You are currently viewing a new version of our website. To view the old version click .
  • Mathematical and Computational Applications is published by MDPI from Volume 21 Issue 1 (2016). Previous articles were published by another publisher in Open Access under a CC-BY (or CC-BY-NC-ND) licence, and they are hosted by MDPI on mdpi.com as a courtesy and upon agreement with Association for Scientific Research (ASR).
  • Article
  • Open Access

1 April 2014

Fault Diagnosis of Shaft- Ball Bearing System Using One-Way Analysis of Variance

and
1
Department of Industrial Engineering, Kirikkale University, 71450, KIRIKKALE, Turkey
2
Dep. of Mechanical Engineering, Kirikkale University, 71450, KIRIKKALE, Turkey
*
Authors to whom correspondence should be addressed.

Abstract

Roller bearing is one of the most widely used and critical elements in rotating machinery. In consequence, bearing fault diagnosis in machines, as well as to discriminate the different fault conditions have been a great interest. In this study, firstly, analytical model of a shaft-ball bearing system is developed. The shaft is assumed to be perfectly rigid and uniform, and supported by two radial ball bearings. Then, the effect of localized defects on bearing running surfaces (i.e. surfaces of inner and outer rings and balls) on the shaft vibrations are obtained using the simulation program. Then, vibration signatures are analyzed by one-way analysis of variance (ANOVA) method. Finally, post-hoc tests are applied to differentiate the ball bearing element's localized defects in shaft-ball bearing simulation model.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.