Enhanced Treatment of Swine Farm Wastewater Using an O3/Fe2+/H2O2 Process: Optimization and Performance Evaluation via Response Surface Methodology
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Sample Collection
2.3. Experimental Setup
2.4. Experimental Procedure
2.5. Analytical Methods
3. Results and Discussion
3.1. Single-Factor Experiments and Analysis
3.1.1. Influence of Ozone Flow Rate and Reaction Time on Organic Matter Removal
3.1.2. Effect of Fe2+ and H2O2 Dosage on Organic Matter Removal
3.2. Development and Statistical Analysis of the RSM Optimization Regression Model
3.2.1. RSM Model Construction and Statistical Diagnostics
3.2.2. Parameter Analysis in the CCD Model
3.2.3. Response Surfaces and Optimization Results
3.3. Treatment Efficiency of Organic Pollutants by O3/Fe2+/H2O2 Process Under Optimized Conditions
3.3.1. Molecular Weight Distribution and Biodegradability Enhancement
3.3.2. FTIR and UV-Vis Analyses
3.3.3. D-EEM Analysis
3.3.4. Antibiotic Degradation
3.4. Analysis of Energy Efficiency
3.4.1. Ozone Utilization Efficiency Analysis
3.4.2. Economic Assessment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RSM | Response Surface Methodology |
CCD | Central Composite Design |
VAs | Veterinary antibiotics |
TCs | Tetracyclines |
SAs | Sulfonamides |
ECs | Emerging Contaminants |
A/O | Anoxic–Oxic |
AOPs | Advanced Oxidation Processes |
MW | Molecular weight |
FTIR | Fourier transform infrared |
UV-Vis | Ultraviolet-Visible |
3D-EEM | Three-dimensional excitation emission matrix |
FRI | Fluorescence Regional Integration |
Appendix A
Parameter | A/O-1 Effluent | A/O-2 Effluent |
---|---|---|
pH | 6.18 ± 0.06 | 6.07 ± 0.07 |
TOC (mg/L) | 71.60 ± 0.71 | 68.35 ± 0.78 |
COD (mg/L) | 256.03 ± 2.29 | 238.10 ± 2.71 |
BOD5 (mg/L) | 2.88 ± 0.34 | 1.93 ± 0.4 |
UV254 | 2.43 ± 0.03 | 2.47 ± 0.04 |
NH3-N (mg/L) | 5.13 ± 0.08 | 4.95 ± 0.10 |
TN (mg/L) | 361.06 ± 6.56 | 342.12 ± 7.55 |
TP (mg/L) | 95.20 ± 0.71 | 94.61 ± 0.69 |
Turbidity (NTU) | 38.63 ± 0.84 | 27.37 ± 0.69 |
Color (PCU) | 635 ± 5 | 625 ± 5 |
Time | Command | value | Mobile phase |
---|---|---|---|
Start | B. Conc | 10% | Phase A: Ultra-pure Water (UPW) with 0.1% formic acid Phase B: methanol |
4.5 min | B. Conc | 10% | |
6.5 min | B. Conc | 95% | |
6.6 min | B. Conc | 95% |
Antibiotics | Q1 Mass | Q3 Mass | DP (V) | CE (V) | Detection Method | Linearity (R2) |
---|---|---|---|---|---|---|
SD | 251.1 | 156 | 40 | 22 | MRM+ | 0.9989 |
92 | 38 | |||||
SMM | 281.1 | 156 | 75 | 25 | MRM+ | 0.9961 |
126.1 | 30 | |||||
SMX | 254.1 | 156 | 65 | 22 | MRM+ | 0.9956 |
108 | 36 | |||||
SMZ | 279.11 | 186.1 | 60 | 23 | MRM+ | 0.9967 |
156 | 27 | |||||
TC | 445.1 | 410.2 | 80 | 24 | MRM+ | 0.9975 |
427.1 | 19 | |||||
OTC | 461.2 | 426.2 | 80 | 25 | MRM+ | 0.9912 |
443.2 | 17 |
References
- Domingues, E.; Fernandes, E.; Gomes, J.; Martins, R.C. Advanced oxidation processes perspective regarding swine wastewater treatment. Sci. Total Environ. 2021, 776, 145958. [Google Scholar] [CrossRef]
- Cheng, D.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Liu, Y.; Shan, X.; Nghiem, L.D.; Nguyen, L.N. Removal process of antibiotics during anaerobic treatment of swine wastewater. Bioresour. Technol. 2020, 300, 122707. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Kakarla, D.; Venkateswarlu, K.; Megharaj, M.; Yoon, Y.-E.; Lee, Y.B. Veterinary antibiotics (VAs) contamination as a global agro-ecological issue: A critical view. Agric. Ecosyst. Environ. 2018, 257, 47–59. [Google Scholar] [CrossRef]
