Application of Bio-Based Activated Carbon from Cocoa Husk Waste for High-Efficiency Adsorption in Water Treatment
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Active Carbon Preparation
2.3. Analysis
2.4. Adsorption Studies
3. Results and Discussion
3.1. Morphological Analysis
3.2. Structural Analysis
3.3. Textural Properties
4. Adsorption Performance
4.1. Effect of Initial Dye Concentration
4.2. Adsorption Isotherm Models
4.3. Kinetic Models
5. Thermodynamic Studies
6. Working Hypotheses for Adsorption Analysis
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, D.; Wang, L.; Wu, M. Simultaneous removal of dye and heavy metal by banana peels derived hierarchically porous carbons. J. Taiwan Inst. Chem. Eng. 2018, 93, 543–553. [Google Scholar] [CrossRef]
- UNESCO World Water Assessment Programme (WWAP). The United Nations World Water Development Report 2017: Wastewater, the Untapped Resource; UNESCO: Paris, France, 2017; Available online: https://www.unesco.org/en/wwap/wwdr/2017 (accessed on 31 August 2025).
- Hashem, A.H.; Saied, E.; Hasanin, M.S. Green and ecofriendly bio-removal of methylene blue dye from aqueous solution using biologically activated banana peel waste. Sustain. Chem. Pharm. 2020, 18, 100333. [Google Scholar] [CrossRef]
- Chanikya, P.; Nidheesh, P.V.; Babu, D.S.; Gopinath, A.; Kumar, M.S. Treatment of dyeing wastewater by combined sulfate radical based electrochemical advanced oxidation and electrocoagulation processes. Sep. Purif. Technol. 2021, 254, 117570. [Google Scholar] [CrossRef]
- Xue, Y.; Liu, X.; Zhang, N.; Shao, Y.; Xu, C.C. Enhanced photocatalytic performance of iron oxides@HTCC fabricated from zinc extraction tailings for methylene blue degradation. Metall. Mater. 2023, 30, 2364–2374. [Google Scholar]
- Lu, C.; Yang, J.; Khan, A.; Yang, J.; Li, Q.; Wang, G. A highly efficient technique to simultaneously remove acidic and basic dyes using magnetic ion-exchange microbeads. J. Hazard. Mater. 2022, 304, 114173. [Google Scholar] [CrossRef]
- Khapre, M.A.; Pandey, S.; Jugade, R.M. Glutaraldehyde-cross-linked chitosan–alginate composite for organic dyes removal from aqueous solutions. Int. J. Biol. Macromol. 2021, 190, 862–875. [Google Scholar] [CrossRef]
- Gupta, R.; Pandit, C.; Pandit, S.; Gupta, P.K.; Lahiri, D.; Agarwal, D.; Pandey, S. Potential and future prospects of biochar-based materials and their applications in removal of organic contaminants from industrial wastewater. J. Mater. Cycles Waste Manag. 2022, 24, 852–876. [Google Scholar] [CrossRef]
- Subrahmanya, T.; Widakdo, J.; Mani, S.; Austria, H.F.M.; Hung, W.-S.; Makari, H.; Nagar, J.K.; Hu, C.-C.; Lai, J.-Y. An eco-friendly and reusable syringe filter membrane for the efficient removal of dyes from water via low pressure filtration assisted self-assembling of graphene oxide and SBA-15/PDA. J. Hazard. Mater. 2022, 349, 131425. [Google Scholar] [CrossRef]
- Shen, Y.; Sun, P.; Ye, L.; Xu, D. Progress of anaerobic membrane bioreactor in municipal wastewater treatment. Sustainability 2023, 15, 1277–1298. [Google Scholar] [CrossRef]
- Toteva, V.; Staneva, D.; Grabchev, I. Pollutants sorbent made of cotton fabric modified with chitosan-glutaraldehyde and zinc oxide particles. Materials 2021, 14, 3242. [Google Scholar] [CrossRef]
