Highly Efficient Removal of Cadmium from Wastewater Using Eco-Friendly and Cost-Effective Amorphous Silicoaluminophosphates as Adsorbent Particles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Material Preparation
2.2.1. Am-AlP
2.2.2. Am-SiAlP
2.3. Material Characterization
2.4. Evaluation of Effect of Silicate Concentration on Adsorption Performance
2.4.1. Isotherm Study
2.4.2. Adsorption Kinetics
2.4.3. Effect of Background Ions
2.4.4. Influence of Other Metal Ions
2.4.5. Regeneration and Reusability Study
2.5. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Samples
3.2. Adsorption of Cd from Aqueous Solution
3.2.1. Effect of Silicon Content on Removal Efficiency
3.2.2. Contact Time and Kinetics of Adsorption
3.3. Adsorption Kinetics Modeling
3.4. Isotherm Analysis
3.5. Mechanism of Removal of Cd2+ by Am-SiAlP Adsorbent
3.6. Influence of Background Ions on Cd2+ Removal
3.7. Effect of Presence of Other Metal Ions
3.8. Regeneration and Recovery Study
3.9. Limitation of Studies Future Work Suggestions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Agasti, N. Decontamination of heavy metal ions from water by composites prepared from waste. Curr. Res. Green Sustain. Chem. 2021, 4, 100088. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Kumar, P.S.; Rozbu, M.R.; Chowdhury, A.T.; Nuzhat, S.; Rafa, N.; Mahlia, T.M.I.; Ong, H.C.; Mofijur, M. Heavy metal toxicity, sources, and remediation techniques for contaminated water and soil. Environ. Technol. Innov. 2022, 25, 102114. [Google Scholar] [CrossRef]
- Kubier, A.; Wilkin, R.T.; Pichler, T. Cadmium in soils and groundwater: A review. Appl. Geochem. 2019, 108, 104388. [Google Scholar] [CrossRef]
- Luo, K.; Liu, H.; Liu, Q.; Tu, Y.; Yu, E.; Xing, D. Cadmium accumulation and migration of 3 peppers varieties in yellow and limestone soils under geochemical anomaly. Environ. Technol. 2022, 43, 10–20. [Google Scholar] [CrossRef] [PubMed]
- European Union. Directive (EU) 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the Protection of Groundwater Against Pollution and Deterioration; European Union: Geneva, Switzerland, 2006. [Google Scholar]
- Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. npj Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Zheng, M.; Sun, Z.; Han, H.; Zhang, Z.; Ma, W.; Xu, C. Enhanced coagulation coupled with heavy metal capturing for heavy metals removal from coal gasification brine and a novel mathematical model. J. Water Process Eng. 2021, 40, 101954. [Google Scholar] [CrossRef]
- Ervine, M.; Mangwandi, C. Evaluation of magnetic teawaste-based biochar particles for removal of cadmium from aqueous solutions. Particuology 2025, 99, 92–105. [Google Scholar] [CrossRef]
- Wu, J.; Annath, H.; Chen, H.; Mangwandi, C. Upcycling tea waste particles into magnetic adsorbent materials for removal of Cr(VI) from aqueous solutions. Particuology 2023, 80, 115–126. [Google Scholar] [CrossRef]
- McGeogh, M.; Annath, H.; Mangwandi, C. Turning teawaste particles into magnetic bio-sorbents particles for arsenic removal from wastewater: Isotherm and kinetic studies. Particuology 2024, 87, 179–193. [Google Scholar] [CrossRef]
- Wang, X.; Zou, H.; Liu, Q. Effects of Phosphate and Silicate Combined Application on Cadmium Form Changes in Heavy Metal Contaminated Soil. Sustainability 2023, 15, 4503. [Google Scholar] [CrossRef]
- Hamza, A.; Nagaraju, N. Amorphous metal-aluminophosphate catalysts for aldol condensation of n-heptanal and benzaldehyde to jasminaldehyde. Chin. J. Catal. 2015, 36, 209–215. [Google Scholar] [CrossRef]
- Vijayasankar, A.V.; Nagaraju, N. Preparation and characterisation of amorphous mesoporous aluminophosphate and metal aluminophosphate as an efficient heterogeneous catalyst for transesterification reaction. C. R. Chim. 2011, 14, 1109–1116. [Google Scholar] [CrossRef]
