Ultra-Short Lifetime of Intersubband Electrons in Resonance to GaN-Based LO-Phonons at 92 meV
Abstract
:1. Introduction
2. Device Fabrication and Experimental Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, W.C.; Parsons, J.B.; Crew, M.C. Nitrogen Compounds of Gallium III. Gallic Nitride. J. Phys. Chem. 1931, 36, 2651–2654. [Google Scholar] [CrossRef]
- Grimmeiss, H.G.; Koelmans, H. Über die Kantenemission und andere Emissionen des GaN. Z. Für Naturforschung 1959, 14A, 264–271. [Google Scholar] [CrossRef] [Green Version]
- Pankove, J.I.; Miller, E.A.; Richman, D.; Berkeyheiser, J.E. Electroluminescence in GaN. J. Lumin. 1971, 4, 63–66. [Google Scholar] [CrossRef]
- Nakamura, S. GaN growth using GaN buffer layer. Jpn. J. Appl. Phys. 1990, 30, L1705–L1707. [Google Scholar] [CrossRef]
- Khan, M.A.; Bhattarai, A.; Kuznia, J.N.; Olson, D.T. Highly-doped thin-channel GaN-metal-semiconductor field-effect transistors. Appl. Phys. Lett. 1993, 63, 1214–1215. [Google Scholar] [CrossRef]
- Nakamura, S.; Mukai, T.; Senoh, M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue light-emitting diodes. Appl. Phys. Lett. 1990, 64, 1687–1689. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; LI, D.; Zhou, K.; Cheng, Y.; Zhou, W.; Tian, A.; Ikeda, M.; Zhang, S.; Yang, H. GaN-based blue laser diodes with 2.2 W o f light output power under continuous-wave operation. IEEE Photonics Technol. Lett. 2017, 29, 2203–2206. [Google Scholar] [CrossRef]
- Gmachl, C.F.; Ng, H.M.; Cho, A.Y. Intersubband absorption in GaN/AlGaN multiple quantum wells in the wavelength range of λ~1.75–4.2 µm. Appl. Phys. Lett. 2000, 77, 334–336. [Google Scholar] [CrossRef]
- Suzuki, N.; Iizuka, N. Feasibility study on ultrafast nonlinear optical properties of 1.55 µm intersubband transition in AlGaN/GaN quantum wells. Jpn. J. Appl. Phys. 1997, 36, L1006–L1008. [Google Scholar] [CrossRef]
- Hofstetter, D.; Schad, S.-S.; Wu, H.; Schaff, W.J.; Eastman, L.F. GaN/AlN-based quantum-well infrared photo-detector for 1.55 µm. Appl. Phys. Lett. 2003, 87, 572–574. [Google Scholar] [CrossRef]
- Hofstetter, D.; Aku-Leh, C.; Beck, H.; Bour, D.P. AlGaN-based 1.55 µm phototransistor as a crucial building block for optical computers. Crystals 2021, 11, 1431. [Google Scholar] [CrossRef]
- Hofstetter, D.; Bour, D.P.; Beck, H. Proposal for deep-UV emission from a near-infrared AlN/GaN-based quantum cascade device using multiple photon up-conversion. Crystals 2023, 13, 494. [Google Scholar] [CrossRef]
- Miller, D.A.B.; Chemla, D.S.; Damen, T.C.; Gossard, A.C.; Wiegmann, W.; Wood, T.H.; Burrus, C.A. Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect. Phys. Rev. Lett. 1984, 53, 2173–2177. [Google Scholar] [CrossRef]
- Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Für Phys. 1927, 17, 172–198. [Google Scholar] [CrossRef]
- Link, A.; Bitzer, K.; Limmer, W.; Sauer, R.; Kirchner, C.; Schwegler, V.; Kamp, M.; Ebling, D.G.; Benz, K.W. Temperature dependence of the E2 and A1(LO) phonons in GaN and AlN. J. Appl. Phys. 1999, 86, 6256–6260. [Google Scholar] [CrossRef]