- Rehman, R.; Farooq, S.; Mahmud, T. Use of agro-waste Musa acuminata and Solanum tuberosum peels for economical sorptive removal of emerald green dye in ecofriendly way. J. Clean. Prod. 2019, 206, 819–826. [Google Scholar] [CrossRef]
- Khapre, M.; Shekhawat, A.; Saravanan, D.; Pandey, S.; Jugade, R. Mesoporous Fe-Al-doped cellulose for the efficient removal of reactive dyes. Mater. Adv. 2022, 3, 3278–3285. [Google Scholar] [CrossRef]
- Rondina, D.J.G.; Ymbong, D.V.; Cadutdut, M.J.M.; Nalasa, J.R.S.; Paradero, J.B.; Mabayo, V.I.F.; Arazo, R.O. Utilization of a novel activated carbon adsorbent from press mud of sugarcane industry for the optimized removal of methyl orange dye in aqueous solution. Appl. Water Sci. 2019, 9, 181. [Google Scholar] [CrossRef]
- Pandey, S.; Son, N.; Kang, M. Synergistic sorption performance of karaya gumrosslink poly(acrylamide-co-acrylonitrile)@metal nanoparticle for organic pollutants. Int. J. Biol. Macromol. 2022, 210, 300–314. [Google Scholar] [CrossRef]
- Ouyang, M.; Wang, B.; Yu, X.; Tang, W.; Yu, M.; You, C.; Yang, J.; Wang, T.; Deng, Z. Comparative study on full-scale pore structure characterization and gas adsorption capacity of shale and coal reservoirs. Processes 2025, 13, 2246. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Ali, S.; Zaman, W. Innovative adsorbents for pollutant removal: Exploring the latest research and applications. Molecules 2024, 29, 4317. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Liang, D.; Xiao, Z.; Xie, Y.; Li, J. Sulfhydryl-Modified Chitosan Aerogel for the Adsorption of Heavy Metal Ions and Organic Dyes. Ind. Eng. Chem. Res. 2020, 59, 14531–14536. [Google Scholar] [CrossRef]
- Goyal, A.; Singh, P.; Chamoli, P.; Raina, K.K.; Shukla, R.K. Eco-Friendly Biowaste-Based Natural Surfactant for Lyotropic Assemblies and Bio-Adsorbent for Dye Removal. Inorg. Chem. Commun. 2021, 133, 108871. [Google Scholar] [CrossRef]
- Kloster, M.; Marcovich, N.E.; Mosiewicki, M.A. Microcrystalline Cellulose Modified Chitosan Aerogels to Enhance Congo Red Dye Adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2025, 707, 135823. [Google Scholar] [CrossRef]
- Stanciu, M.-C.; Teacă, C.-A. Natural Polysaccharide-Based Hydrogels Used for Dye Removal. Gels 2024, 10, 243. [Google Scholar] [CrossRef]
- Mihai, S.; Bondarev, A.; Necula, M. The Potential of Biogenic Materials as Sustainable and Environmentally Benign Alternatives to Conventional Adsorbents for Dyes Removal: A Review. Processes 2025, 13, 589. [Google Scholar] [CrossRef]
- Recio-Colmenares, C.L.; Flores-Gómez, J.; Morales Rivera, J.P.; Palacios Hinestroza, H.; Sulbarán-Rangel, B. Green Materials for Water and Wastewater Treatment: Mechanisms and Artificial Intelligence. Processes 2025, 13, 566. [Google Scholar] [CrossRef]
- Tran, H.N. Adsorption technology for water and wastewater treatments. Water 2023, 15, 2857. [Google Scholar] [CrossRef]
- Soares, T.F.; Oliveira, M.B.P.P. Cocoa By-Products: Characterization of Bioactive Compounds and Beneficial Health Effects. Molecules 2022, 27, 1625. [Google Scholar] [CrossRef]
