You are currently viewing a new version of our website. To view the old version click .
  • Mathematical and Computational Applications is published by MDPI from Volume 21 Issue 1 (2016). Previous articles were published by another publisher in Open Access under a CC-BY (or CC-BY-NC-ND) licence, and they are hosted by MDPI on mdpi.com as a courtesy and upon agreement with Association for Scientific Research (ASR).
  • Article
  • Open Access

1 April 2014

Authorship Attribution Using Principal Component Analysis and Competitive Neural Networks

International University of Sarajevo, Faculty of Engineering and Natural Sciences Hrasnićka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina

Abstract

Feature extraction is a common problem in statistical pattern recognition. It refers to a process whereby a data space is transformed into a feature space that, in theory, has exactly the same dimension as the original data space. However, the transformation is designed in such a way that the data set may be represented by a reduced number of "effective" features and yet retain most of the intrinsic information content of the data; in other words, the data set undergoes a dimensionality reduction. Principal component analysis is one of these processes. In this paper the data collected by counting selected syntactic characteristics in around a thousand paragraphs of each of the sample books underwent a principal component analysis. Authors of texts identified by the competitive neural networks, which use these effective features.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.