- Halling-Sørensen, B.; Jensen, J.; Tjørnelund, J.; Montforts, M. Worst-case estimations of predicted environmental soil concentrations (PEC) of selected veterinary antibiotics and residues used in Danish agriculture. In Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks; Springer: Berlin/Heidelberg, Germany, 2001; pp. 143–157. [Google Scholar]
- Wu, H.; Li, A.; Zhang, H.; Gao, S.; Li, S.; Cai, J.; Yan, R.; Xing, Z. The potential and sustainable strategy for swine wastewater treatment: Resource recovery. Chemosphere 2023, 336, 139235. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xing, S.; Li, S.; Niu, Y.; Li, C.; Huang, T.; Liao, X. Potential regulation of small RNAs on bacterial function activities in pig farm wastewater treatment plants. J. Environ. Sci. 2020, 91, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Wang, D.; Zeng, W.; Yang, J. Removal of refractory organics from piggery bio-treatment effluent by the catalytic ozonation process with piggery biogas residue biochar as the catalyst. Sci. Total Environ. 2020, 734, 139448. [Google Scholar] [CrossRef]
- Liu, J.; Zhong, Z.; Cheng, Y.; Zhang, B. Dissolved organic matter characterization of swine wastewater with step-feed two-stage anoxic/oxic (A/O/A/O) process by using EEM-PARAFAC. Energy Rep. 2023, 9, 106–110. [Google Scholar] [CrossRef]
- Aust, M.-O.; Thiele-Bruhn, S.; Eckhardt, K.-U.; Leinweber, P. Composition of organic matter in particle size fractionated pig slurry. Bioresour. Technol. 2009, 100, 5736–5743. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, M.; Stamm, C. Depth distribution of sulfonamide antibiotics in pore water of an undisturbed loamy grassland soil. J. Environ. Qual. 2007, 36, 588–596. [Google Scholar] [CrossRef]
- Riaño, B.; Coca, M.; García-González, M.C. Evaluation of Fenton method and ozone-based processes for colour and organic matter removal from biologically pre-treated swine manure. Chemosphere 2014, 117, 193–199. [Google Scholar] [CrossRef]
- Wang, J.; Bai, Z. Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater. Chem. Eng. J. 2017, 312, 79–98. [Google Scholar] [CrossRef]
- Cheng, M.; Lai, C.; Liu, Y.; Zeng, G.; Huang, D.; Zhang, C.; Qin, L.; Hu, L.; Zhou, C.; Xiong, W. Metal-organic frameworks for highly efficient heterogeneous Fenton-like catalysis. Coord. Chem. Rev. 2018, 368, 80–92. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, L.; Cheng, X.; Wang, X. The application and reaction mechanism of catalytic ozonation in water treatment. J. Environ. Anal. Toxicol. 2012, 2, 2161-0525. [Google Scholar] [CrossRef]
- Rekhate, C.V.; Srivastava, J. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater-A review. Chem. Eng. J. Adv. 2020, 3, 100031. [Google Scholar] [CrossRef]
- Behera, S.K.; Meena, H.; Chakraborty, S.; Meikap, B. Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. Int. J. Min. Sci. Technol. 2018, 28, 621–629. [Google Scholar] [CrossRef]
- Chen, C.; Han, C.; Wang, P.; Guo, S.; Yan, G.; Li, Q.X. Investigation on Titanium Silicalite ETS-4 Catalyzed Ozonation for Chemicals in Wastewater, Exemplified With 4-Chlorophenol. CLEAN–Soil Air Water 2016, 44, 1644–1651. [Google Scholar] [CrossRef]
- Li, J.; How, Z.T.; Benally, C.; Sun, Y.; Zeng, H.; El-Din, M.G. Removal of colloidal impurities by thermal softening-coagulation-flocculation-sedimentation in steam assisted gravity drainage (SAGD) produced water: Performance, interaction effects and mechanism study. Sep. Purif. Technol. 2023, 313, 123484. [Google Scholar] [CrossRef]