- Pan, T.; Guo, Z.; Zhang, X.; Feng, L. Hydrothermal carbonization of biomass waste and application of produced hydrochar in organic pollutants removal. J. Clean. Prod. 2024, 457, 142386. [Google Scholar] [CrossRef]
- Yin, Q.; Zhang, B.; Wang, R.; Zhao, Z. Biochar as an adsorbent for inorganic nitrogen and phosphorus removal from water: A review. Environ. Sci. Pollut. Res. 2017, 24, 26297–26309. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Zhang, L.; Tu, L.-Y.; Liang, Y.; Chen, Q.; Li, Z.-S.; Li, C.-H.; Wang, Z.-H.; Li, W. Coconut-based activated carbon fibers for efficient adsorption of various organic dyes. RSC Adv. 2018, 8, 42280–42291. [Google Scholar] [CrossRef]
- Yurdakal, S.; Garlisi, C.; Özcan, L.; Bellardita, M.; Palmisano, G. (Photo)catalyst characterization techniques: Adsorption isotherms and BET, SEM, FTIR, UV Vis, photoluminescence, and electrochemical characterizations. In Heterogeneous Photocatalysis: Relationships with Heterogeneous Catalysis and Perspectives; Marci, G., Palmisano, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Chapter 4. [Google Scholar] [CrossRef]
- Chiban, M.; Soudani, A.; Sinan, F.; Persin, M. Single, binary and multi-component adsorption of some anions and heavy metals on environmentally friendly Carpobrotus edulis plant. Colloids Surf. B Biointerfaces 2011, 82, 267–276. [Google Scholar] [CrossRef]
- Voudrias, E.; Fytianos, F.; Bozani, E. Sorption desorption isotherms of dyes from aqueous solutions and wastewaters with different sorbent materials. Glob. Nest Int. J. 2002, 4, 75–83. [Google Scholar]
- Abubakar, U.I.; Abdullahi, M.; Abdulhamid, H. Kinetics, equilibrium, and thermodynamics studies of Methylene Blue dye adsorption onto modified activated carbon produced from groundnut shells. J. Mater. Environ. Sci. 2024, 15, 893–915. [Google Scholar]
- Simonin, J.-P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254–263. [Google Scholar] [CrossRef]
- El-Sayed, M.; Abukhadra, M.R.; Rabie, R.; Shawky, A. Efficient removal of methylene blue dye using novel biochar derived from palm leaves: Characterization, equilibrium isotherms, and kinetic modeling. Separations 2023, 10, 211. [Google Scholar] [CrossRef]
- Munagapatia, V.S.; Wen, J.-C.; Pan, C.-L.; Gu, Y.; Wen, J.-H.; Reddy, G.M. Adsorptive removal of anionic dye (Reactive Black 5) from aqueous solution using chemically modified banana peel powder: Kinetic, isotherm, thermodynamic, and reusability studies. Int. J. Phytoremediat. 2020, 22, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, S.; Topare, N.S.; Raut-Jadhav, S.; Thorat, P.V.; Bokil, S.A.; Khan, A. Orange peel activated carbon produced from waste orange peels for adsorption of methyl red. AQUA Water Infrastruct. Ecosyst. Soc. 2022, 71, 1351–1363. [Google Scholar] [CrossRef]
- Yahaya, N.F.; Aziz, H.A.; Adlan, M.N.; Ariffin, M. Adsorption of copper by Pycnoporus sanguineus biomass: Isotherm and thermodynamic studies. J. Environ. Chem. Eng. 2015, 3, 2161–2169. [Google Scholar] [CrossRef]
- Sahmoune, M.N. Evaluation of thermodynamic parameters for adsorption of heavy metals by green adsorbents. Environ. Chem. Lett. 2019, 17, 697–704. [Google Scholar] [CrossRef]