- Annath, H.; Viswambaram Aloor, V.; Narasimhaiah, N. Understanding the role of acid sites of Zinc Aluminophosphate catalysts in eco-friendly synthesis of carbamates. Iran. J. Catal. 2021, 11, 13–21. [Google Scholar]
- Annath, H.; Manayil, J.C.; Thompson, J.; Marr, A.C.; Raja, R. Contrasting structure-property relationships in amorphous, hierarchical and microporous aluminophosphate catalysts for Claisen-Schmidt condensation reactions. Appl. Catal. A Gen. 2021, 627, 118376. [Google Scholar] [CrossRef]
- Mohan, S.; Gandhimathi, R. Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent. J. Hazard. Mater. 2009, 169, 351–359. [Google Scholar] [CrossRef]
- Eren, E.; Afsin, B. An investigation of Cu(II) adsorption by raw and acid-activated bentonite: A combined potentiometric, thermodynamic, XRD, IR, DTA study. J. Hazard. Mater. 2008, 151, 682–691. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.-J.; Jiang, S.-K.; Chao, X.-Y.; Zhang, C.-X.; Shi, Q.; Wang, Z.-Y.; Liu, M.-L.; Sun, S.-P. Removing miscellaneous heavy metals by all-in-one ion exchange-nanofiltration membrane. Water Res. 2022, 222, 118888. [Google Scholar] [CrossRef]
- Jaiyeola, O.O.; Annath, H.; Mangwandi, C. Synthesis and evaluation of a new CeO2@starch nanocomposite particles for efficient removal of toxic Cr(VI) ions. Energy Nexus 2023, 12, 100244. [Google Scholar] [CrossRef]
- WHO. Cadmium in Drinking-Water; World Health Organisation (WHO): Geneva, Switzerland, 2011. [Google Scholar]
- Mangwandi, C.; Suhaimi, S.N.A.; Liu, J.T.; Dhenge, R.M.; Albadarin, A.B. Design, production and characterisation of granular adsorbent material for arsenic removal from contaminated wastewater. Chem. Eng. Res. Des. 2016, 110, 70–81. [Google Scholar] [CrossRef]
- Ghojavand, S.; Dib, E.; Mintova, S. Flexibility in zeolites: Origin, limits, and evaluation. Chem. Sci. 2023, 14, 12430–12446. [Google Scholar] [CrossRef]
- Campbell, R.; Xiao, B.; Mangwandi, C. Production of activated carbon from spent coffee grounds (SCG) for removal of hexavalent chromium from synthetic wastewater solutions. J. Environ. Manag. 2024, 366, 121682. [Google Scholar] [CrossRef]
- Glocheux, Y.; Albadarin, A.B.; Mangwandi, C.; Stewart, E.; Walker, G.M. Production of porous aluminium and iron sulphated oxyhydroxides using industrial grade coagulants for optimised arsenic removal from groundwater. J. Ind. Eng. Chem. 2015, 25, 56–66. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. 2006, 137, 762–811. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, X.; Zhao, G.; Chen, C.; Chai, Z.; Alsaedi, A.; Hayat, T.; Wang, X. Metal–organic framework-based materials: Superior adsorbents for the capture of toxic and radioactive metal ions. Chem. Soc. Rev. 2018, 47, 2322–2356. [Google Scholar] [CrossRef]
- Rahman, M.M.; Adil, M.; Yusof, A.M.; Kamaruzzaman, Y.B.; Ansary, R.H. Removal of Heavy Metal Ions with Acid Activated Carbons Derived from Oil Palm and Coconut Shells. Materials 2014, 7, 3634–3650. [Google Scholar] [CrossRef]
- Annath, H.; Chapman, S.; Donnelly, G.F.; Marr, P.C.; Marr, A.C.; Raja, R. Heterogenized Ionic-Liquid Metal-Oxide Hybrids: Enhanced Catalytic Activity in the Liquid-Phase Beckmann Rearrangement. ACS Sustain. Chem. Eng. 2018, 6, 16797–16805. [Google Scholar] [CrossRef]
- Chen, H.; Osman, A.I.; Mangwandi, C.; Rooney, D. Upcycling food waste digestate for energy and heavy metal remediation applications. Resour. Conserv. Recycl. X 2019, 3, 100015. [Google Scholar] [CrossRef]
