced Display Technology; Nonimaging Optics: Efficient Design for Illumination and Solar Concentration, Beijing, China, 13–15 May 2014; pp. 152–158. [Google Scholar]
- Ma, X.; Zhang, F.; Niu, Z.; Huang, H. Design and optimization of top-Gaussian illumination field in photolithography. Opt. Eng. 2021, 60, 025106. [Google Scholar] [CrossRef]
- Brandt, R.J. Uniform Light Intensity Providing Apparatus for Use during Solar Panel Testing, Has Uniformity Filter in One of Light Baffles in Which Lot of Wires Are Diagonally Disposed in Each Zone. U.S. Patent No. 6,076,942, 20 June 2000. [Google Scholar]
- Gong, S.; Yang, B.; Huang, H. Illumination uniformity correction by using dynamic gray filters in a lithography system. Appl. Opt. 2022, 61, 2706–2714. [Google Scholar] [CrossRef]
- Zimmerman, R.C.; Van Greevenbroek, H.R.M.; Kochersperger, P.C.; Downey, T.R.; Stone, E.; Csiszar, S.I.; Kubick, F.; Vladimirsky, O. Lithographic Apparatus and Method for Illumination Uniformity Correction and Uniformity Drift Compensation. U.S. Patent No. 8,629,973, 14 January 2014. [Google Scholar]
- Zimmerman, R.C. Double EUV Illumination Uniformity Correction System and Method. U.S. Patent No. 9,134,620, 15 September 2015. [Google Scholar]
- Cheng, W.; Zhang, F.; Lin, D.; Zeng, A.; Yang, B.; Huang, H. High Precision Correction Method of Illumination Field Uniformity for PhotolithographyIllumination System. Acta Opt. Sin. 2018, 38, 0722001. [Google Scholar] [CrossRef]
Illumination Mode | Uncorrected Integrated Nonuniformity | Corrected Integrated Nonuniformity | ||||
---|---|---|---|---|---|---|
Tiled | Tiled and Staggered | Staggered and Layered | Staggered, Layered, and Chamfered | |||
Conventional | σ = 0.87 | 0.87% | 0.24% | 0.21% | 0.13% | 0.11% |
Annular | σin = 0.73, σout = 0.89 | 1.20% | 0.30% | 0.22% | 0.14% | 0.10% |
Quadrupole | σin = 0.73, σout = 0.89 | 0.64% | 0.25% | 0.19% | 0.13% | 0.12% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, S.; Liu, J.; Jin, C.; Zhou, J. Illumination Field Uniformity Correction by Novel Finger Arrays for Lithography Illumination System. Photonics 2024, 11, 661. https://doi.org/10.3390/photonics11070661
Luo S, Liu J, Jin C, Zhou J. Illumination Field Uniformity Correction by Novel Finger Arrays for Lithography Illumination System. Photonics. 2024; 11(7):661. https://doi.org/10.3390/photonics11070661
Chicago/Turabian StyleLuo, Shaoqin, Junbo Liu, Chuan Jin, and Ji Zhou. 2024. "Illumination Field Uniformity Correction by Novel Finger Arrays for Lithography Illumination System" Photonics 11, no. 7: 661. https://doi.org/10.3390/photonics11070661
APA StyleLuo, S., Liu, J., Jin, C., & Zhou, J. (2024). Illumination Field Uniformity Correction by Novel Finger Arrays for Lithography Illumination System. Photonics, 11(7), 661. https://doi.org/10.3390/photonics11070661