- Vigdorowitsch, M.; Pchelintsev, A.; Tsygankova, L.; Tanygina, E. Freundlich isotherm: An adsorption model complete framework. Appl. Sci. 2021, 11, 8078. [Google Scholar] [CrossRef]
- Nekouei, F.; Nekouei, S.; Tyagi, I.; Gupta, V. Kinetic, thermodynamic and isotherm studies for Acid Blue 129 removal from liquids using copper oxide nanoparticle-modified activated carbon as a novel adsorbent. J. Mol. Liq. 2015, 201, 124–133. [Google Scholar] [CrossRef]
Sample | CH | |
---|---|---|
BE, eV | % At Conc. | |
C 1s | ||
C-C (sp3) | 284.57 | 86.15 |
C=O | 289.88 | 4.27 |
Total C %At Conc | 90.42 | |
O 1s | ||
C=O quinone type | 530.54 | 0.19 |
O-C=O | 531.96 | 3.28 |
C=O | 533.46 | 3.83 |
Total O %At Conc | 7.30 | |
Total of S, N, Mn, Fe, %At Conc | 2.29 |
Characteristics | Value |
---|---|
Total pore volume, cm3·g−1 | 1.5240 |
Micropore volume, cm3·g−1 | 0.5050 |
Mesopore volume, cm3·g−1 | 0.7498 |
Macropore volume, cm3·g−1 | 0.2692 |
BET specific surface area, m2·g−1 | 1661.6 |
Langmuir | Freundlich | Dubinin–Radushkevich |
---|---|---|
a∞, mg·g−1 10.47 | KF, mg·g−1 0.3445 | a∞, mg·g−1 73.59 |
KL, L·mg−1 1.133 | n 0.4406 | Kad, mol2·kJ−2 7.38 × 10−3 |
RL 0.008–0.08 | 1/n 2.26977 | E, kJ·mol−1 8.23 |
R2 0.46 | R2 0.86 | R2 0.96 |
T, °C | Pseudo-First-Order | Pseudo-Second-Order | Weber–Morris | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | k1 min−1 | qe mg·g−1 | R2 | k2 g·mg−1·min−1 | qe mg·g−1 | R2 | ki mg·g−1·min−1 | C | |
20 | 0.95 | 0.156 | 18.6 | 0.99 | 0.0204 | 46.79 | 0.84 | 5.2 | 23.6 |
40 | 0.96 | 0.064 | 0.45 | 0.99 | 0.192 | 44.58 | 0.74 | 0.4 | 46.65 |
Adsorbent Material | BET (m2·g−1) | Adsorption Capacity (mg·g−1) | Time, min | Removal | Adsorbate (Dye) | Reference |
---|---|---|---|---|---|---|
CH | 1661 | 45.5 | 3 | 93% | Drimaren Red K-7B | This work |
Banana peel powder | 118 | 49 | 90 | Not specified |
Reactive
Black 5 | [36] |
Coconut shell ACF | 1556 | 21.3 | 120–150 min | >90% (varies) | Methylene blue | [29] |
Coconut shell ACF | 1556 | 22.1 | 120–150 min | >90% (varies) | Congo red | [29] |
Orange peel AC | 512.2 | 111.1 | 60 min | ~100% | Methyl red | [37] |
Temperature (K) | K | ΔG° (kJ·mol−1) | ΔH° (kJ·mol−1) | ΔS° (J·mol−1·K−1) |
293.15 (20 °C) | 14.58 | −6.53 | ||
313.15 (40 °C) | 8.23 | −5.49 | −21.9 | −52.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelova, D.; Toteva, V.; Georgiev, G. Application of Bio-Based Activated Carbon from Cocoa Husk Waste for High-Efficiency Adsorption in Water Treatment. Separations 2025, 12, 278. https://doi.org/10.3390/separations12100278
Angelova D, Toteva V, Georgiev G. Application of Bio-Based Activated Carbon from Cocoa Husk Waste for High-Efficiency Adsorption in Water Treatment. Separations. 2025; 12(10):278. https://doi.org/10.3390/separations12100278
Chicago/Turabian StyleAngelova, Daniela, Vesislava Toteva, and Georgi Georgiev. 2025. "Application of Bio-Based Activated Carbon from Cocoa Husk Waste for High-Efficiency Adsorption in Water Treatment" Separations 12, no. 10: 278. https://doi.org/10.3390/separations12100278
APA StyleAngelova, D., Toteva, V., & Georgiev, G. (2025). Application of Bio-Based Activated Carbon from Cocoa Husk Waste for High-Efficiency Adsorption in Water Treatment. Separations, 12(10), 278. https://doi.org/10.3390/separations12100278