- Huang, R.; Lin, Q.; Zhong, Q.; Zhang, X.; Wen, X.; Luo, H. Removal of Cd(II) and Pb(II) from aqueous solution by modified attapulgite clay. Arab. J. Chem. 2020, 13, 4994–5008. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, R.; Wang, C.; Zhou, G.; Hua, C.; Cao, Y.; Song, Z. Novel environmental-friendly nano-composite magnetic attapulgite functionalized by chitosan and EDTA for cadmium (II) removal. J. Alloys Compd. 2020, 817, 153286. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Meng, J.; Liu, X.; Xu, J.; Wang, F.; Brookes, P. Zeolite-supported nanoscale zero-valent iron: New findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil. J. Hazard. Mater. 2018, 344, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sdiri, A.; Higashi, T. Simultaneous removal of heavy metals from aqueous solution by natural limestones. Appl. Water Sci. 2013, 3, 29–39. [Google Scholar] [CrossRef]
- Khan, M.I.; Min, T.K.; Azizli, K.; Sufian, S.; Ullah, H.; Man, Z. Effective removal of methylene blue from water using phosphoric acid based geopolymers: Synthesis, characterizations and adsorption studies. RSC Adv. 2015, 5, 61410–61420. [Google Scholar] [CrossRef]
- Amarasinghe, B.M.W.P.K.; Williams, R.A. Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem. Eng. J. 2007, 132, 299–309. [Google Scholar] [CrossRef]
- Xie, X.; Gao, H.; Luo, X.; Su, T.; Zhang, Y.; Qin, Z. Polyethyleneimine modified activated carbon for adsorption of Cd(II) in aqueous solution. J. Environ. Chem. Eng. 2019, 7, 103183. [Google Scholar] [CrossRef]
- Najafi, M.; Yousefi, Y.; Rafati, A.A. Synthesis, characterization and adsorption studies of several heavy metal ions on amino-functionalized silica nano hollow sphere and silica gel. Sep. Purif. Technol. 2012, 85, 193–205. [Google Scholar] [CrossRef]
- Marszałek, M.; Knapik, E.; Piotrowski, M.; Chruszcz-Lipska, K. Removal of cadmium from phosphoric acid in the presence of chloride ions using commercially available anion exchange resins. J. Ind. Eng. Chem. 2023, 118, 488–498. [Google Scholar] [CrossRef]
- Goswami, A.; Singh, A.K. Silica gel functionalized with resacetophenone: Synthesis of a new chelating matrix and its application as metal ion collector for their flame atomic absorption spectrometric determination. Anal. Chim. Acta 2002, 454, 229–240. [Google Scholar] [CrossRef]
- Najafi, M.; Rostamian, R.; Rafati, A.A. Chemically modified silica gel with thiol group as an adsorbent for retention of some toxic soft metal ions from water and industrial effluent. Chem. Eng. J. 2011, 168, 426–432. [Google Scholar] [CrossRef]
- Hughes, M.A.; Wood, J.; Rosenberg, E. Polymer Structure and Metal Ion Selectivity in Silica Polyamine Composites Modified with Sodium Chloroacetate and Nitriloacetic Acid (NTA) Anhydride. Ind. Eng. Chem. Res. 2008, 47, 6765–6774. [Google Scholar] [CrossRef]
- Xie, F.; Lin, X.; Wu, X.; Xie, Z. Solid phase extraction of lead (II), copper (II), cadmium (II) and nickel (II) using gallic acid-modified silica gel prior to determination by flame atomic absorption spectrometry. Talanta 2008, 74, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, M.; Waterhouse, G.I.N.; Sun, J.; Shi, W.; Ai, S. Efficient removal of cadmium ions from water by adsorption on a magnetic carbon aerogel. Environ. Sci. Pollut. Res. 2021, 28, 5149–5157. [Google Scholar] [CrossRef] [PubMed]
- Amro, A.N.; Abhary, M.K.; Shaikh, M.M.; Ali, S. Removal of Lead and Cadmium Ions from Aqueous Solution by Adsorption on a Low-Cost Phragmites Biomass. Processes 2019, 7, 406. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, G.; Chen, H.; Hu, X.; Niu, Z.; Ma, S. Functionalized metal–organic framework as a new platform for efficient and selective removal of cadmium(ii) from aqueous solution. J. Mater. Chem. A 2015, 3, 15292–15298. [Google Scholar] [CrossRef]
- El-Hefnawy, M.E.; Selim, E.M.; Assaad, F.F.; Ismail, A.I. The Effect of Chloride and Sulfate Ions on the Adsorption of Cd2+ on Clay and Sandy Loam Egyptian Soils. Sci. World J. 2014, 2014, 806252. [Google Scholar] [CrossRef]
