Validation, Optimization and Hepatoprotective Effects of Boeravinone B and Caffeic Acid Compounds from Boerhavia diffusa Linn
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Instruments
2.2. Collection and Extraction of Plant Materials
2.3. HPTLC Instrumentation
2.3.1. Preparation of Sample Solution
2.3.2. Preparation of Plate
2.3.3. Slit and Scanning Speed
2.3.4. Chromatographic Conditions
2.3.5. Preparation of Standards
2.3.6. Analytical Method Evaluation
2.4. Optimization of Boeravinone B and Caffeic Acidin Hydroalcoholic Extracts
2.5. The Hepatoprotective Activity of Caffeic Acid and Boeravinone B
3. Results
3.1. Development of Mobile Phase
3.2. Method of Validation
3.3. Box–Behnken Design-Experiment
3.4. Response of Independent Factors on Boeravinone B (C1)
3.5. Responseof Independent Factors on Caffeic Acid (C2)
3.6. Hepatoprotective Activity of Bioactive Compounds on HpeG2 Cell Induced with Galactosamine
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dhingra, D.; Valecha, R. Behavioural and neuroendocrine effects of aqueous extract of Boerhaavia diffusa Linn. in mice using tail suspension and forced swim tests—A preliminary study. Indian J. Exp. Biol. 2014, 52, 53–59. [Google Scholar] [PubMed]
- Saraswati, S.; Alhaider, A.A.; Agrawal, S.S. Punarnavine, an alkaloid from Boerhaavia diffusa exhibits anti-angiogenic activity via downregulation of VEGF in vitro and in vivo. Chem. Biol. Interact. 2013, 206, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.; Gairola, S.; Gaur, R.D.; Painuli, R.M.; Siddiqi, T.O. Ethnomedicinal plants used for treating epilepsy by indigenous communities of sub-Himalayan region of Uttarakhand, India. J. Ethnopharmacol. 2013, 150, 353–370. [Google Scholar] [CrossRef] [PubMed]
- Bairwa, K.; Singh, I.N.; Roy, S.K.; Grover, J.; Srivastava, A.; Jachak, S.M. Rotenoids from Boerhaavia diffusa as potential anti-inflammatory agents. J. Nat. Prod. 2013, 76, 1393–1398. [Google Scholar] [CrossRef]
- Vyas, B.A.; Desai, N.Y.; Patel, P.K.; Joshi, S.V.; Shah, D.R. Effect of Boerhaavia diffusa in experimental prostatic hyperplasia in rats. Indian J. Pharmacol. 2013, 45, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Aher, V.; Chattopadhyay, P.; Goyary, D.; Veer, V. Evaluation of the genotoxic and antigenotoxic potential of the alkaloid punarnavine from Boerhaavia diffusa. Planta Med. 2013, 79, 939–945. [Google Scholar] [CrossRef]
- Apu, A.S.; Liza, M.S.; Jamaluddin, A.T.; Howlader, M.A.; Saha, R.K.; Rizwan, F.; Nasrin, N. Phytochemical screening and in vitro bioactivities of the extracts of aerial part of Boerhavia diffusa Linn. Asian Pacific J. Trop. Biomed. 2012, 2, 673–678. [Google Scholar] [CrossRef] [Green Version]
- Vineetha, V.P.; Prathapan, A.; Soumya, R.S.; Raghu, K.G. Arsenic trioxide toxicity in H9c2 myoblasts--damage to cell organelles and possible amelioration with Boerhavia diffusa. Cardiovasc. Toxicol. 2013, 13, 123–137. [Google Scholar] [CrossRef]
- Yasir, F.; Waqar, M.A. Effect of indigenous plant extracts on calcium oxalate crystallization having a role in urolithiasis. Urological. Res. 2011, 39, 345–350. [Google Scholar] [CrossRef]
- Singh, P.K.; Baxi, D.; Doshi, A.; Ramachandran, A.V. Antihyperglycaemic and renoprotective effect of Boerhaavia diffusa L. in experimental diabetic rats. J. Comp. Int. Med. 2011, 8, 1–20. [Google Scholar] [CrossRef]
- Olaleye, M.T.; Akinmoladun, A.C.; Ogunboye, A.A.; Akindahunsi, A.A. Antioxidant activity and hepatoprotective property of leaf extracts of Boerhaavia diffusa Linn against acetaminophen-induced liver damage in rats. Food Chem. Toxicol. 2010, 48, 2200–2205. [Google Scholar] [CrossRef] [PubMed]