- Capasso, F.; Mohammed, K.; Cho, A.Y. Sequential resonant tunnelling through a multiquantum well superlattice. Appl. Phys. Lett. 1986, 48, 478–480. [Google Scholar] [CrossRef]
- Kurosawa, R.; Morita, K.; Kohda, M.; Ishitani, Y. Effect of cubic Dresselhaus spin-orbit interaction in a persistent spin helix state including phonon scattering in semiconductor quantum wells. Appl. Phys. Lett. 2015, 107, 182103. [Google Scholar] [CrossRef]
- Tatham, M.C.; Ryan, J.F.; Foxon, C.T. Time-resolved Raman measurements of intersubband relaxation in GaAs quantum wells. Phys. Rev. Lett. 1989, 63, 1637–1640. [Google Scholar] [CrossRef]
- Faist, J.; Capasso, F.; Sirtori, C.; Sivco, D.L.; Hutchinson, A.L.; Chu, S.N.G.; Cho, A.Y. Measurement of the intersubband scattering rate in semiconductor quantum wells by excited state differential absorption spectroscopy. Appl. Phys. Lett. 1993, 63, 1354–1356. [Google Scholar] [CrossRef]
- Yang, Q.; Manz, C.; Bronner, W.; Köhler, K.; Wagner, J. Room-temperature short-wavelength (~3.7–3.9 µm) GaInAs/AlAsSb quantum-cascade lasers. Appl. Phys. Lett. 2006, 88, 121127. [Google Scholar] [CrossRef]
- Cuscó, R.; Alarcón-Lladó, E.; Ibáñez, J.; Artús, L.; Jiménez, J.; Wang, B.; Callahan, M.J. Temperature dependence of Raman scattering in ZnO. Phys. Rev. B 2007, 75, 165202. [Google Scholar] [CrossRef]
- Hofstetter, D.; Baumann, E.; Giorgetta, F.R.; Théron, R.; Wu, H.; Schaff, W.J.; Dawlaty, J.; George, P.A.; Eastman, L.F.; Rana, F.; et al. Intersubband transition-based processes and devices in AlN/GaN-based heterostructures. Proc. IEEE 2010, 98, 1234–1248. [Google Scholar] [CrossRef]
- Hofstetter, D.; Bour, D.P.; Kirste, L. Mid-infrared electro-luminescence and absorption from AlGaN/GaN-based multi-quantum well inter-subband structures. Appl. Phys. Lett. 2014, 104, 241107. [Google Scholar] [CrossRef]
- Hofstetter, D.; Beck, H.; Kirste, L.; Bour, D.P. Measurement of internal polarization by QCSE induced level shift in AlGaN quantum cascade emitters. IEEE Photonics Technol. Lett. 2019, 31, 657–660. [Google Scholar] [CrossRef]
- Hofstetter, D.; Beck, H.; Epler, J.E.; Kirste, L.; Bour, D.P. Evidence of strong electron-phonon interaction in a GaN-based quantum cascade emitter. Superlattices Microstruct. 2020, 145, 106631. [Google Scholar] [CrossRef]
- Viswanath, A.K.; Lee, J.I.; Kim, D.; Lee, C.R.; Leem, J.Y. Exciton-phonon interactions, exciton binding energy, and their importance in the realization of room-temperature semiconductor lasers based on GaN. Phys. Rev. B 1998, 58, 16333–16339. [Google Scholar] [CrossRef]
- Clark, C.D.; Dean, P.J.; Harris, P.V. Intrinsic edge absorption in diamond. Proc. R. Soc. A 1964, A277, 312–329. [Google Scholar] [CrossRef]
- Lockwood, D.J.; Yu, G.; Rowell, N.L. Optical phonon frequencies and damping in AlAs, GaP, GaAs, InP, InAs, and InSb studied by oblique incidence infrared spectroscopy. Solid State Commun. 2005, 136, 404–409. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: New York, NY, USA, 1985; Volumes I–II, ISBN 9780080547213. [Google Scholar]