- Han, X.; Liang, C.-F.; Li, T.-Q.; Wang, K.; Huang, H.-G.; Yang, X.-E. Simultaneous removal of cadmium and sulfamethoxazole from aqueous solution by rice straw biochar. J. Zhejiang Univ. Sci. B 2013, 14, 640–649. [Google Scholar] [CrossRef]
- Zhou, L. Improving the removal performance of cadmium from wastewater by phosphate-modified sludge biochar: A mineral dissolution-precipitation perspective. Desalination Water Treat. 2024, 320, 100865. [Google Scholar] [CrossRef]
- Raji, Z.; Karim, A.; Karam, A.; Khalloufi, S. Adsorption of Heavy Metals: Mechanisms, Kinetics, and Applications of Various Adsorbents in Wastewater Remediation—A Review. Waste 2023, 1, 775–805. [Google Scholar] [CrossRef]
- Cowan, C.E.; Zachara, J.M.; Resch, C.T. Cadmium adsorption on iron oxides in the presence of alkaline-earth elements. Environ. Sci. Technol. 1991, 25, 437–446. [Google Scholar] [CrossRef]
Adsorbent | BET Surface Area (m2 g−1) | Average Pore Width (A) | Pore Volume cm3 g−1 |
---|---|---|---|
Am-AlP | 121.5 | 222.5 | 0.596 |
Am-SiAlP (2.5) | 131.5 | 216.5 | 0.388 |
Am-SiAlP (5.0) | 173.3 | 210.0 | 0.723 |
Am-SiAlP (7.5) | 183.0 | 173.9 | 0.659 |
Am-SiAlP (10.0) | 131.5 | 220.1 | 0.645 |
Model | Parameter | Value |
---|---|---|
Pseudo 1st-order model | (min−1) | 0.52 ± 0.16 |
36.20 ± 1.80 | ||
2.48 | ||
0.96 | ||
Pseudo 2nd order model | (g mg−1min−1) | 0.02 ± 0.01 |
36.60 ± 1.20 | ||
h (mg g−1min−1) | 1.53 ± 0.05 | |
2.72 | ||
0.95 | ||
Elovich | 40.20 ± 5.20 | |
(-) | 0.07 ± 0.03 | |
0.34 ± 0.04 | ||
5.04 | ||
0.61 | ||
Modified Freundlich Kinetic | (L (g min−n)−1) | 27.20 ± 6.90 |
(-) | 0.09 ± 0.05 | |
5.12 | ||
0.81 |
Model | Parameters | Temperature (°C) | ||
---|---|---|---|---|
20 | 40 | 60 | ||
Langmuir | 0.10 ± 0.07 | 0.12 ± 0.08 | 0.07 ± 0.04 | |
55. 90 ± 13.20 | 66.50 ± 16.90 | 103.20 ± 15.10 | ||
5.47 | 4.53 | 7.67 | ||
0.892 | 0.87 | 0.90 | ||
Freundlich | 12.80 ± 2.10 | 20.22 ± 2.00 | 17.79 ± 3.60 | |
3.45 ± 0.5 | 4.28 ± 0.53 | 2.561 ± 0.53 | ||
5.80 | 9.70 | 9.40 | ||
0.88 | 0.74 | 0.89 | ||
Sips | ) | 0.15 ± 0.05 | 0.10 ± 0.05 | 0.09 ± 0.05 |
0.41 ± 0.05 | 1.02 ± 0.05 | 0.77 ± 0.05 | ||
103.9 ± 13.6 | 66.07 ± 16.90 | 122.20 ± 15.10 | ||
7.04 | 8.01 | 10.42 | ||
0.88 | 0.87 | 0.91 |
Adsorbent Material | qmax (mg g−1) Cd2+ | Ref. |
---|---|---|
Resacetophenone-loaded silica gel | 7.01 | [40] |
DHAQ-loaded silica gel | 7.89 | [40] |
GASG | 6.09 | [37] |
Amino-functionalized silica gel | 49.52 | [38] |
Thiol-modified silica gel | 10.43 | [41] |
NTAA-LCM | 143.40 | [42] |
AC/ZrO composite | 166.70 | [43] |
Silico aluminophosphate | 52.63 | Current Study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Annath, H.; Jaiyeola, O.; Mangwandi, C. Highly Efficient Removal of Cadmium from Wastewater Using Eco-Friendly and Cost-Effective Amorphous Silicoaluminophosphates as Adsorbent Particles. Separations 2025, 12, 128. https://doi.org/10.3390/separations12050128
Annath H, Jaiyeola O, Mangwandi C. Highly Efficient Removal of Cadmium from Wastewater Using Eco-Friendly and Cost-Effective Amorphous Silicoaluminophosphates as Adsorbent Particles. Separations. 2025; 12(5):128. https://doi.org/10.3390/separations12050128
Chicago/Turabian StyleAnnath, Hamza, Oluwafikayo Jaiyeola, and Chirangano Mangwandi. 2025. "Highly Efficient Removal of Cadmium from Wastewater Using Eco-Friendly and Cost-Effective Amorphous Silicoaluminophosphates as Adsorbent Particles" Separations 12, no. 5: 128. https://doi.org/10.3390/separations12050128
APA StyleAnnath, H., Jaiyeola, O., & Mangwandi, C. (2025). Highly Efficient Removal of Cadmium from Wastewater Using Eco-Friendly and Cost-Effective Amorphous Silicoaluminophosphates as Adsorbent Particles. Separations, 12(5), 128. https://doi.org/10.3390/separations12050128