Multichannel Blind Deconvolution Using a Generalized Gaussian Source Model
Abstract
We use a state space representation to model the mixer and demixer respectively, and show how the parameters of the demixer can be adapted using a gradient descent algorithm incorporating the natural gradient extension. We also present a learning method for the unknown parameters of the generalized Gaussian source model. The
performance of the proposed generalized Gaussian source model on a typical example is compared with those of other algorithm, viz the switching nonlinearity algorithm
proposed by Lee et al. [8].
Share and Cite
Abu-Taleb, A.S.; Zayed, E.M.E.; El-Sayed, W.M.; Badawy, A.M.; Mohammed, O.A. Multichannel Blind Deconvolution Using a Generalized Gaussian Source Model. Math. Comput. Appl. 2007, 12, 1-9. https://doi.org/10.3390/mca12010001
Abu-Taleb AS, Zayed EME, El-Sayed WM, Badawy AM, Mohammed OA. Multichannel Blind Deconvolution Using a Generalized Gaussian Source Model. Mathematical and Computational Applications. 2007; 12(1):1-9. https://doi.org/10.3390/mca12010001
Chicago/Turabian StyleAbu-Taleb, A. S., E. M. E. Zayed, W. M. El-Sayed, A. M. Badawy, and O. A. Mohammed. 2007. "Multichannel Blind Deconvolution Using a Generalized Gaussian Source Model" Mathematical and Computational Applications 12, no. 1: 1-9. https://doi.org/10.3390/mca12010001
APA StyleAbu-Taleb, A. S., Zayed, E. M. E., El-Sayed, W. M., Badawy, A. M., & Mohammed, O. A. (2007). Multichannel Blind Deconvolution Using a Generalized Gaussian Source Model. Mathematical and Computational Applications, 12(1), 1-9. https://doi.org/10.3390/mca12010001