- Dulekgurgen, E.; Doğruel, S.; Karahan, Ö.; Orhon, D. Size distribution of wastewater COD fractions as an index for biodegradability. Water Res. 2006, 40, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, F.J.; Schlenger, P.; García-Valverde, M. Monitoring changes in the structure and properties of humic substances following ozonation using UV–Vis, FTIR and 1H NMR techniques. Sci. Total Environ. 2016, 541, 623–637. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence excitation− emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef] [PubMed]
- Alvares, A.; Diaper, C.; Parsons, S. Partial oxidation by ozone to remove recalcitrance from wastewaters-a review. Environ. Technol. 2001, 22, 409–427. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Qiu, B.; Sun, D. Degradation of refractory organics from biologically treated incineration leachate by VUV/O3. Chem. Eng. J. 2019, 370, 346–353. [Google Scholar] [CrossRef]
- Cortez, S.; Teixeira, P.; Oliveira, R.; Mota, M. Evaluation of Fenton and ozone-based advanced oxidation processes as mature landfill leachate pre-treatments. J. Environ. Manag. 2011, 92, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Nawrocki, J.; Kasprzyk-Hordern, B. The efficiency and mechanisms of catalytic ozonation. Appl. Catal. B Environ. 2010, 99, 27–42. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, S.; He, X.; Yang, Y.; Yang, X.; Van Hulle, S.W. Comparison of macro and micro-pollutants abatement from biotreated landfill leachate by single ozonation, O3/H2O2, and catalytic ozonation processes. Chem. Eng. J. 2023, 452, 139503. [Google Scholar] [CrossRef]
- Sauleda, R.; Brillas, E. Mineralization of aniline and 4-chlorophenol in acidic solution by ozonation catalyzed with Fe2+ and UVA light. Appl. Catal. B Environ. 2001, 29, 135–145. [Google Scholar] [CrossRef]
- Li, M.; Zeng, Z.; Li, Y.; Arowo, M.; Chen, J.; Meng, H.; Shao, L. Treatment of amoxicillin by O3/Fenton process in a rotating packed bed. J. Environ. Manag. 2015, 150, 404–411. [Google Scholar] [CrossRef]
- Staehelin, J.; Hoigne, J. Decomposition of ozone in water: Rate of initiation by hydroxide ions and hydrogen peroxide. Environ. Sci. Technol. 1982, 16, 676–681. [Google Scholar] [CrossRef]
- Buhler, R.; Staehelin, J.; Hoigne, J. Ozone Decomposition in Water Studied by Pulse Radiolysis 1. HO2/O2-and HO3/O3-as Intermediates-Correction. J. Phys. Chem. 1984, 88, 5450. [Google Scholar] [CrossRef]
- Chamarro, E.; Marco, A.; Esplugas, S. Use of Fenton reagent to improve organic chemical biodegradability. Water Res. 2001, 35, 1047–1051. [Google Scholar] [CrossRef]
- Muruganandham, M.; Swaminathan, M. Decolourisation of Reactive Orange 4 by Fenton and photo-Fenton oxidation technology. Dye. Pigment. 2004, 63, 315–321. [Google Scholar] [CrossRef]
- Alfonso-Muniozguren, P.; Gomes, A.I.; Saroj, D.; Vilar, V.J.; Lee, J. The role of ozone combined with UVC/H2O2 process for the tertiary treatment of a real slaughterhouse wastewater. J. Environ. Manag. 2021, 289, 112480. [Google Scholar] [CrossRef] [PubMed]
- Pelalak, R.; Alizadeh, R.; Ghareshabani, E.; Heidari, Z. Degradation of sulfonamide antibiotics using ozone-based advanced oxidation process: Experimental, modeling, transformation mechanism and DFT study. Sci. Total Environ. 2020, 734, 139446. [Google Scholar] [CrossRef] [PubMed]
- Canizares, P.; Paz, R.; Sáez, C.; Rodrigo, M.A. Costs of the electrochemical oxidation of wastewaters: A comparison with ozonation and Fenton oxidation processes. J. Environ. Manag. 2009, 90, 410–420. [Google Scholar] [CrossRef]