- Born, M.; Wolf, E. Principles of Optics, 7th ed.; Cambridge University Press: Cambridge, UK, 2009; pp. 628–632. [Google Scholar] [CrossRef]
- Novikova, N.N.; Yakovlev, V.A.; Kucherenko, I.V.; Karczewski, G.; Aleshchenko, Y.A.; Muratov, A.V.; Zavaritskaya, T.N.; Melnik, N. Optical phonons in PbTe/CdTe multilayer heterostructures. Semiconductors 2015, 49, 644–648. [Google Scholar] [CrossRef]
- Ferreira, R.; Bastard, G. Evaluation of some scattering times for electrons in unbiased and biased single- and multiple-quantum well structures. Phys. Rev. B 1989, 40, 1074–1082. [Google Scholar] [CrossRef]
- Faist, J.; Capasso, F.; Sivco, D.L.; Sirtori, C.; Hutchinson, A.L.; Cho, A.Y. Quantum cascade laser. Science 1994, 264, 553–556. [Google Scholar] [CrossRef] [PubMed]
- Heber, J.D.; Gmachl, C.; Ng, H.M.; Cho, A.Y. Comparative study of ultrafast intersubband electron scattering times at ~1.55 µm wavelength in GaN/AlGaN heterostructures. Appl. Phys. Lett. 2002, 81, 1237–1239. [Google Scholar] [CrossRef]
- Ashkenov, N.; Mbenkum, B.N.; Bundesmann, C.; Riede, V.; Lorenz, M.; Spemann, E.; Kaidashev, E.M.; Kasic, A.; Schubert, M.; Grundmann, M.; et al. Infrared dielectric functions and phonon modes of high-quality ZnO films. J. Appl. Phys. 2003, 93, 126–130. [Google Scholar] [CrossRef]
- Iizuka, N.; Kaneko, K.; Suzuki, N.; Asano, T.; Noda, S.; Wada, O. Ultrafast intersubband relaxation (150 fs) in AlGaN/GaN multiple quantum wells. Appl. Phys. Lett. 2000, 77, 648–651. [Google Scholar] [CrossRef]
Material | Bandgap | LO-Phonon | Excited Electron Lifetime | Reference |
---|---|---|---|---|
C | 5.47 eV | 167 meV | - | [27] |
GaN | 3.41 eV | 92 meV | 0.17 ps | [9] |
ZnO | 3.27 eV | 72 meV | - | [21] |
GaP | 2.32 eV | 50 meV | - | [28] |
AlAs | 2.12 eV | 50 meV | - | [28] |
CdSe | 1.74 eV | 26 meV | - | [29] |
GaAs | 1.43 eV | 36 meV | 0.3 ps | [30] |
InP | 1.42 eV | 43 meV | - | [28] |
InGaAs | 1.02 eV | 32 meV | 0.35 ps | [19] |
InAs | 0.43 eV | 30 meV | - | [28] |
PbTe | 0.32 eV | 13 meV | - | [31] |
InSb | 0.17 eV | 24 meV | 0.38 ps | [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hofstetter, D.; Beck, H.; Bour, D.P. Ultra-Short Lifetime of Intersubband Electrons in Resonance to GaN-Based LO-Phonons at 92 meV. Photonics 2023, 10, 909. https://doi.org/10.3390/photonics10080909
Hofstetter D, Beck H, Bour DP. Ultra-Short Lifetime of Intersubband Electrons in Resonance to GaN-Based LO-Phonons at 92 meV. Photonics. 2023; 10(8):909. https://doi.org/10.3390/photonics10080909
Chicago/Turabian StyleHofstetter, Daniel, Hans Beck, and David P. Bour. 2023. "Ultra-Short Lifetime of Intersubband Electrons in Resonance to GaN-Based LO-Phonons at 92 meV" Photonics 10, no. 8: 909. https://doi.org/10.3390/photonics10080909
APA StyleHofstetter, D., Beck, H., & Bour, D. P. (2023). Ultra-Short Lifetime of Intersubband Electrons in Resonance to GaN-Based LO-Phonons at 92 meV. Photonics, 10(8), 909. https://doi.org/10.3390/photonics10080909