- Sreeja, S.; Sreeja, S. An in vitro study on antiproliferative and antiestrogenic effects of Boerhaavia diffusa L. extracts. J. Ethnopharmacol. 2009, 126, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Manu, K.A.; Kuttan, G. Boerhaavia diffusa stimulates cell-mediated immune response by upregulating IL-2 and downregulating the pro-inflammatory cytokines and GM-CSF in B16F-10 metastatic melanoma bearing mice. J. Exp. Ther. Oncol. 2008, 7, 17–29. [Google Scholar] [PubMed]
- Manu, K.A.; Kuttan, G. Anti-metastatic potential of Punarnavine, an alkaloid from Boerhaavia diffusa Linn. Immunobiology 2009, 214, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Manu, K.A.; Leyon, P.V.; Kuttan, G. Studies on the protective effects of Boerhaavia diffusa L. against gamma radiation induced damage in mice. Integr. Cancer Ther. 2007, 6, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Ahmed-Belkacem, A.; Macalou, S.; Borrelli, F.; Capasso, R.; Fattorusso, E.; Taglialatela-Scafati, O.; Di Pietro, A. Nonprenylated rotenoids, a new class of potent breast cancer resistance protein inhibitors. J. Med. Chem. 2007, 50, 1933–1938. [Google Scholar] [CrossRef]
- Borrelli, F.; Milic, N.; Ascione, V.; Capasso, R.; Izzo, A.A.; Capasso, F.; Petrucci, F.; Valente, R.; Fattorusso, E.; Taglialatela-Scafati, O. Isolation of new rotenoids from Boerhaavia diffusa and evaluation of their effect on intestinal motility. Planta Med. 2005, 71, 928–932. [Google Scholar] [CrossRef]
- Pandey, R.; Maurya, R.; Singh, G.; Sathiamoorthy, B.; Naik, S. Immunosuppressive properties of flavonoids isolated from Boerhaavia diffusa Linn. Int. Immunopharmacol. 2005, 5, 541–553. [Google Scholar] [CrossRef]
- Satheesh, M.A.; Pari, L. Antioxidant effect of Boerhavia diffusa L. in tissues of alloxan induced diabetic rats. Indian J. Exp. Biol. 2004, 42, 989–992. [Google Scholar]
- Lami, N.; Kadota, S.; Kikuchi, T.; Momose, Y. Constituents of the roots of Boerhaavia diffusa L. III. Identification of Ca2+ channel antagonistic compound from the methanol extract. Chem. Pharmaceut. Bulletin. 1991, 39, 1551–1555. [Google Scholar] [CrossRef] [Green Version]
- Bharali, R.; Azad, M.R.; Tabassum, J. Chemopreventive action of Boerhaavia diffusa on DMBA-induced skin carcinogenesis in mice. Indain J. Physiol.Pharmacol. 2003, 47, 459–464. [Google Scholar]
- Jarald, E.E.; Kushwah, P.; Edwin, S.; Asghar, S.; Patni, S.A. Effect of Unex on ethylene glycol-induced urolithiasis in rats. Indian J. Pharmacol. 2011, 43, 466–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, R.; Saluja, D.; Dwarakanath, B.S.; Chopra, M. Inhibition of Human Cervical Cancer Cell Growth by Ethanolic Extract of Boerhaavia diffusa Linn. (Punarnava) Root. Evid. -Based Complementary Altern. Med. Ecam 2011, 2011, 427031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Xiao, S.; Huang, J.; Liu, S.; Xue, M.; Lu, F. Chemoprotective Effect of Boeravinone B against DMBA/Croton Oil Induced Skin Cancer via Reduction of Inflammation. J. Oleo. Sci. 2021, 70, 955–964. [Google Scholar] [CrossRef]
- Huang, Y.; Sun, Y.; Wang, W.W.; Zhang, L. Boeravinone B a natural rotenoid exerts anticancer activity via inducing internalization and degradation of inactivated EGFR and ErbB2 in human colon cancer cells. Am. J. Transl. Res. 2018, 10, 4183–4192. [Google Scholar]
- Bairwa, K.; Jachak, S.M. Anti-inflammatory potential of a lipid-based formulation of a rotenoid-rich fraction prepared from Boerhavia diffusa. Pharm. Biol. 2015, 53, 1231–1238. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, L.; Shi, S.; Guo, G.; Wen, H. Boeravinone B alleviates gut dysbiosis during myocardial infarction-induced cardiotoxicity in rats. J. Cell Mol. Med. 2021, 25, 6403–6416. [Google Scholar] [CrossRef]