- Yuan, R.; Xia, Y.; Wu, X.; He, C.; Qin, Y.; He, C.; Zhang, X.; Li, N.; He, X. Efficient advanced treatment of coking wastewater using O3/H2O2/Fe-shavings process. J. Environ. Chem. Eng. 2022, 10, 107307. [Google Scholar] [CrossRef]
- Lee, E.; Lee, H.; Kim, Y.; Sohn, K.; Lee, K. Hydrogen peroxide interference in chemical oxygen demand during ozone based advanced oxidation of anaerobically digested livestock wastewater. Int. J. Environ. Sci. Technol. 2011, 8, 381–388. [Google Scholar] [CrossRef]
- Volk, C.; Roche, P.; Joret, J.-C.; Paillard, H. Comparison of the effect of ozone, ozone-hydrogen peroxide system and catalytic ozone on the biodegradable organic matter of a fulvic acid solution. Water Res. 1997, 31, 650–656. [Google Scholar] [CrossRef]
- Wang, N.; Zheng, T.; Zhang, G.; Wang, P. A review on Fenton-like processes for organic wastewater treatment. J. Environ. Chem. Eng. 2016, 4, 762–787. [Google Scholar] [CrossRef]
- Huang, Z.; Gu, Z.; Wang, Y.; Zhang, A. Improved oxidation of refractory organics in concentrated leachate by a Fe2+-enhanced O3/H2O2 process. Environ. Sci. Pollut. Res. 2019, 26, 35797–35806. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, L.; Jiang, T. Characterization and modeling of the soluble microbial products in membrane bioreactor. Sep. Purif. Technol. 2011, 76, 316–324. [Google Scholar] [CrossRef]
- He, Y.; Zheng, Y.; Liu, X.; Liu, C.; Zhang, H.; Han, J. Polyvinyl Alcohol–Citric Acid: A New Material for Green and Efficient Removal of Cationic Dye Wastewater. Polymers 2023, 15, 4341. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; He, X.; Zhang, H.; Deng, Y.; Chen, L.; Jiang, J. Characterization of dissolved organic matter extracted from fermentation effluent of swine manure slurry using spectroscopic techniques and parallel factor analysis (PARAFAC). Microchem. J. 2012, 102, 115–122. [Google Scholar] [CrossRef]
- Peng, S.; He, X.; Pan, H. Spectroscopic study on transformations of dissolved organic matter in coal-to-liquids wastewater under integrated chemical oxidation and biological treatment process. J. Environ. Sci. 2018, 70, 206–216. [Google Scholar] [CrossRef]
- Guo, X.; Xi, B.; Yu, H.; Ma, W.; He, X. The structure and origin of dissolved organic matter studied by UV-vis spectroscopy and fluorescence spectroscopy in lake in arid and semi-arid region. Water Sci. Technol. 2011, 63, 1010–1017. [Google Scholar]
- Chen, W.; Zhang, A.; Gu, Z.; Li, Q. Enhanced degradation of refractory organics in concentrated landfill leachate by Fe0/H2O2 coupled with microwave irradiation. Chem. Eng. J. 2018, 354, 680–691. [Google Scholar] [CrossRef]
- Von Gunten, U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res. 2003, 37, 1443–1467. [Google Scholar] [CrossRef]
- Ben, W.; Qiang, Z.; Pan, X.; Chen, M. Removal of veterinary antibiotics from sequencing batch reactor (SBR) pretreated swine wastewater by Fenton’s reagent. Water Res. 2009, 43, 4392–4402. [Google Scholar] [CrossRef]
- Sui, M.; Xing, S.; Zhu, C.; Sheng, L.; Lu, K.; Gao, N. Kinetics of ozonation of typical sulfonamides in water. Biomed. Environ. Sci. 2011, 24, 255–260. [Google Scholar]
- Dong, H.; Lin, Y.; Feng, M.; Dai, Y.; Dai, Z.; Duan, X.; Dewil, R.; Guan, X. Unexpected tetracycline antibiotics degradation in the Fenton process under near-neutral pH conditions: Performance and mechanism. J. Hazard. Mater. 2025, 495, 138858. [Google Scholar] [CrossRef] [PubMed]
- Flores-Payan, V.; Herrera-Lopez, E.J.; Navarro-Laboulais, J.; Lopez-Lopez, A. Parametric sensitivity analysis and ozone mass transfer modeling in a gas–liquid reactor for advanced water treatment. J. Ind. Eng. Chem. 2015, 21, 1270–1276. [Google Scholar] [CrossRef]
- Cortez, S.; Teixeira, P.; Oliveira, R.; Mota, M. Ozonation as polishing treatment of mature landfill leachate. J. Hazard. Mater. 2010, 182, 730–734. [Google Scholar] [CrossRef] [PubMed]
- Ratnawati, R.; Kusumaningtyas, D.A.; Suseno, P.; Prasetyaningrum, A. Mass transfer coefficient of ozone in a bubble column. MATEC Web Conf. 2018, 156, 02015. [Google Scholar] [CrossRef]
- Yang, L.; Sheng, M.; Li, Y.; Xue, W.; Li, K.; Cao, G. A hybrid process of Fe-based catalytic ozonation and biodegradation for the treatment of industrial wastewater reverse osmosis concentrate. Chemosphere 2020, 238, 124639. [Google Scholar] [CrossRef]
- Zhao, Z.; Dong, W.; Wang, H.; Chen, G.; Wang, W.; Liu, Z.; Gao, Y.; Zhou, B. Advanced oxidation removal of hypophosphite by O3/H2O2 combined with sequential Fe (II) catalytic process. Chemosphere 2017, 180, 48–56. [Google Scholar] [CrossRef] [PubMed]
Variable | Level and Code | ||||
---|---|---|---|---|---|
−α | −1 | 0 | +1 | +α | |
A: O3 concentration (mg/L) | 11.59 | 15 | 20 | 25 | 28.41 |
B: Fe2+ concentration (mg/L) | 3.18 | 10 | 20 | 30 | 36.82 |
C: H2O2 concentration (mg/L) | 23.18 | 30 | 40 | 50 | 56.82 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 438.41 | 9 | 48.71 | 152.66 | <0.0001 | significant |
A | 164.45 | 1 | 164.45 | 515.39 | <0.0001 | |
B | 116.96 | 1 | 116.96 | 366.55 | <0.0001 | |
C | 5.47 | 1 | 5.47 | 17.14 | 0.0044 | |
AB | 9.04 | 1 | 9.04 | 28.33 | 0.0011 | |
AC | 1.79 | 1 | 1.79 | 5.61 | 0.0497 | |
BC | 3.82 | 1 | 3.82 | 11.96 | 0.0106 | |
A2 | 25.53 | 1 | 25.53 | 80.01 | <0.0001 | |
B2 | 133.96 | 1 | 133.96 | 419.85 | <0.0001 | |
C2 | 14.12 | 1 | 14.12 | 44.25 | 0.0003 | |
Residual | 2.23 | 7 | 0.3191 | |||
Lack of Fit | 1.84 | 5 | 0.367 | 1.84 | 0.3881 | not significant |
Pure Error | 0.3984 | 2 | 0.1992 | |||
Cor Total | 440.64 | 16 |
Parameter | Raw Effluent | Ozonation Alone Treatment | O3/Fe2+/H2O2 Treatment |
---|---|---|---|
E254 | 2.43 | 0.93 | 0.79 |
E280 | 1.95 | 0.67 | 0.58 |
E490 | 0.12 | 0.012 | 0.008 |
E240/E420 | 18.53 | 100.56 | 141.61 |
E250/E365 | 4.22 | 11.03 | 11.36 |
E300/E400 | 4.68 | 11.73 | 14.46 |
A226–400 | 363.22 | 153.87 | 140.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Tang, K.; Li, J.; Dong, L.; How, Z.T.; Wu, D.; Qin, R. Enhanced Treatment of Swine Farm Wastewater Using an O3/Fe2+/H2O2 Process: Optimization and Performance Evaluation via Response Surface Methodology. Separations 2025, 12, 277. https://doi.org/10.3390/separations12100277
Yu H, Tang K, Li J, Dong L, How ZT, Wu D, Qin R. Enhanced Treatment of Swine Farm Wastewater Using an O3/Fe2+/H2O2 Process: Optimization and Performance Evaluation via Response Surface Methodology. Separations. 2025; 12(10):277. https://doi.org/10.3390/separations12100277
Chicago/Turabian StyleYu, Hang, Kexin Tang, Jingqi Li, Linxi Dong, Zuo Tong How, Dongming Wu, and Rui Qin. 2025. "Enhanced Treatment of Swine Farm Wastewater Using an O3/Fe2+/H2O2 Process: Optimization and Performance Evaluation via Response Surface Methodology" Separations 12, no. 10: 277. https://doi.org/10.3390/separations12100277
APA StyleYu, H., Tang, K., Li, J., Dong, L., How, Z. T., Wu, D., & Qin, R. (2025). Enhanced Treatment of Swine Farm Wastewater Using an O3/Fe2+/H2O2 Process: Optimization and Performance Evaluation via Response Surface Methodology. Separations, 12(10), 277. https://doi.org/10.3390/separations12100277