- Aviello, G.; Canadanovic-Brunet, J.M.; Milic, N.; Capasso, R.; Fattorusso, E.; Taglialatela-Scafati, O.; Fasolino, I.; Izzo, A.A.; Borrelli, F. Potent antioxidant and genoprotective effects of boeravinone G, a rotenoid isolated from Boerhaavia diffusa. PLoS ONE 2011, 6, 9628. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Aeri, V.; Gaur, P.K.; Jachak, S.M. Phytochemical, Therapeutic, and Ethnopharmacological Overview for a Traditionally Important Herb: Boerhavia diffusa Linn. Biomed. Res. Int. 2014, 2014, 808302. [Google Scholar] [CrossRef] [Green Version]
- Erdemli, H.K.; Akyol, S.; Armutcu, F.; Akyol, O. Antiviral properties of caffeic acid phenethyl ester and its potential application. J. Intercult Ethnopharmacol. 2015, 4, 344–347. [Google Scholar] [CrossRef]
- Al-Hatamleh, M.A.I.; Hatmal, M.M.; Sattar, K.; Ahmad, S.; Mustafa, M.Z.; Bittencourt, M.C.; Mohamud, R. Antiviral and Immunomodulatory Effects of Phytochemicals from Honey against COVID-19: Potential Mechanisms of Action and Future Directions. Molecules 2020, 25, 5017. [Google Scholar] [CrossRef] [PubMed]
- Bıçakç, N.; Karaboğa, I.; Dökmeci, A.H.; Güzel, S.; Fidanol Erboğa, Z. Cardioprotective effect of caffeic acid phenethyl ester on cardiac contusion following blunt chest trauma in rats. Biotech. Histochem. 2019, 94, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, S.; Gholami, M.H.; Zabolian, A.; Saleki, H.; Farahani, M.V.; Hamzehlou, S.; Far, F.B.; Sharifzadeh, S.O.; Samarghandian, S.; Khan, H.; et al. Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacol. Res. 2021, 171, 105759. [Google Scholar] [CrossRef] [PubMed]
- Tolba, M.F.; Azab, S.S.; Khalifa, A.E.; Abdel-Rahman, S.Z.; Abdel-Naim, A.B. Caffeic acid phenethyl ester, a promising component of propolis with a plethora of biological activities: A review on its anti-inflammatory, neuroprotective, hepatoprotective, and cardioprotective effects. IUBMB Life 2013, 65, 699–709. [Google Scholar] [CrossRef] [PubMed]
- Brautigan, D.L.; Gielata, M.; Heo, J.; Kubicka, E.; Wilkins, L.R. Selective toxicity of caffeic acid in hepatocellular carcinoma cells. Biochem. Biophys. Res. Commun. 2018, 505, 612–617. [Google Scholar] [CrossRef]
- Ilyas, U.K.; Katare, D.P.; Ambardar, N.; Aeri, V. HPTLC densitometric quantification of caffeic acid and boeravinone B in Boerhavia diffusa Linn. Int. J. Phytopharm. 2013, 4, 184–189. [Google Scholar]
- Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef] [Green Version]
- Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Yoga Latha, L. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wink, M. Modes of Action of Herbal Medicines and Plant Secondary Metabolites. Medicines 2015, 2, 251–286. [Google Scholar] [CrossRef]
- Karimi, G.; Vahabzadeh, M.; Lari, P.; Rashedinia, M.; Moshiri, M. “Silymarin”, a promising pharmacological agent for treatment of diseases. Iran. J. Basic Med. Sci. 2011, 14, 308–317. [Google Scholar]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Factors Independent Variables | Levels Used | ||
---|---|---|---|
Low (−1) | Medium | High (+1) | |
B1 = Time in min | 30 | 60 | 90 |
B2 = Temperature (°C) | 30 | 45 | 60 |
B3 = Solvent concentration (v/v) | 40 | 60 | 80 |
Dependent variables | |||
C1 = Boeravinone B | Maximized percentage yield | ||
C2 = Caffeic acid | Maximized percentage yield |
Run | Factor-1 (A1): Time (Min) | Factor-2(A2): Temperature (°C) | Factor-3 (A3): Solvent Concentration | % Yield Boeravinone B (C1) | % Yield Caffeic Acid(C2) | |
---|---|---|---|---|---|---|
Methanol (%) | Water Content (%) | |||||
01 | 30 | 30 | 60 | 40 | 0.044 | 0.011 |
02 | 90 | 30 | 60 | 40 | 0.048 | 0.018 |
03 | 30 | 60 | 60 | 40 | 0.045 | 0.017 |
04 | 90 | 60 | 60 | 40 | 0.039 | 0.017 |
05 | 30 | 45 | 40 | 60 | 0.050 | 0.036 |
06 | 90 | 45 | 40 | 60 | 0.027 | 0.048 |
07 | 30 | 45 | 80 | 20 | 0.011 | 0.046 |
08 | 90 | 45 | 80 | 20 | 0.032 | 0.0384 |
09 | 60 | 30 | 40 | 60 | 0.036 | 0.041 |
10 | 60 | 60 | 40 | 60 | 0.047 | 0.068 |
11 | 60 | 30 | 60 | 40 | 0.035 | 0.067 |
12 | 60 | 60 | 80 | 20 | 0.015 | 0.043 |
13 | 60 | 45 | 60 | 40 | 0.0086 | 0.066 |
14 | 60 | 45 | 60 | 40 | 0.0085 | 0.065 |
15 | 60 | 45 | 60 | 40 | 0.0086 | 0.066 |
16 | 60 | 45 | 60 | 40 | 0.0085 | 0.065 |
17 | 60 | 45 | 60 | 40 | 0.0085 | 0.066 |
Parameters | Boeravinone B | Caffeic Acid |
---|---|---|
LOD (ng) | 50 | 40 |
LOQ (ng) | 200 | 200 |
Resolution (Rs) | 2.11 ± 0.74 | 1.93 ± 1.2 |
Capacity factor (k’) | 0.31 | 0.24 |
Selectivity (α) | 1.1 | 1.17 |
Tailing factor | 1 | 1 |
Specificity | Specific | Specific |
Interdayprecision (%RSD) | 0.93 | 0.76 |
Intraday precision (%RSD) | 0.99 | 0.79 |
Regression equation | Y = −204.4 + 8.6X | Y = −484.7X + 11.2 |
Average recovery % | 98.91 ± 1.2 | 99.91 ± 0.81 |
Rf values | 0.76 | 0.63 |
Models F Value | R2 | Adjusted R2 | Predicted R2 | SD | C.V.% |
---|---|---|---|---|---|
Boeravinone B (Y1) | |||||
Linear | 0.1218 | −0.0808 | −0.4134 | 0.018 | - |
2F1 | 0.2745 | −0.1609 | −0.9616 | 0.018 | - |
Cubic | 0.9899 | 0.9598 | - | 0.0034 | - |
Quadratic | 0.9899 | 0.9769 | 0.9836 | 0.0026 | 9.48 |
Caffeic acid (Y2) | |||||
Linear | 0.0033 | −0.2267 | −0.8001 | 0.023 | - |
2F1 | 0.1187 | −0.4101 | −2.3379 | 0.024 | - |
Cubic | 0.9999 | 0.9995 | - | 0.00045 | - |
Quadratic | 0.9995 | 0.9989 | 0.9938 | 0.00069 | 1.52 |
Dose Treatment | Control | GLN(40 mM) | Silymarin | Boeravinone B | Caffeic Acid |
---|---|---|---|---|---|
100 μg/mL | 98.3 ± 1.1 | 15 ± 0.6 ## | 78.7 ± 2.6 ** | 40.89 ± 4.7 * | 46.17 ± 4.4 * |
Absorbance at 540 nm | 3.5 | 0.459 | 2.757 | 1.431 | 1.616 |
200 μg/mL | 84.35 ± 1.9 ** | 66.21 ± 2.6 ** | 52.34 ± 1.7 ** | ||
Absorbance at 540 nm | 2.952 | 2.318 | 1.832 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thajudeen, K.Y.; Alsayari, A.; Najib Ullah, S.N.M.; Salam, S.; Elayadeth-Meethal, M.; Uoorakkottil, I. Validation, Optimization and Hepatoprotective Effects of Boeravinone B and Caffeic Acid Compounds from Boerhavia diffusa Linn. Separations 2022, 9, 177. https://doi.org/10.3390/separations9070177
Thajudeen KY, Alsayari A, Najib Ullah SNM, Salam S, Elayadeth-Meethal M, Uoorakkottil I. Validation, Optimization and Hepatoprotective Effects of Boeravinone B and Caffeic Acid Compounds from Boerhavia diffusa Linn. Separations. 2022; 9(7):177. https://doi.org/10.3390/separations9070177
Chicago/Turabian StyleThajudeen, Kamal Y., Abdulrhman Alsayari, Shehla Nasar Mir Najib Ullah, Shahana Salam, Muhammed Elayadeth-Meethal, and Ilyas Uoorakkottil. 2022. "Validation, Optimization and Hepatoprotective Effects of Boeravinone B and Caffeic Acid Compounds from Boerhavia diffusa Linn" Separations 9, no. 7: 177. https://doi.org/10.3390/separations9070177
APA StyleThajudeen, K. Y., Alsayari, A., Najib Ullah, S. N. M., Salam, S., Elayadeth-Meethal, M., & Uoorakkottil, I. (2022). Validation, Optimization and Hepatoprotective Effects of Boeravinone B and Caffeic Acid Compounds from Boerhavia diffusa Linn. Separations, 9(7), 177. https://doi.org/10.3390/separations9070177